Water Resources Data Tennessee Water Year 2002 By D.F. Flohr, J. W. Garrett, J.T. Hamilton, and T.D. Phillips Water-Data Report TN-02-1 # U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, SECRETARY U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director For information on the water program in Tennessee write to: District Chief, Water Resources Division U.S. Geological Survey 640 Grassmere Park, Suite 100 Nashville, Tennessee 37211 2003 # **PREFACE** This volume of the annual hydrologic data report of Tennessee is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from the field offices. The following individuals supervised the collection, processing, and tabulation of the data: Terry D. Phillips, Knoxville Jerry W. Garrett, Memphis J. Tim Hamilton, Nashville The following individuals contributed to the collection, processing, and preparation of the data: M.W. Bennett P. Powers T.D. Turner D.E. Butner T.L. Scheff K.C. Waltenbaugh C.F. Glover J.M. Shelton J.A. Kingsbury H.L. Shook D.E. League R. Thomas This report was prepared in cooperation with the State of Tennessee and with other agencies under the general supervision of Paul S. Hampson, Data Management Section Chief, and W. Scott Gain, District Chief, Tennessee. May 2003 Annual-October 1, 2001 to September 30, 2002 Water Resources Data - Tennessee, Water Year 2002 D.F. Flohr, J.W. Garrett, J.T. Hamilton, T.D. Phillips US Geological Survey, Water Resources Division 640 Grassmere Park, Suite 100 Nashville, TN 37211 USGS-WDR-TN-02-1 US Geological Survey, Water Resources Division 640 Grassmere Park, Suite 100 Nashville, TN 37211 # USGS-WDR-TN-02-1 Prepared in cooperation with the Tennessee Department of Environment and Conservation; the Tennessee Valley Authority; and with other State, municipal, and Federal Agencies. No restriction on distribution. This report may be purchased from: National Technical Information Services, Springfield, VA 22161 Water resources data for the 2002 water year for Tennessee consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 89 gaging stations; stage only for 1 gaging station, elevation and contents for 32 lakes reservoirs; water quality at 9 gaging stations and 15 wells; and water levels for 8 observation wells; and 1 precipitation station. Also included are data for 98 crest stage partial-record stations. Additional water data were collected at various stream sites not involved in the systematic data-collection program, and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperating State and Federal agencies in Tennessee. *Tennessee, *Hydrologic data, *Surface water, *Groundwater, *Water quality, Flow rate, Gaging stations, Lake, Reservoirs, Chemical analyses, Sediment analyses, Water temperature, Sampling sites, Water level, Water analyses UNCLASSIFIED # **CONTENTS** | | Page | |---|------| | Preface | iii | | List of surface-water stations, in downstream order, for which records are published in this volume | | | List of ground-water wells for which records are published in this volume | ix | | List of discontinued streamflow stations | | | List of discontinued surface-water quality stations | | | Introduction | | | Cooperation | | | Summary of hydrologic conditions | | | Surface-water conditions | | | Ground-water levels | | | Water quality | | | Special networks and programs | | | Explanation of the records | | | Station identification numbers | | | Downstream order system | | | Numbering system for wells | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other data available | | | Records of surface-water quality | | | Classification of records | 13 | | Arrangement of records | | | On-site measurements and sample collection | | | Water temperature | 14 | | Sediment | 14 | | Laboratory measurements | 14 | | Data presentation | 15 | | Remark codes | 16 | | Records of ground-water levels | 17 | | Data collection and computation | 17 | | Data presentation | 18 | | Records of ground-water quality | 19 | | Data collection and computation. | 19 | | Data presentation | 19 | | Explanation of precipitation-quality records. | | | Collection of the data | 19 | | Access to WATSTORE data | 19 | | Definition of terms | | | Publications on techniques of water-resources investigations | 32 | | Station records, surface water | | | Discharge at partial-record stations | 312 | | Crest-stage partial-record stations | | | Miscellaneous sites | 326 | | Springs | 329 | | Special studies | | | Miscellaneous temperature measurements and field determinations | | | Water-level data for a wetland area near Millington | 357 | | | | | Page | |---------|---------|---|------| | Station | n recoi | ds, ground-water | 370 | | | | nd-water-levels | 370 | | | Perio | dic measurements of ground-water levels | 385 | | | Analy | rses of samples collected at water-quality miscellaneous sites | 389 | | | Quali | ty of ground water | 396 | | Chem | ical qu | ality of precipitation | 411 | | Index | | | 413 | | | | ILLUSTRATIONS | Page | | Figure | 2 1. | | | | | _ | water levels for the period of record (Hamilton County) | 5 | | | 2. | Hydrograph of well Sh:Q-1 in Shelby County showing a long-term decline in the water level | 5 | | | 3. | System for numbering wells | 7 | | | 4. | Map showing location of streamflow gaging stations in Tennessee | 37 | | | 5. | Map showing location of crest-stage stations in Tennessee | 39 | | | 6. | Map showing location of water-quality and ground-water wells in Tennessee | 41 | | | 7. | Map showing location of study area and data-collection sites | 357 | # SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORD ARE PUBLISHED IN THIS VOLUME $[Letter\ after\ station\ name\ designates\ type\ of\ data;\ (d)\ discharge,\ (e)\ chemical,\ (b)\ biological,\\ (t)\ water\ temperature,\ (s)\ sediment,\ (e)\ elevation,\ gage\ heights,\ or\ contents]$ | | Station number | Page | |--|----------------|------| | OHIO RIVER BASIN | | _ | | Ohio River: | | | | CUMBERLAND RIVER BASIN | | | | Cumberland River: | | | | New River (head of South Fork Cumberland River): | | | | New River at New River (d) | | 42 | | Clear Fork near Robbins (d) | | 44 | | South Fork Cumberland River at Leatherwood Ford (d) | | 46 | | East Fork Obey River near Jamestown (d) | 03414500 | 50 | | West Fork Obey River near Alpine (d) | 03415000 | 52 | | Cumberland River at Celina (c,t) | 03417500 | 54 | | Roaring River above Gainesboro (d) | 03418070 | 60 | | Cumberland River below Cordell Hull Dam (c,t) | | 62 | | Caney Fork: | | | | Collins River near McMinnville (d) | 03421000 | 68 | | Smith Fork at Temperance Hall (d) | 03424730 | 70 | | Cumberland River at Old Hickory Dam (Tailwater), TN (d,c,t) | 03426310 | 72 | | Stones River: | 00.20010 | . – | | Mansker Creek above Goodletsville (d) | 03426385 | 82 | | Dry Creek near Edenwold (d) | | 84 | | East Fork Stones River near Lascassas (d) | | 86 | | West Fork Stones River at Murfreesboro (d,c,t) | | 88 | | Stoners Creek near Hermitage (d) | | 96 | | Mill Creek near Nolensville (d) | | 98 | | Mill Creek at Thompson Lane near Woodbine (d) | 03430330 | 100 | | Cumberland River at Omohundro Water Plant at Nashville (c,t) | 03431000 | 100 | | Cumberiand River at Officialities water Frame at Nashville (c,t) | 03431091 | | | Browns Creek at State Fairgrounds at Nashville (d) | 03431300 | 108 | | Cumberland River at Woodland Street at Nashville (d) | | 110 | | Cumberland River near Bordeaux (c,t) | | 112 | | Whites Creek near Bordeaux (d) | | 118 | | Richland Creek at Charlotte Avenue at Nashville (d) | 03431700 | 120 | | Harpeth River at Franklin (d) | 03432350 | 122 | | Harpeth River Tributary at Mack Hatcher Pkwy (d) | 034323531 | 124 | | South Prong Spencer Creek near Franklin (d) | 03432387 | 128 | | Spencer Creek near Franklin (d) | 03432390 | 130 | | Harpeth River below Franklin (d) | 03432400 | 133 | | Harpeth River at Bellevue (d) | | 134 | | Harpeth River near Kingston Springs (d) | | 136 | | Cumberland River below Cheatham Dam (c,t) | | 138 | | Red River: | | | | Red River below Highway 161 near Barren Plains (d) | 03435305 | 144 | | Millers Creek at Turnersville (d) | 03435970 | 146 | | Red River at Port Royal (d) | | 148 | | Yellow Creek at Ellis Mills (d) | | 150 | | Reservoirs in Cumberland River Basin. | | 152 | | TENNESSEE RIVER BASIN | | | | French Broad River near Newport (d) | 03455000 | 156 | | Pigeon River at Newport (d,) | 03461500 | 158 | | Nolichucky River at Embreeville
(d) | 03465500 | 160 | | Big Limestone Creek near Limestone (d,c,b,s) | | 162 | | Nolichucky River near Lowland (d,c,b,s) | | 168 | | Little Pigeon River above Sevierville (d) | 03469175 | 174 | | Holston River: | 05 107175 | 1/7 | | Big Creek near Rogersville (d) | 03491000 | 176 | # SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBL | LISHED IN THIS VOL | LUME | |---|--------------------|------| | | Station | | | | number | Page | | OHIO RIVER BASINContinued | | | | Ohio RiverContinued | | | | TENNESSEE RIVER BASINContinued | | | | Tennessee RiverContinued | 02.40=200 | 1.50 | | Little River about Townsend (d) | | 178 | | Little River near Maryville (d) | | 180 | | Little River near Alcoa (d) | | 182 | | Tellico River at Tellico Plains (d) | | 184 | | Clinch River above Tazewell (d) | 03528000 | 188 | | Powell River near Arthur (d) | 03532000 | 190 | | Beaver Creek: | 00.505.400 | 100 | | Beaver Creek at Solway (d) | 03535400 | 192 | | Poplar Creek: | | | | East Fork Poplar Creek at Bear Creek Road at Oak Ridge (d) | 03538235 | 194 | | Daddys Creek: | | | | Daddys Creek near Hebbertsburg (d) | 03539600 | 196 | | Clear Creek: | | 400 | | Clear Creek at Lilly Bridge near Lancing (d,c,t,b,s) | 03539778 | 198 | | Emory River: | | | | Obed River near Lancing (d) | 03539800 | 202 | | Emory River at Oakdale (d) | 03540500 | 204 | | Hiwassee River: | | | | Hiwassee River at Charleston (d) | | 206 | | North Mouse Creek near Rocky Mount Hollow near Athens (d) | 035661285 | 208 | | Tennessee River at Chattanooga (d,c,b,s) | | 210 | | Sequatchie River near Whitwell (d) | 03571000 | 212 | | Elk River: | | | | Elk River near Pelham (d) | | 214 | | Spring Creek off Spring Creek Road (d) | 03579040 | 216 | | Richland Creek at Hwy 64 near Pulaski (d) | 03584020 | 218 | | Shoal Creek at Iron City (d) | | 220 | | Tennessee River at Savannah (d) | 03593500 | 222 | | Duck River: | | | | Little Duck River southeast of Manchester (d) | | 224 | | Crumpton Creek at Rutledge Falls (d) | | 225 | | Garrison Fork above L&N Railroad at Wartrace (d) | | 226 | | Wartrace Creek below County Road at Wartrace (d) | | 228 | | Duck River at Shelbyville (d,t) | | 230 | | Duck River near Shelbyville (d) | | 236 | | North Fork Creek near Poplins Crossroads (d,c,t,b,s) | | 238 | | Duck River at Columbia (d) | | 240 | | Carters Creek at Petty Lane near Carters Creek (c,b,s) | | 242 | | Carters Creek Tributary near Carters Creek (c,b,s) | | 244 | | Carters Creek at Butler Road at Carters Creek (d,c,b,s) | | 246 | | Duck River at Highway 100 at Centerville (d) | | 250 | | Piney River at Cedar Hill (d) | | 252 | | Piney River at Vernon (d) | | 254 | | Buffalo River near Flat Woods (d) | | 256 | | Cypress Creek at Camden (d) | | 258 | | Big Sandy River at Bruceton (d) | 03606500 | 260 | | Reservoirs in Tennessee River basin | ••••• | 262 | | LOWER MISSISSIPPI RIVER BASIN | | | | Mississippi River: | | | | OBION RIVER BASIN | | | | Crooked Creek (head of Obion River): | | | | Beaver Creek at Hwy 22 Bypass near Huntingdon (d) | | 270 | | South Fork Obion River near Greenfield (d) | | 272 | | North Fork Obion River near Martin (d) | | 274 | | Obion River at Hwy 51 (d) | | 276 | | Reelfoot Lake near Tiptonville (e) | 07027000 | 278 | | South Fork Forked Deer River near Owl City (d) | | 280 | | Middle Fork Forked Deer River near Fairview (d) | 07028960 | 282 | | HATCHIE RIVER BASIN | | | | Hatchie River at Bolivar (d) | 07029500 | 284 | | LOOSAHATCHIE RIVER BASIN | | | | Loosahatchie River near Arlington (d) | 07030240 | 286 | | | | | # $SURFACE-WATER\ STATIONS, IN\ DOWNSTREAM\ ORDER, FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$ | | Station | Dogo | |---|----------|-------| | LOWER MICCIGGIRDI DIVER DAGIN Continued | number | Page | | LOWER MISSISSIPPI RIVER BASINContinued | | | | Mississippi RiverContinued
WOLF RIVER BASIN | | | | WOLF RIVER BASIN Wolf River at LaGrange (d,c,t,s) | 07020202 | 288 | | | | | | Wolf River at Rossville (d) | 07030500 | 292 | | Wolf River at Germantown (d) | 07031650 | 294 | | Fletcher Creek at Sycamore View Road (d) | 07031692 | 296 | | Wolf River at Hollywood Street at Memphis (d) | 0/031/40 | 308 | | NONCONNAH CREEK BASIN | | • • • | | Nonconnah Creek near Germantown (d) | 07032200 | 310 | | GROUND-WATER WELLS, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLU | JME | | | GROUND-WATER LEVELS | | | | | | | | HAMILTON COUNTY | | 250 | | Well 351428085003600 Local number Hm:O-15 | | 370 | | Well 350750085045802 Local number Hm:O-19 | ••••• | 371 | | LAUDERDALE COUNTY | | | | Well 353839089493500 Local number Ld:F-4 | | 372 | | LINCOLN COUNTY | | | | Well 350034086422800 Local number Li:G-1 | | 373 | | SEVIER COUNTY | | | | Well 353922083345600 Local number Sv:E-2 | | 374 | | SHELBY COUNTY | | | | Well 350857089591401 Local number Sh:P-99 | | 375 | | Well 351113089583101 Local number Sh:P-151 | | 376 | | Well 351102089582701 Local number Sh:P-152 | | 377 | | Well 350900089482300 Local number Sh:Q-1 | | 378 | | Well 352042089523401 Local number Sh:U-100 | | 379 | | Well 352042089523402 Local number Sh:U-101 | | 380 | | Well 352042089523403 Local number Sh:U-102 | | 381 | | Well 351917089515101 Local number Sh:V-211 | | 382 | | Well 351916089515101 Local number Sh:V-212 | | 383 | | Well 351917089515102 Local number Sh:V-222 | | 384 | | PERIODIC MEASUREMENTS OF GROUND-WATER LEVELS | | | | TAMPETTE COMPUTATION | | | | FAYETTE COUNTY | | 205 | | Well 352226089330101 Local number Fa:R-1 | | 385 | | Well 352226089330102 Local number Fa:R-2 | ••••• | 385 | | SHELBY COUNTY W. 11 2505 1 40905 52700 Level of the Class County | | 206 | | Well 350514089553700 Local number Sh:K-75 | ••••• | 386 | | Well 351435090005200 Local number Sh:O-1 | | 386 | | Well 350735089593300 Local number Sh:P-76 | | 387 | | Well 352112089571200 Local number Sh:U-1 | | 387 | | Well 352112089571300 Local number Sh:U-2 | ••••• | 388 | | <u>CRITTENDEN COUNTY, AK</u> | | • • • | | Well 350344090130000 Local number Ar:H-2 | | 388 | | QUALITY OF GROUND WATER, 2002 WATER YEAR | | | | SHELBY COUNTY | | | | Well 350114090071701 Local number Sh:J-146 | | 396 | | Well 350511090020501 Local number Sh:J-183 | | 396 | | Well 350642089555000 Local number Sh:K-142 | | 397 | | Well 350230089512301 Local number Sh:L-37 | | 397 | | Well 350454089482101 Local number Sh:L-065 | | 398 | | 11011 550 15T007T02101 Local Indinoci 511.L-005 | ••••• | 370 | # $SURFACE-WATER\ STATIONS, IN\ DOWNSTREAM\ ORDER, FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$ # QUALITY OF GROUND WATER, 2002 WATER YEAR--Continued | SHELBY COUNTYContinued | | |---|-----| | Well 350447089482601 Local number Sh:L-067 | 399 | | Well 350450089480601 Local number Sh:L-081 | 400 | | Well 350503089482201 Local number Sh:L-83 | 401 | | Well 350500089481801 Local number Sh:L-091 | 402 | | Well 350449089480501 Local number Sh:L-092 | 403 | | Well 350445089481001 Local number Sh:L-098 | 404 | | Well 350403089445201 Local number Sh:M-48 | 405 | | Well 350403089444301 Local number Sh:M-49 | 406 | | Well 350412089444301 Local number Sh:M-51 | 407 | | Well 350408089443001 Local number Sh:M-53 | 408 | | Well 350913090100801 Local number Sh:O-207 | 409 | | Well 351420089570900 Local number Sh:P-131 | 409 | | Well 351054089515301 Local number Sh:Q-33 | 410 | | Well 350835089434100 Local number Sh:R-29 | 410 | | | | | QUALITY OF PRECIPITATION | | | HAYWOOD COUNTY | | | Hatchie National Wildlife Refuge rain gage at Hillville | 411 | | Hatchie National Whulle Keruge fall gage at Hillythe | 411 | The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Tennessee have been discontinued. Daily streamflow or stage records were collected and
published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. | Station name | Station
number | Agency | Drainage
area
(mi ²) | Period
of
record | |---|-------------------|--------|--|-------------------------| | Red Boiling Spring at Red Boiling Springs (d) | 03312250 | USGS | | 1986 | | Salt Lick Creek at Red Boiling Springs (d) | 03312255 | USGS | 12.6 | 1991-97 | | Crabapple Branch near La Follette (d) | 03403718 | USGS | 1.07 | 1981-84 | | Indian Fork above Braytown (d) | 034077804 | USGS | 4.32 | 1975-78 | | Green Branch near Hembree (d) | 03407874 | USGS | 1.38 | 1976-78 | | Smoky Creek above Hembree (361240084245800) (d) | 034078745 | USGS | 8.07 | 1982-83 | | Bills Branch near Hembree (d) | 03407875 | USGS | .67 | 1975-83 | | Shack Creek at Hembree (361341084253900) (d) | 034078755 | USGS | 5.08 | 1982-84 | | Smoky Creek near Hembree (d) | 03407876 | USGS | 17.2 | 1977-84 | | Bowling Branch above Smoky Junction (d) | 03407877 | USGS | 2.19 | 1976-81 | | Anderson Branch near Montgomery (d) | 03407881 | USGS | .69 | 1976-81 | | | 03407882 | USGS | .92 | 1975-80 | | Lowe Branch near Montgomery (d) New Piver of Cordoll (d) | 03407882 | USGS | 198 | | | New River at Cordell (d) | 03407908 | USUS | 196 | 10/75-77,
5/77-12/87 | | Now Divor noor Now Divor (d) | 03408000 | USGS | 314 | 1923-35 | | New River near New River (d) | | | | | | Long Branch near Grimsley (d) Conclude Grands tributers are an Allerda (d) | 03408600 | USGS | 1.11
.25 | 1976-81 | | Crooked Creek tributary near Allardt (d) | 03408810 | USGS | | 1976-79 | | Crooked Creek near Allardt (d) | 03408815 | USGS | 3.62 | 1976-81 | | White Oak Creek at Sunbright (d) | 03409000* | USGS | 13.5 | 1932-33 | | White Oak Creek at Rugby (d) | 03409400 | USGS | 98.0 | 1980-82 | | East Branch Bear Creek near Oneida (d) | 03409700 | USGS | | 1994-95 | | East Branch Bear Creek Tributary near Oneida (d) | 03409710 | FUSGS | 1.01 | 1994-95 | | Pine Creek tributary at Oneida (d) | 03410000 | USGS | 1.21 | 1932-33 | | South Fork Cumberland River at Leatherwood Ford (d) | 03410210 | USGS | 806 | 1983-87 | | West Fork Obey River near Alpine (d) | 03415000 | USGS | 115 | 1943-71, | | | 02415500 | 11000 | 445 | 1980-81 | | Obey River near Byrdstown (d) | 03415500 | USGS | 445 | 1919-43 | | Obey River below Dale Hollow Dam (d) | 03417000 | USGS | 936 | 1939-42, | | D ' D' 11'11 (1) | 02410000 | Haca | 70.7 | 1945-58 | | Roaring River near Hilham (d) | 03418000 | USGS | 78.7 | 1932-75 | | Roaring River near Gainesboro (d) | 03418188 | USGS | 276 | 1975 | | Cumberland River below Cordell Hull (d) | 03418420 | USGS | 8,095 | 1980-97 | | Caney Fork at Clifty (d) | 03418500 | USGS | 111 | 1931-49 | | Bee Creek at Herbert (d) | 03419000 | USGS | 101 | 1931-37 | | Calfkiller River at Sparta (d) | 03419500 | USGS | 157 | 1932-41 | | Calfkiller River below Sparta (d) | 03420000 | USGS | 175 | 1940-71 | | Collins River at Beersheba Springs (d) | 03420185 | USGS | 157 | 1994-95 | | Collins River near Tarlton (d) | 03420200 | USGS | 174 | 1994-95 | | Barren Fork near Trousdale (d) | 03420500 | USGS | 126 | 1932-57 | | Collins River near Rowland (d) | 03421500 | USGS | 755 | 1916-24 | | Falling Water River near Cookeville (d) | 03423000 | USGS | 67.0 | 1932-56 | | Falling Water River below Burgess Falls Dam (d) | 03423152 | USGS | 124 | 1990-93 | | Taylor Creek near Cassville (d) | 03423400 | USGS | 34.2 | 1989-93 | | Caney Fork below Center Hill Dam, near Lancaster (d) | 03424500 | USGS | 2,183 | 1923-58 | | Spring Creek near Lebanon (d) | 03425500 | USGS | 35.3 | 1955-61 | | Town Creek at Maple Street at Gallatin (d) | 03425646 | USGS | 4.74 | 1984 | | Drakes Creek above Hendersonville (d) | 03426000 | USGS | 19.2 | 1955-61 | | Cumberland River at Dam 3, near Old Hickory (d) | 03426210 | USGS | 11,688 | 1931-42, | | | | | | 1947-53 | | East Fork Stones River at Woodbury (d) Bradley Creek at Lascassas (d) Bushman Creek at Pitts Lane Ford near Compton (d) West Fork Stones River near Murfreesboro (d) Lytle Creek at Sanbyrn Drive at Murfreesboro (d) Fox Camp Spring at Mankinville (d) West Fork Stones River at Manson Pike, at Murfreesboro (d) Stones River near Smyrna (d) Stones River near Smyrna (Smyrna Airport) (d) Stones River below J. Percy Priest Dam (d) Collins Creek at Bell Road, near Antioch (d) Browns Creek at State Fairgrounds, at Nashville (d) Cumberland River at Nashville (d) Cummings Branch at Lickton (d) West Harpeth River near Leipers Fork (d) Red River near Portland (d) Red River near Adams (d) Sulphur Fork Red River near Adams (d) Piney River at Ft. Campbell, KY-TN (d) Little West Fork near Ft. Campbell, KY-TN (d) Cumberland River at Clarksville (lock C) (d) O342: O342: O342: O344: O344: O345: O345: O346: O347: O347: O348: | tion | | Drainage
area | Period
of | |--|----------|------------|--------------------|--------------------| | Bradley Creek at Lascassas (d) Bushman Creek at Pitts Lane Ford near Compton (d) O342 West Fork Stones River near Murfreesboro (d) Lytle Creek at Sanbyrn Drive at Murfreesboro (d) O342 Lytle Creek at Sanbyrn Drive at Murfreesboro (d) O342 West Fork Stones River at Manson Pike, at Murfreesboro (d) Stones River near Smyrna (d) Stones River near Smyrna (d) O342 Stones River hear Smyrna (Smyrna Airport) (d) O343 Stones River below J. Percy Priest Dam (d) Collins Creek at Bell Road, near Antioch (d) O343 Mill Creek near Antioch (d) O343 Browns Creek at State Fairgrounds, at Nashville (d) Cumberland River at Nashville (d) Cumbings Branch at Lickton (d) Whites Creek at Tucker Road, near Bordeaux (d) Richland Creek at Charlotte Ave, at Nashville (d) O343 Richland Creek at Charlotte Ave, at Nashville (d) West Harpeth River near Leipers Fork (d) Red River near Portland (d) Sulphur Fork Red River near Adams (d) Piney River at Ft. Campbell, KY-TN (d) O343 Cumberland River at Schick (d) O343 Yellow Creek near Shiloh (d) Cumberland River at Dover (gaging station) (d) O346 Yellow Creek near Shiloh (d) Cumberland River at Dover (gaging station) (d) O346 Prigeon River at Hartford (d) Cosby Creek near Holland Mill (d) O346 North Indian Creek near Unicoi (d) North Indian Creek near Holland Mill (d) Nolichucky River below Nolichucky Dam (d) (e) Lick Creek near Holland Mill (d) Lick Creek at Mohawk (d) Nolichucky River near Morristown (d) O346 Nolichucky River near Morristown (d) | | gency | (mi ²) | record | | Bushman Creek at Pitts Lane Ford near Compton (d) West Fork Stones River near Murfreesboro (d) O342: Vest Fork Stones River near Murfreesboro (d) O342: Vest Fork Stones River at Mankinville (d) O342: West Fork Stones River at Manson Pike, at Murfreesboro (d) O342: Stones River near Smyrna (d) O342: Stones River hear Smyrna (Smyrna Airport) (d) O342: Stones River below J. Percy Priest Dam (d) O343: Collins Creek at Bell Road, near Antioch (d) O343: Mill Creek near Antioch (d) O343: Cumberland River at Nashville (d) O343: Cummings Branch at Lickton (d) O343: Cummings Branch at Lickton (d) O343: West Harpeth River near Leipers Fork (d) O343: Red River near Portland (d) O343: Red River near Adams (d) O343: Cumberland River at Nashville (d) O343: Cumberland River at Nashville (d) O343: Cumbings Branch at Lickton (d) O343: Cumbings Branch at Charlotte Ave, at Nashville (d) O343: Cumbings Branch at Cipers Fork O344: Cumbings Branch at Cipers Fork (d) O346: Cumbings Branch at Ciper | 26800* U | SGS | 39.1 | 1932-33, 1950, | | Bushman Creek at Pitts Lane Ford near Compton (d) West Fork Stones River near Murfreesboro (d) O342: Lytle Creek at Sanbyrn Drive at Murfreesboro (d) O342: Lytle Creek at Sanbyrn Drive at Murfreesboro (d) O342: Lytle Creek at Sanbyrn Drive at
Murfreesboro (d) O342: West Fork Stones River at Manson Pike, at Murfreesboro (d) Stones River near Smyrna (d) Stones River near Smyrna (d) Stones River below J. Percy Priest Dam (d) O342: Stones River below J. Percy Priest Dam (d) O343: Collins Creek at Bell Road, near Antioch (d) O343: Mill Creek near Antioch (d) O343: Cumberland River at Nashville (d) O343: Cumberland River at Nashville (d) O343: Cummings Branch at Lickton (d) Whites Creek at Tucker Road, near Bordeaux (d) O343: Red River near Portland (d) O343: Red River near Portland (d) O343: Red River near Adams (d) O343: Cumberland River at Rashville (d) O343: Cumberland River at Ft. Campbell, KY-TN (d) O343: Cumberland River at Clarksville (lock C) (d) O343: Cumberland River at Dover (gaging station) (d) O343: Cumberland River at Dover (gaging station) (d) O346: Creek near Holland Mill (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Mount Bethel Church near Limestone (d) O346: Colspoy Creek near Holland Mill (d) O346: Colspoy Creek at Mohawk | | | | 1954, 1962-89 | | Vest Fork Stones River near Murfreesboro (d) O342: ytle Creek at Sanbym Drive at Murfreesboro (d) O342: O50x Camp Spring at Mankinville (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) O54citones River near Smyrna (d) O54citones River hear Smyrna (d) O54citones River below J. Percy Priest Dam (d) O54dill Creek near Antioch (d) O54dill Creek at State Fairgrounds, at Nashville (d) O54dill Creek at State Fairgrounds, at Nashville (d) O54dill Creek at Tucker Road, near Bordeaux Charlotte Ave, at Nashville (d) O54dill Creek near Potland (d) O54dill Creek near Adams (d) O54dill Creek near Adams (d) O54dill Creek near Ft. Campbell, KY-TN (d) O54dill Creek near Shiloh (d) O54dill Creek near Shiloh (d) O54dill Creek near Shiloh (d) O54dill Creek near Holl Creek Nollichucky Dam (d) (e) O54dill Creek near Holland Mill (d) O54dill Creek near Holland Mill (d) O54dill Creek near Holland Mill (d) O54dill Creek Creek at Mohawk C | :7000 U | ISGS | 37.0 | 1955-61 | | cytle Creek at Sanbyrn Drive at Murfreesboro (d) (d) (d) (d) (ex Camp Spring at Mankinville (d) (ex Camp Spring at Mankinville (d) (d) (d) (d) (d) (d) (d) (d) | | ISGS | 9.67 | 1989-92 | | ox Camp Spring at Mankinville (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) Vest Fork Stones River at Manson Pike, at Murfreesboro (d) Vest Creek at Smyrna (Smyrna Airport) (d) Vest Creek at Bell Road, near Antioch (d) Vest Creek at Bell Road, near Antioch (d) Vest Creek at State Fairgrounds, at Nashville (d) Vest Creek at Tucker Road, near Bordeaux (d) Vest Harpeth River near Leipers Fork (d) Vest Harpeth River near Leipers Fork (d) Vest Harpeth River near Leipers Fork (d) Vest River near Portland (d) Vest River near Adams (d) Vest Harpeth River near Adams (d) Vest River near Adams (d) Vest Harpeth River near Adams (d) Vest Harpeth River near Adams (d) Vest Harpeth River near Adams (d) Vest River near Fortland (d) Vest Robert New Fiver Adams | | ISGS | 128 | 1932-69 | | Vest Fork Stones River at Manson Pike, at Murfreesboro (d) 10342: 1016: tones River near Smyrna (d) 10342: tones River below J. Percy Priest Dam (d) 10343: tones River below J. Percy Priest Dam (d) 10343: tones River below J. Percy Priest Dam (d) 10343: tones River below J. Percy Priest Dam (d) 10343: tones River below J. Percy Priest Dam (d) 10343: tones River helow J. Percy Priest Dam (d) 10343: tones River helow River at Nashville (d) 10343: tones Roreek at State Fairgrounds, at Nashville (d) 10343: tones Roreek at State Fairgrounds, at Nashville (d) 10343: tones Roreek at Tucker Road, near Bordeaux (d) 10343: tones Roreek at Tucker Road, near Bordeaux (d) 10343: tones Roreek at Charlotte Ave, at Nashville (d) 10343: tones Roreek at Charlotte Ave, at Nashville (d) 10343: tones Roreek Roreer Rorear Leipers Fork (d) 10343: tones Roreer Rorear Adams (d) 10343: tones Roreer Rorear Adams (d) 10343: tones Roreer Rorear Adams (d) 10343: tones Roreer | 28043 U | SGS | 17.6 | 1990-92 | | tones River near Smyrna (d) tewart Creek near Smyrna (Smyrna Airport) (d) tones River below J. Percy Priest Dam (d) collins Creek at Bell Road, near Antioch (d) dill Creek near Antioch (d) dill Creek near Antioch (d) crowns Creek at State Fairgrounds, at Nashville (d) crowns Creek at State Fairgrounds, at Nashville (d) crowns Creek at Tucker Road, near Bordeaux (d) crownings Branch at Lickton (d) dichland Creek at Charlotte Ave, at Nashville (d) creek at Tucker Road, near Bordeaux (d) creek Airport River near Leipers Fork (d) ded River near Portland (d) ded River near Adams (d) creek River near Adams (d) creek River near Adams (d) creek River at Ft. Campbell, KY-TN (d) creek west Fork near Ft. Campbell, KY-TN (d) creek near Shiloh (d) creek near Smyrna (Smyrna Airport) (d) creek near Smyrna (Smyrna Airport) (d) creek near Smyrna (Smyrna Airport) (d) creek near Shiloh (d) creek near Holland River at Clarkeville (lock C) (d) creek near River at Hartford (d) creek near River near Newport (d) creek near River at Newport (d) creek near River at Newport (d) creek near River near Newport (d) creek near River at Hartford (d) creek near River near Newport (d) creek near River near Mount Bethel Church near Limestone (d) creek Creek near Mount Bethel Church near Limestone (d) creek Creek near Holland Mill (d) creek Creek near Holland Mill (d) creek Creek at Mohawk (d) creek Creek at Mohawk (d) colich Creek at Mohawk (d) colich Creek River near Morristown (d) | 28047 U | SGS | | 1978-80 | | tewart Creek near Smyrna (Smyrna Airport) (d) tones River below J. Percy Priest Dam (d) collins Creek at Bell Road, near Antioch (d) dill Creek at State Fairgrounds, at Nashville (d) dill Creek near Antioch (d) dill Creek near Antioch (d) dill Creek at State Fairgrounds, at Nashville (d) dill Creek at State Fairgrounds, at Nashville (d) dill Creek at Creek at Lickton (d) dill Creek at Charlotte Ave, at Nashville (d) ditchland near Portland (d) ditchland Fairer near Adams (d) ditchland Fairer near Adams (d) ditchland Fairer at Clarmbell, KY-TN (d) ditchland Fairer at Clarmbell, KY-TN (d) ditchland River at Clarksville (lock C) (d) ditchland River at Dover (gaging station) (d) ditchland Creek near Shiloh (d) ditchland Creek near Newport (d) ditchland Creek near Holland Mill (d) dickey Creek near Mount Bethel Church near Limestone (d) dickey Creek near Holland Mill (d) dickey Creek near Holland Mill (d) dickey Creek at Mohawk | :8070 U | SGS | 165 | 1973-81 | | tones River below J. Percy Priest Dam (d) Collins Creek at Bell Road, near Antioch (d) Collins Creek at Bell Road, near Antioch (d) Collins Creek at State Fairgrounds, at Nashville (d) Comberland River at Nashville (d) Comberland River at Nashville (d) Commings Branch at Lickton (d) Collins Creek at Tucker Road, near Bordeaux (d) Collins Creek at Tucker Road, near Bordeaux (d) Collins Creek at Charlotte Ave, at Nashville Red River near Adams (d) Collins Fork Red River near Adams (d) Collins Fork Red River near Adams (d) Collins Creek Text Campbell, KY-TN (d) Collins Creek Text Campbell, KY-TN (d) Collins Creek Near Shiloh (d) Collins Creek Near Shiloh (d) Collins Creek Near Shiloh (d) Collins Creek Near Collins Collins Creek Near Only Collins Collins Creek Near Mount Bethel Church near Limestone (d) Collins Creek Near Mount Bethel Church near Limestone (d) Collins Creek Near Holland Mill (d) Collins Creek Near Holland Mill (d) Collins Creek Near Holland Mill (d) Collins Creek at Mohawk (d) Collins Creek at Mohawk (d) Collins Creek Near Morristown (d) | 19000 U | SGS | 571 | 1925-67 | | collins Creek at Bell Road, near Antioch (d) dill Creek at State Fairgrounds, at Nashville (d) diumberland River at Nashville (d) diummings Branch at Lickton (d) divintes Creek at Tucker Road, near Bordeaux (d) dichland Creek at Charlotte Ave, at Nashville Rear Fortland (d) dichland Fork Red River near Adams (d) diniey River at Ft. Campbell, KY-TN (d) dittle West Fork near Ft. Campbell, KY-TN (d) dittle West Fork near Ft. Campbell, KY-TN (d) didumberland River at Clarksville (lock C) (d) didumberland River at Dover (gaging station) (d) didumberland River at Dover (gaging station) (d) dispensive at Hartford (d) dispensive at Hartford (d) dispensive at Newport (d) dispensive at Newport (d) dispensive at Newport (d) dispensive at Newport (d) dispensive at Afton (d) dispensive Creek near Mount Bethel Church near Limestone (d) dispensive Creek near Holland Mill (d) dispensive Creek near Holland Mill (d) dispensive Creek at Mohawk (d) dispensive River near Morristown (d) dispensive River near Morristown (d) dispensive River near Morristown (d) | 9500 U | ISGS | 69.7 | 1953-58 | | Addill Creek near Antioch (d) Browns Creek at State Fairgrounds, at Nashville (d) Browns Creek at State Fairgrounds, at Nashville (d) Browns Creek at State Fairgrounds, at Nashville (d) Browns Creek at Tucker Road, near Bordeaux (d) Browns Creek at Tucker Road, near Bordeaux (d) Browns Creek at Tucker Road, near Bordeaux (d) Browns Creek at Charlotte Ave, at Nashville (d) Browns Creek River near Leipers Fork (d) Browns Creek Red River near Adams (d) Browns Creek Red River near Adams (d) Browns Creek Red River near Adams (d) Browns Creek Fork near Ft. Campbell, KY-TN (d) Browns Creek Rear Ft. Campbell, KY-TN (d) Browns Creek near Shiloh (d) Browns Creek near Shiloh (d) Browns Creek near Shiloh (d) Browns Creek River at Dover (gaging station) (d) Browns Creek River at
Hartford (d) Browns Creek above Cosby (d) Browns Creek above Cosby (d) Browns Creek River at Hartford Nashville (d) Browns Creek River at Nashville (d) Browns Creek Riv | 30100 U | ISGS | 892 | 1939-67 | | irowns Creek at State Fairgrounds, at Nashville (d) lumberland River at Lickton (d) lumberland Creek at Tucker Road, near Bordeaux (d) lichland Creek at Charlotte Ave, at Nashville (d) luck Harpeth River near Leipers Fork (d) luck River near Portland (d) luck River near Adams (d) luck River near Adams (d) luck River at Ft. Campbell, KY-TN (d) lumberland River at Clarksville (lock C) (d) lumberland River at Clarksville (lock C) (d) lumberland River at Dover (gaging station) (d) lumberland River at Dover (gaging station) lumberland River at Newport (d) lumberland River at Newport (d) lumberland River at Hartford (d) lumberland River at Hartford (d) lumberland River at Newport (d) lumberland River at Hartford (d) lumberland River at Hartford (d) lumberland River at Newport (d) luck Creek above Cosby (d) luck Creek above Cosby (d) luck Creek near Holland Mill (d) luckey Creek near Holland Mill (d) luck Creek at Mohawk (d) luck Creek River near Morristown (d) luck Creek River near Morristown (d) | 0800 U | ISGS | 3.61 | 1976-77 | | cumberland River at Nashville (d) cummings Branch at Lickton (d) O343 Whites Creek at Tucker Road, near Bordeaux (d) O343 West Harpeth River near Leipers Fork (d) O343 West Harpeth River near Adams (d) O343 West Harpeth River near Adams (d) O343 West Harpeth River near Adams (d) O343 West Fork Red River near Adams (d) O343 West Fork near Ft. Campbell, KY-TN (d) West Fork near Ft. Campbell, KY-TN (d) O343 West Fork near Ft. Campbell, KY-TN (d) West Fork near Shiloh (d) O343 West Fork near Shiloh (d) West Fork near Shiloh (d) O346 West Pork near Newport (d) O346 West Pork near Newport (d) O346 West Pork near Leesburg We | 1000 U | ISGS | 64.0 | 1954-61, | | Cumberland River at Nashville (d) Cummings Branch at Lickton (d) Outlies Creek at Tucker Road, near Bordeaux (d) Outlies Creek at Tucker Road, near Bordeaux (d) Outlies Creek at Charlotte Ave, at Nashville (d) Outlies Harpeth River near Leipers Fork (d) Outlied River near Portland (d) Outlied River near Portland (d) Outlied River near Adams (d) Outlied River near Adams (d) Outlied River near Adams (d) Outlied River at Ft. Campbell, KY-TN (d) Outlied River at Ft. Campbell, KY-TN (d) Outlied River at Ft. Campbell, KY-TN (d) Outlied River at Clarksville (lock C) (d) Outlied Creek near Shiloh (d) Outlied River at Dover (gaging station) (d) Outlied River at Dover (gaging station) (d) Outlied River at Hartford (d) Outlied River at Newport Road River near Unicoi (d) Outlied River Road River near Unicoi (d) Outlied River Road River Road River near Unicoi (d) Outlied River Road Road Road Road Road Road Road Road | | | | 1964-75 | | Cummings Branch at Lickton (d) Whites Creek at Tucker Road, near Bordeaux (d) Cichland Creek at Charlotte Ave, at Nashville (d) West Harpeth River near Leipers Fork (d) Red River near Portland (d) Red River near Adams (d) Sulphur Fork Roar Ft. Campbell, KY-TN (d) Sulphur Fork Red River Roar Ft. Campbell, KY-TN (d) Sumberland River at Clarksville (lock C) (d) Sulphur Adams Sulphur Fork Red River Roar Ft. Campbell, KY-TN (d) Sumberland River at Dover (gaging station) (d) Sumberland River at Dover (gaging station) (d) Sumberland River near Newport (d) Suphur River at Hartford Sup | 1300 U | SGS | 11.8 | 1964-75 | | Whites Creek at Tucker Road, near Bordeaux (d) Richland Creek at Charlotte Ave, at Nashville (d) Richland Creek at Charlotte Ave, at Nashville (d) Red River near Portland (d) Red River near Portland (d) Red River near Adams Fork Red River near Adams (d) Red River at Ft. Campbell, KY-TN (d) Red River at Ft. Campbell, KY-TN (d) Red River at Clarksville (lock C) (d) Red River at Clarksville (lock C) (d) Red River at Dover (gaging station) (d) Red River at Dover (gaging station) (d) Red River at Hartford near Holland (d) Red River near Holland Mill (d) Red River near Holland Mill (d) Red River near Morristown (d) Red River near Portland (d) Red River near Morristown (d) Red River near Roadms Riv | 31500 U | SGS | 12,856 | 1893-54 | | Richland Creek at Charlotte Ave, at Nashville (d) West Harpeth River near Leipers Fork (d) Red River near Portland (d) Red River near Portland (d) Red River near Adams Fork Red River near Adams (d) Red River at Ft. Campbell, KY-TN (d) Red River at Ft. Campbell, KY-TN (d) Red River at Clarksville (lock C) (d) Red River at Clarksville (lock C) (d) Red River at River at Dover (gaging station) (d) Red River at Dover (gaging station) (d) Red River at Hartford near Holland Mill (d) Red River near Holland Mill (d) Red River near Morristown (d) Red River near Nosadams (d) Red River near Morristown (d) Red River near Nosadams | 31517 U | SGS | 2.40 | 1976-90 | | Vest Harpeth River near Leipers Fork (d) Red River near Portland (d) Red River near Portland (d) Red River near Adams (d) Red River near Fork Red River near Adams (d) Red River at Ft. Campbell, KY-TN (d) Red River at Ft. Campbell, KY-TN (d) Red River at Clarksville (lock C) (d) Red River at Clarksville (lock C) (d) Red River at Dover (gaging station) (d) Red River at Dover (gaging station) (d) Red River at Hartford (d) Red River at Hartford (d) Red River at Newport (d) Red River at Hartford (| 1600 U | SGS | 51.6 | 1965-75 | | ted River near Portland (d) ted River near Adams (d) tel River at Fork Red River near Adams (d) tel River at Ft. Campbell, KY-TN (d) tel River at Ft. Campbell, KY-TN (d) tel River at Clarksville (lock C) (d) tel River at Clarksville (lock C) (d) tel River at Dover (gaging station) (d) tel River at Dover (gaging station) (d) tel River at Hartford (d) tel River at Hartford (d) tel River at Newport River at River (d) tel | 31700 U | SGS | 24.3 | 1964-90 | | ted River near Adams (d) Sulphur Fork Red Ft. Campbell, KY-TN (d) Sulphur Fork near Ft. Campbell, KY-TN (d) Sulphur Adams (d) Sulphur Fork near Ft. Campbell, KY-TN (d) Sulphur Adams (d) Sulphur Adams (d) Sulphur Fork near Shiloh (d) Sulphur Adams | 32500 U | SGS | 66.9 | 1955-61 | | Red River near Adams (d) Sulphur Fork Ft. Campbell, KY-TN (d) Sulphur Fork near Ft. Campbell, KY-TN (d) Sulphur Fork near Ft. Campbell, KY-TN (d) Sulphur Fork near Shiloh (d) Sulphur Fork near Shiloh (d) Sulphur Fork near Shiloh (d) Sulphur Fork near Hartford (d) Sulphur Fork near Hartford (d) Sulphur Fork near Leesburg (d) Sulphur Fork near Leesburg (d) Sulphur Fork near Leesburg (d) Sulphur Fork near Holland Mill (d) Sulphur Fork near Morristown (d) Sulphur Fork near Morristown (d) Sulphur Fork near Holland Mill (d) Sulphur Fork near Holland Mill (d) Sulphur Fork near Morristown (d) Sulphur Fork Red River near Morristown (d) Sulphur Fork Red River near Morristown (d) Sulphur Fork Red River near Adams (d) Sulphur Fork Red River near Morristown (d) Sulphur Fork Red River near Adams | 35030 U | ISGS | 15.1 | 1967-75 | | Sulphur Fork Red River near Adams (d) Siney River at Ft. Campbell, KY-TN (d) Siney River at Ft. Campbell, KY-TN (d) Sumberland River at Clarksville (lock C) (d) Sumberland River at Dover (gaging station) (d) Sumberland River at Dover (gaging station) (d) Sumberland River near Newport (d) Singeon River at Hartford (d) Sosby Creek above Cosby (d) Singeon River at Newport (d) Sorth Indian Creek near Unicoi (d) Sockey Creek near Mount Bethel Church near Limestone (d) Sinking Creek at Afton (d) Solichucky River below Nolichucky Dam (d) (e) Solick Creek near Holland Mill (d) Solick Creek at Mohawk (d) Solichucky River near Morristown | 35500 U | ISGS | 706 | 1920-69 | | Piney River at Ft. Campbell, KY-TN (d) Cittle West Fork near Ft. Campbell, KY-TN (d) Cumberland River at Clarksville (lock C) (d) Cellow Creek near Shiloh (d) Cumberland River at Dover (gaging station) (d) Crench Broad River near Newport (d) Crench Broad River near Newport (d) Cosby Creek above Cosby (d) Cregon River at Newport (d) Cosby Creek near Newport (d) Cosby Creek near Unicoi (d) Cosby Creek near Leesburg (d) Cockey Creek near Mount Bethel Church near Limestone (d) Coshiking Creek at Afton (d) Colichucky River below Nolichucky Dam (d) (e) Colick Creek near Holland Mill (d) Colick Creek at Mohawk (d) Colick Creek at Mohawk (d) Colichucky River near Morristown (d) Colichucky River near Morristown (d) Colichucky River near Morristown (d) | | ISGS | 186 | 1938-91 | | Cumberland River at Clarksville (lock C) (d) Clumberland River at Clarksville (lock C) (d) Clumberland River at Dover (gaging station) (d) Clumberland River at Dover (gaging station) (d) Clumberland River at Dover (gaging station) (d) Clumberland River at Newport (d) Clumberland River at Hartford Holland Mill (d) Clumberland River at Hartford (d) Clumberland River at Holland Mill (d) Clumberland River at Hartford Dover (gaging station) | | SGS | 50.2 | 1993-96 | | Cumberland River at Clarksville (lock C) (d) Gellow Creek near Shiloh (d) Cumberland River at Dover (gaging station) (d) Grench Broad River near Newport (d) Grench Broad River near Newport (d) Grench Broad River at Hartford (d) Gosby Creek above Cosby (d) Grench Indian Creek near Unicoi (d) Gosty Creek near Leesburg (d) Gockey Creek near Mount Bethel Church near Limestone (d) Ginking Creek at Afton (d) Golichucky River below Nolichucky Dam (d) (e) Golick Creek near Holland Mill (d) Golick Creek at Mohawk (d) Golichucky River near Morristown (d) | | SGS | 128 | 1993-96 | | Tellow Creek near Shiloh (d) Cumberland River at Dover (gaging station) (d) Grench Broad River near Newport (d) Grench Broad River near Newport (d) Grench Broad River near Newport (d) Grench Broad River at Hartford near Unicoi (d) Grench Broad River near Holicoi (d) Grench Broad River at Hartford (d) Grench Broad River near Holicoi ne | | | 15,897 | 1925-44 | | Cumberland River at Dover (gaging station) (d) Grench Broad River near Newport (d) Grench Broad River near Newport (d) Grench Broad River near Newport
(d) Grench Broad River at Hartford (d) Grench Broad River at Hartford (d) Grench Broad River at Hartford (d) Grench River at Hartford (d) Grench River at Hartford (d) Grench River at Newport (d) Grench Indian Creek near Unicoi (d) Grench Indian Creek near Unicoi (d) Grench Broad River at Newport (d) Grench Broad River at Hartford (d) Grench Broad River near Unicoi (d) Grench Broad River near Holland (d) Grench Broad River near Unicoi (d) Grench Broad River near Holland (d) Grench Broad River near Unicoi (d) Grench Broad River near Holland (d) Grench Broad River near Unicoi (d) Grench Broad River near Holland (d) Grench Broad River near Holland Mill (d) Grench Broad River near Holland Mill (d) Grench Broad River near Holland Mill (d) Grench Broad River near Morristown (d) Grench Broad River near Holland Mill (d) Grench Broad River near Holland Mill (d) Grench Broad River near Holland Mill (d) Grench Broad River near Morristown (d) Grench Broad River near Holland Mill (d) Grench Broad River near Morristown (d) | | SGS | 124 | 1958-80 | | French Broad River near Newport (d) O345 Figeon River at Hartford (d) Cosby Creek above Cosby (d) Figeon River at Newport (d) O346 Holland Creek near Unicoi (d) O346 Figeon River at Holland Creek near Unicoi (d) O346 | | | 16,437 | 1938-65 | | digeon River at Hartford (d) Cosby Creek above Cosby (d) Costy Creek near Unicoi (d) Corth Indian Creek near Unicoi (d) Corth Indian Creek near Unicoi (d) Costy Creek near Leesburg (d) Cockey Creek near Mount Bethel Church near Limestone (d) Colichucky River below Nolichucky Dam (d) (e) Colick Creek near Holland Mill (d) Colick Creek at Mohawk (d) Colichucky River near Morristown | | VA | 1,858 | 1900 | | Losby Creek above Cosby (d) Ogade Gorth Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) Ockey Creek near Mount Bethel Church near Limestone (d) Olichucky River below Nolichucky Dam (d) (e) Ogade | | | -, | 1901 | | Sorth Indian Creek near Unicoi (d) North Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) Ockey Creek near Mount Bethel Church near Limestone (d) Solichucky River below Nolichucky Dam (d) (e) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill | | | | 1902-05, | | Sorth Indian Creek near Unicoi (d) North Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) Ockey Creek near Mount Bethel Church near Limestone (d) Solichucky River below Nolichucky Dam (d) (e) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill | | | | 1907 | | Sorth Indian Creek near Unicoi (d) North Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) Ockey Creek near Mount Bethel Church near Limestone (d) Solichucky River below Nolichucky Dam (d) (e) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill | | | | 1920-94 | | Sorth Indian Creek near Unicoi (d) North Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) Ockey Creek near Mount Bethel Church near Limestone (d) Solichucky River below Nolichucky Dam (d) (e) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill (d) Ockey Creek at Mohawk (d) Ockey Creek near Holland Mill | 51000 IJ | SGS | 547 | 1925-48 | | lorth Indian Creek near Unicoi (d) Oddorfor Indian Creek near Hount Bethel Church near Limestone (d) Oddorfor Indian Creek at Afton (d) Oddorfor Indian Creek near Hount Bethel Church near Limestone (d) Oddorfor Indian Creek near Limestone (d) Oddorfor Indian | | SGS | 10.1 | 1967-87 | | North Indian Creek near Unicoi (d) Muddy Fork near Leesburg (d) ockey Creek near Mount Bethel Church near Limestone (d) Sinking Creek at Afton (d) Volichucky River below Nolichucky Dam (d) (e) O346 Cick Creek near Holland Mill (d) O346 | | SGS | 666 | 1900-29, | | Muddy Fork near Leesburg (d) O346: Ockey Creek near Mount Bethel Church near Limestone (d) O346: Olichucky River below Nolichucky Dam (d) (e) O346: Ockey Creek near Holland Mill (d) O346: Ockey Creek near Holland Mill (d) O346: Ockey Creek at Mohawk (d) Ocick Creek at Mohawk (d) Ocick Creek River near Morristown (d) | 71300 | ,505 | 000 | 1945-46, | | Muddy Fork near Leesburg (d) ockey Creek near Mount Bethel Church near Limestone (d) O3460 | | | | 1948-82, | | Muddy Fork near Leesburg (d) ockey Creek near Mount Bethel Church near Limestone (d) O3460 | т | VA | | 1982-83 | | Muddy Fork near Leesburg (d) O346: Ockey Creek near Mount Bethel Church near Limestone (d) O346: Olichucky River below Nolichucky Dam (d) (e) O346: Ockey Creek near Holland Mill (d) O346: Ockey Creek near Holland Mill (d) O346: Ockey Creek at Mohawk (d) Ocick Creek at Mohawk (d) Ocick Creek River near Morristown (d) | | ISGS | 15.9 | 1944-57 | | ockey Creek near Mount Bethel Church near Limestone (d) Sinking Creek at Afton (d) Nolichucky River below Nolichucky Dam (d) (e) 1. Cick Creek near Holland Mill (d) 1. Cick Creek at Mohawk (d) 1. Cick Creek at Mohawk (d) 1. Cick Creek River near Morristown (d) 1. Cick Creek at Mohawk | | SGS | 13.5 | 1994-95 | | Sinking Creek at Afton (d) Nolichucky River below Nolichucky Dam (d) (e) 2346 246 251 262 263 264 265 265 265 265 265 265 265 | | SGS | 18.5 | 1994-95 | | Allolichucky River below Nolichucky Dam (d) (e) 1. Lick Creek near Holland Mill (d) 1. Lick Creek at Mohawk (d) 1. Lick Creek at Mohawk (d) 2. Lick Creek at Mohawk (d) 3. 4. Lick Creek at Mohawk (d) 4. Lick Creek at Mohawk (d) 4. Lick Creek at Mohawk (d) 5. Lick Creek at Mohawk (d) 5. Lick Creek at Mohawk (d) 5. Lick Creek at Mohawk (d) 6. Lick Creek at Mohawk (d) 6. Lick Creek at Mohawk (d) 6. Lick Creek at Mohawk (d) | | ISGS | 13.7 | 1977-2000 | | Lick Creek near Holland Mill (d) O346 Lick Creek at Mohawk (d) O346 Nolichucky River near Morristown (d) O346 | | ISGS | 1,184 | 1902-09, | | ick Creek at Mohawk (d) 0346
Jolichucky River near Morristown (d) 0346 | .0500 | .505 | 1,10-7 | 1902-09, | | ick Creek at Mohawk (d) 0346
Jolichucky River near Morristown (d) 0346 | | | | 1946-73 | | ick Creek at Mohawk (d) 0346
folichucky River near Morristown (d) 0346 | 56825 II | ISGS | 53.0 | 1994-95 | | Tolichucky River near Morristown (d) 0346 | | ISGS | 220 | 1946-71 | | | | | 1,679 | 1946-71 | | ong creek near writte rife (u) 0346 | | ISGS | 30.8 | 1921-37
1964-81 | | rench Broad River below Douglas Dam (d) 0346 | | VA
ISGS | | 1904-81
1919-74 | | ē / | | | 4,543 | | | Millican Creek near Douglas Dam (d) 0346 | | VA | 4.22 | 1942-62 | | Roaring Fork Creek at Hwy 441, at Gatlinburg (d) 03469
Oudley Creek at Gatlinburg (d) 03469 | | VA
VA | 7.23
8.84 | 1977-82
1977-82 | | a. d | Station | | Drainage
area | Period
of | |--|-----------|--------|--------------------|--------------------| | Station name | number | Agency | (mi ²) | record | | Vest Prong Little Pigeon River near Pigeon Forge (d) | 03469500 | USGS | 76.2 | 1946-49 | | | | TVA | | 1967-69 | | cittle Pigeon River at Sevierville (d) | 03470000 | USGS | 353 | 1921-82 | | South Fork Holston River below South Holston Dam (d) | 03476500 | USGS | 703 | 1951-74 | | South Fork Holston River at Bluff City (d) | 03477000 | USGS | 813 | 1900-53 | | Beaver Creek at Bristol (d) | 03478500 | USGS | 44.8 | 1932-34 | | Beaver Creek at Buffalo School, near Bluff City (d) | 03478620 | TVA | 108 | 1934-38 | | Vatauga River at North Carolina-Tennessee State Line (d) | 03479500 | USGS | 152 | 1943-55 | | Vatauga River at Stump Knob (d) | 03480000 | USGS | 171 | 1928-31, | | | | | | 1934-45 | | Roan Creek near Neva (d) | 03482000 | USGS | 102 | 1942-55 | | Roan Creek at Butler (d) | 03482500 | USGS | 166 | 1901-02, | | | | | | 1934-48 | | Vatauga River at Butler (d) | 03483000 | USGS | 427 | 1900-02, | | <u> </u> | | | | 1921-48 | | Vatauga River below Wilbur Dam (d) | 03484000 | USGS | 471 | 1903-09, | | (4) | | 3200 | - , - | 1948-82 | | Vatauga River at Siam (d) | 03484110 | TVA | 480 | 1946 | | Ooe River at Old Hopson School (d) | 03484490 | TVA | 59.3 | 1967-69 | | Ooe River at Blevins (d) | 03484500 | USGS | 60.8 | 1912-15 | | aurel Fork above Braemar (d) | 03484900 | TVA | 23.0 | 1945-51 | | aurel Fork above Hampton (d) | 03484910 | TVA | 25.3 | 1948-52 | | | 03485500 | USGS | 137 | | | Ooe River at Elizabethton (d) | 03463300 | USUS | 137 | 1912-16, | | Votance Diver at Elizabethton (4) | 02496000 | HCCC | 692 | 1921-82 | | Vatauga River at Elizabethton (d) | 03486000 | USGS | 092 | 1926-49, | | Deffel Constant Millian Calles (1) | 02496200 | TT 7.4 | 20.1 | 1953-82 | | Buffalo Creek at Milligan College (d) | 03486200 | TVA | 28.1 | 1965-81 | | Brush Creek at Johnson City (Tennessee Street) (d) | 03486490 | TVA | 6.78 | 1969-73 | | Brush Creek at Johnson City (Elm Street) (d) | 03486495 | TVA | 9.58 | 1969-72 | | Brush Creek at Johnson City (d) | 03486500 | USGS | 10.3 | 1932-34 | | fall Creek near Fort Patrick Henry Dam (d) | 03486900 | TVA | 13.1 | 1953-56 | | South Fork Holston River at Kingsport (d) | 03487500 | USGS | 1,935 | 1926-77 | | South Fork Holston River at Kingsport (auxiliary channel) (d) | 03487501 | USGS | 1.0 | 1953-77 | | Reedy Creek at Orebank (d) | 03487550* | USGS | 36.3 | 1963-89 | | South Fork Holston River near Ridgefields Bridge, at Kingsport (d) | | TVA | 2,047 | 1968-69 | | Holston River at Surgoinsville (d) | 03490500 | USGS | 2,874 | 1941-88 | | Beech Creek at Kepler (d) | 03491300 | USGS | 47.0 | 1965-87 | | Holston River near Rogersville (d) | 03491500 | USGS |
3,035 | 1901-42 | | Poor Valley Creek near Mooresburg (near Spruce Pine School) (d) | 03491800 | USGS | 32.3 | 1958-61 | | Poor Valley Creek near Mooresburg (d) | 03491820 | TVA | 43.3 | 1959-60 | | Holston River near Morristown (d) | 03492000 | USGS | 3,244 | 1937-42 | | Mossy Spring near Jefferson City (d) | 03492500 | USGS | | 1950-59 | | Mossy Creek at Jefferson City (d) | 03493000 | USGS | 30.8 | 1932-34 | | Holston River near Jefferson City (d) | 03494000 | USGS | 3,429 | 1937-74 | | Aill Spring near Jefferson City (d) | 03494500 | TVA | | 1941-48 | | | | USGS | | 1951-59 | | Iolston River near Knoxville (d) | 03495500 | USGS | 3,747 | 1930-76 | | | | | * | 1978-93 | | irst Creek at Mineral Springs Avenue, at Knoxville (d) | 03496000 | USGS | 15.7 | 1945-63 | | First Creek above Powers Avenue, at Knoxville (d) | 03496200 | USGS | 17.2 | 1964-70 | | | 03496500 | USGS | 21.1 | 1932-34, | | irst Creek at Fifth Avenue, at Knoxville (d) | | | | | | First Creek at Fifth Avenue, at Knoxville (d) | | | | | | rest Creek at Fifth Avenue, at Knoxville (d) Sennessee River at Knoxville (Gay Street Bridge) (d) | 03497000 | USGS | 8,934 | 1945-59
1900-82 | | | Station | | Drainage | Period | |---|-------------------|--------|-------------------------|--------------| | Station name | Station
number | Agency | area (mi ²) | of
record | | Little River at Walland (d) | 03497500 | USGS | 175 | 1925-31 | | Little River near Walland (d) | 03498000 | USGS | 192 | 1931-52 | | Pistol Creek at Maryville (d) | 03499000 | USGS | 13.5 | 1932-33 | | Little River below Rockford Dam, at Rockford (d) | 03499100 | TVA | 346 | 1940-44 | | Little River near Rockford (d) | 03499110 | TVA | 352 | 1936-37 | | Γen Mile Creek near Ebenezer (d) | 03499200 | TVA | 13.2 | 1941-45 | | Muddy Creek near Fort Loudon Dam (d) | 03499600 | TVA | 10.7 | 1941-59 | | Little Tennessee River at Calderwood (d) | 03518000 | USGS | 1,862 | 1912-19, | | Tempesso Tirver de Cardor (100a (d) | 05510000 | 0000 | 1,002 | 1921-57 | | Little Tennessee River below Chilhowee Dam (d) | 03518300 | USGS | 1,987 | 1958-79 | | North Fork Citico Creek near Tellico Plains (d) | 03518400 | TVA | 7.04 | 1960-71 | | Fellico River at Tellico Plains (d) | 03518500 | USGS | 118 | 1925-82 | | Little Tennessee River at McGhee (d) | 03519500 | USGS | 2,443 | 1905-69 | | Baker Creek near Greenback (d) | 03519640* | USGS | 16.0 | 1966-75 | | Fennessee River at Loudon (d) | 03520000 | USGS | 12,220 | 1923-55 | | Sweetwater Creek below Sweetwater (d) | 03520000 | TVA | 26.4 | 1970-81 | | Sweetwater Creek near Sweetwater (d) | 03520049 | TVA | 28.2 | 1964-70 | | Big Sycamore Creek near Sneedville (d) | 03528100 | TVA | 5.49 | 1935-45 | | Big Barren Creek near New Tazewell (d) | 03528100 | TVA | 22.5 | 1935-45 | | White Creek near Sharps Chapel (d) | 03528400 | TVA | 2.68 | 1935-43 | | Powell River near Arthur (d) | 03532000 | USGS | 685 | 1920-82 | | Davis Creek near Speedwell (d) | 03532000 | TVA | 31.2 | 1936-37 | | | | TVA | | 1936-38 | | Big Creek near La Follette (d) | 03532220 | | 26.2 | | | Clinch River below Norris Dam (d) | 03533000 | USGS | 2,913 | 1904-74 | | Clear Creek near Norris (d) | 03533100 | TVA | 2.83 | 1934-38 | | Coal Creek at Lake City (d) | 03534000* | USGS | 24.5 | 1932-34 | | Buffalo Creek at Norris (d) | 03534500 | USGS | 9.92 | 1947-51 | | Bullrun Creek near Halls Crossroads (d) | 03535000 | USGS | 68.5 | 1957-86 | | Scarboro Creek Tributary near Haw Ridge near Oak Ridge (d) | 03535102 | USGS | 0.41 | 1989-91 | | Scarboro Creek Tributary near Oak Ridge (d) | 03535103 | USGS | 0.41 | 1989-91 | | Whiteoak Creek near Melton Hill (d) | 03536320 | USGS | 1.31 | 1987-95 | | Whiteoak Creek near Wheat (d) | 03536380 | USGS | 2.10 | 1986-95 | | Northwest Tributary near Oak Ridge (d) | 03536440 | USGS | 0.67 | 1987-95 | | First Creek near Oak Ridge (d) | 03536450 | USGS | 0.33 | 1987-96 | | Whiteoak Creek at ORNL, near Oak Ridge (d) | 03536500 | USGS | 2.08 | 1950-55 | | Whiteoak Creek below Melton Valley Drive near Oak Ridge (d) | 03536550 | USGS | 3.28 | 1987-96 | | Whiteoak Creek below ORNL, near Oak Ridge (d) | 03537000 | USGS | 3.62 | 1950-53, | | | | | | 1955-64 | | Melton Branch tributary (East Seven) near Oak Ridge (d) | 03537050 | USGS | .24 | 1987-91 | | | | | | 1992-93 | | Melton Branch near Melton Hill, near Oak Ridge (d) | 03537100 | USGS | 0.52 | 1985-95 | | Melton Branch tributary (Center Seven) near Oak Ridge (d) | 03537200 | USGS | .07 | 1987-91 | | | | | | 1992-93 | | Melton Branch tributary (West Seven) near Oak Ridge (d) | 03537300 | USGS | .15 | 1987-89 | | | | | | 1992-93 | | Melton Branch near Oak Ridge (d) | 03537500 | USGS | 1.48 | 1955-64 | | Whiteoak Creek at Whiteoak Dam, near Oak Ridge (d) | 03538000 | USGS | 6.01 | 1953-55, | | | | | | 1960-64 | | Clinch River near Oak Ridge (d) | 03538150 | USGS | 3,385 | 1937-64, | | | | | | 1968 | | Poplar Creek near Oak Ridge (d) | 03538225 | USGS | 82.5 | 1960-89 | | East Fork Poplar Creek at Y-12 at Oak Ridge (d) | 03538231 | USGS | 0.81 | 1992-96 | | East Fork Poplar Creek near Oak Ridge (d) | 03538250 | USGS | 19.5 | 1960-88 | | | | | | | | | Station | | Drainage
area | Period
of | |--|----------------------|--------------|--------------------|----------------------| | Station name | number | Agency | (mi ²) | record | | Bear Creek at County Line near Oak Ridge (d) | 03538260 | USGS | 1.57 | 1993-96 | | Bear Creek tributary above Bear Creek Road near Wheat (d) | 035382672 | USGS | .30 | 1986-91 | | Bear Creek near Wheat (d) | 035382673 | USGS | 3.20 | 1986-91 | | Bear Creek tributary near Wheat (d) | 035382677 | USGS | .14 | 1986-89 | | Door Crook at State Hype 05 man Oak Bidge (d) | 03538270 | USGS | 4.34 | 1992-93
1985-2000 | | Bear Creek at State Hwy 95 near Oak Ridge (d) | | USGS | .14 | 1986-89 | | Bear Creek tributary at Hwy 95 near Wheat (d) | 03538272 | | 5.0 | 1986-89 | | Bear Creek at Pine Ridge near Wheat (d) | 03538273 | USGS | | | | Bear Creek near Oak Ridge (d)
Emory River near Wartburg (d) | 03538275
03538500 | USGS
USGS | 7.15
83.2 | 1960-64
1934-57, | | emory River hear wartourg (d) | 03338300 | USUS | 63.2 | 1966-68 | | Obed River at Crossville (d) | 03538600 | USGS | 12.0 | 1950-51, | | (*) | | | | 1955-85, | | | | | | 1991-95 | | Daddys Creek near Grassy Cove (d) | 03539000 | USGS | 51.2 | 1925-30 | | Daddys Creek near Crab Orchard (d) | 03539500 | USGS | 93.5 | 1931-58 | | Oaddys Creek near Hebbertsburg (d) | 03539600 | USGS | 139 | 1957-68 | | Clear Creek near Lancing (d) | 03539750 | USGS | 153 | 1966-68 | | Obed River near Lancing (d) | 03539800 | USGS | 518 | 1956-68, | | | | | | 1973-88 | | Crooked Fork near Wartburg (d) | 03539860 | USGS | 50.3 | 1966-68 | | Emory River at Deermont (d) | 03540000 | USGS | 704 | 1920-28 | | Crab Orchard Creek near Deermont (d) | 03540100 | USGS | 33.7 | 1966-68 | | Bitter Creek near Oakdale (d) | 03541300 | USGS | 12.6 | 1967-75 | | Kingston Creek at Kingston (d) | 03541400 | TVA | .74 | 1940-41 | | Whites Creek near Glen Alice (d) | 03541500 | USGS | 108 | 1934-55 | | Whites Creek at Glen Alice (d) | 03542000 | USGS | 120 | 1931-34 | | Piney River at Spring City (d) | 03542500 | USGS | 95.9 | 1927-31 | | Sewee Creek near Decatur (d) | 03543500 | USGS | 117 | 1934-94 | | Tennessee River at Breedenton (d) | 03544000 | USGS | 17,440 | 1934-40 | | Richland Creek near Dayton (d) | 03544500 | USGS | 50.2 | 1927-31, | | | | | | 1934-55, | | | | | | 1979-82 | | Furtletown Creek at Turtletown (d) | 03556000 | USGS | 26.9 | 1934-71 | | Hiwassee River near McFarland (d) | 03556500 | USGS | 1,136 | 1943-81 | | Hiwassee River near Reliance (d) | 03557000 | USGS | 1,233 | 1900-14, | | | | | | 1918-48 | | Ocoee River at Copperhill (d) | 03559500 | USGS | 352 | 1903-14, | | | | | | 1943-70 | | North Potato Creek tributary, Copper Basin area 6, | 03560700 | TVA | .01 | 1940-51 | | near Ducktown (d) Burra-burra Creek tributary, Copper Basin area 5, | 03560800 | TVA | .02 | 1940-51 | | near Ducktown (d) | 03300800 | IVA | .02 | 1940-31 | | North Potato Creek near Ducktown (d) | 03561000 | USGS | 13.0 | 1934-70 | | North Potato Creek tributary No. 2, Copper Basin area 1-W, | 03561200 | TVA | .01 | 1942-52 | | near Ducktown (d) | | | | | | North Potato Creek tributary No. 3, Copper Basin area 1-E, near Ducktown (d) | 03561300 | TVA | .01 | 1942-52 | | Ocoee River at McHarg (d) | 03561500 | USGS | 447 | 1917-43 | | Walkertown Branch tributary, Copper Basin area 4,
near Ducktown (d) | 03561700 | TVA | .01 | 1940-45 | | Ocoee River tributary, Copper Basin area 3, near Ducktown (d) | 03561800 | TVA | .01 | 1940-51 | | Brush Creek near Ducktown (d) | 03562000 | USGS | 14.4 | 1934-42 | | Hiwassee River above Charleston (d) | 03565000 | USGS | 2,001 | 1954-76 | | Chestuee Creek above Englewood (d) | 03565040 | TVA | 14.8 | 1944-57 | | | Station | | Drainage
area | Period
of |
--|-----------|--------|--------------------|--------------| | Station name | number | Agency | (mi ²) | record | | ittle Chestuee Creek below Wilson Station (d) | 03565080 | TVA | 8.54 | 1947-57 | | Chestuee Creek at Zion Hill (d) | 03565120 | TVA | 37.8 | 1944-62 | | liddle Creek below Hwy 39 near Englewood (d) | 03565160 | TVA | 32.7 | 1944-62 | | hestuee Creek near Athens (d) | 03565200 | TVA | 77.9 | 1944-54 | | hestuee Creek at Dentville (d) | 03565250 | USGS | 114 | 1944-62 | | outh Chestuee Creek near Benton (d) | 03565300 | USGS | 31.8 | 1957-86 | | ostanaula Creek near Sanford (d) | 03565500 | USGS | 57.0 | 1954-89 | | ostanaula Creek near Calhoun (d) | 03565700 | TVA | 67.0 | 1940-44 | | Volftever Creek near Ooltewah (d) | 03566420* | USGS | 18.8 | 1964-89 | | ong Savannah Creek near Snow Hill (d) | 03566450 | TVA | 28.3 | 1939-44 | | orth Chickamauga Creek at Upper Mill, near Hixson (d) | 03566600 | TVA | 99.5 | 1937-43 | | orth Chickamauga Creek near Hixson (d) | 03566630 | TVA | 114 | 1937-43 | | outh Chickamauga Creek near Chickamauga (d) | 03567500 | TVA | 428 | 1928-78 | | | | 1 | - | 1980-94 | | outh Chickamauga Creek near McCarty (d) | 03567600 | TVA | 458 | 1937-45 | | equatchie River near College Station (d) | 03570650 | USGS | 154 | 1966-68 | | equatchie River near Whitwell (d) | 03571000 | TVA | 402 | 1920-94 | | ittle Sequatchie River at Sequatchie (d) | 03571500* | USGS | 116 | 1932-34 | | ennessee River at South Pittsburg (d) | 03571850 | USGS | 22,640 | 1930-87 | | lk River near Pelham (d) | 03578000 | USGS | 65.6 | 1952-88 | | radley Creek Tributary at AEDC near Manchedster | 03578455 | USGS | 00.0 | 1993-96 | | radley Creek near Prairie Plains (d) | 03578500 | USGS | 41.3 | 1952-60 | | rumalow Creek at AEDC near Manchester (d) | 03578600 | USGS | | 1993-96 | | owland Creek at AEDC near Manchester (d) | 03578970 | USGS | | 1994-96 | | lk River near Estill Springs (d) | 03579100 | USGS | 275 | 1921-81 | | ock Creek at Tullahoma (d) | 03579620 | USGS | 12.3 | 1991-96 | | oiling Fork Creek south of Cowan (d) | 03580000 | USGS | 20.2 | 1932 | | oiling Fork Creek above Winchester (d) | 03580300 | USGS | 55.9 | 1962-70 | | oiling Fork Creek at Winchester (d) | 03580500 | USGS | 77.1 | 1932-34 | | lk River below Tims Ford Dam (d) | 03580750 | USGS | 534 | 1966-76 | | ack Daniel Spring at Lynchburg (d) | 03580990 | USGS | 33. | 1970-78 | | ast Fork Mulberry Creek below Jack Daniel Distillery at Lynchburg (d) | 03580995 | USGS | 23.4 | 1987-94 | | ast Fork Mulberry Creek at Lynchburg (d) | 03581000 | USGS | 23.1 | 1932 | | ast Fork Mulberry Creek near Lynchburg (d) | 03581000 | TVA | 29.5 | 1967-69 | | ast Fork Mulberry Creek near Mulberry (d) | 03581200 | TVA | 49.4 | 1967-69 | | Vest Fork Mulberry Creek near Booneville at Mt. Herman (d) | 03581400 | TVA | 17.4 | 1967-69 | | Vest Fork Mulberry Creek at Mulberry (d) | 03581500 | USGS | 41.2 | 1954-62, | | | | 3203 | | 1966-68 | | lk River above Fayetteville (d) | 03582000 | USGS | 827 | 1934-82 | | nion Branch below Belleville (d) | 03582140 | USGS | 2.37 | 1977 | | lk River near Fayetteville (d) | 03582500 | USGS | 897 | 1926-34 | | radshaw Creek at Frankewing (d) | 03582500 | USGS | 36.5 | 1955-61, | | and and a state of the | 05505000 | 5555 | 50.5 | 1966-68 | | ichland Creek near Cornersville (d) | 03583300* | USGS | 47.5 | 1961-68 | | actory Creek (head of Big Creek) near Campbellsville (d) | 03583330 | USGS | 38.2 | 1966-68 | | okley Creek near Campbellsville (d) | 03583350 | USGS | 20.2 | 1966-68 | | Veakley Creek near Bodenham (d) | 03583500 | USGS | 24.4 | 1955-61, | | carie, crock near Bodelinain (a) | 05505500 | abao | ∠٦,٦ | 1966-68 | | ichland Creek near Pulaski (d) | 03584000 | USGS | 366 | 1934-75 | | emana creek near i uraski (u) | | | 1805 | | | lk River at Prospect (d) | 03584600 | USGS | LXIIS | 1904-08, | | | Station | | Drainage
area | Period
of | | |--|----------|--------|--------------------|---------------------|--| | Station name | number | Agency | (mi ²) | record | | | Shoal Creek at Lawrenceburg (d) | 03588000 | USGS | 55.4 | 1932-34 | | | | | | | 1967-91 | | | Chisholm Creek at Westpoint (d) | 03588400 | USGS | 43.0 | 1962-88 | | | hoal Creek at Iron City (d) | 03588500 | USGS | 348 | 1925-94 | | | nake Creek near Adamsville (d) | 03593300 | TVA | 49.4 | 1940-59 | | | Holland Creek near Lowryville (d) | 03593700 | TVA | 14.9 | 1965-78 | | | Iorse Creek near Savannah (d) | 03594000 | USGS | 114 | 1929-34 | | | Turkey Creek near Savannah (d) | 03594040 | TVA | 53.7 | 1940-59 | | | Vhite Oak Creek near Milledgeville (d) | 03594058 | TVA | 46.1 | 1940-59 | | | Vhite Oak Creek at Milledgeville (d) | 03594110 | TVA | 49.2 | 1961-65 | | | Middleton Creek near Milledgeville (d) | 03594120 | TVA | 45.5 | 1940-59 | | | ndian Creek near Cerro Gordo (d) | 03594160 | TVA | 201 | 1940-59 | | | Banjo Branch near Waynesboro (d) | 03594164 | USGS | 2.14 | 1988-89 | | | Beech River near Lexington (d) | 03594415 | TVA | 15.9 | 1953-63 | | | Volf Creek at Graper Springs (d) | 03594420 | TVA | 11.7 | 1953-55 | | | ine Tree Branch near Lexington (d) | 03594425 | TVA | .14 | 1941-78 | | | Harmon Creek near Lexington (d) | 03594430 | TVA | 6.87 | 1953-73 | | | Piney Creek at Hwy 104 near Lexington (d) | 03594435 | TVA | 19.2 | 1953-55, | | | | | | | 1957-73 | | | Cane Creek near Shady Hill (d) | 03594437 | TVA | 20.7 | 1966-73 | | | Haley Creek near Chesterfield (d) | 03594441 | TVA | 8.30 | 1953-55 | | | Beech River near Chesterfield (old channel before | 03594445 | TVA | 11.5 | 1940-54, | | | channelization) (d) | | | | 1960-65 | | | Browns Creek near Chesterfield (d) | 03594450 | TVA | 202 | 1953-63 | | | Cane Creek near Shady Hill (d) | 03594455 | TVA | 16.8 | 1953-64 | | | Cane Creek near Chesterfield (old channel before channelization) (d) | 03594460 | TVA | 222 | 1940-54 | | | Beech River near Darden (old channel before channelization) (d) | 03594465 | TVA | 165 | 1954-60 | | | lat Creek near Middleburg (d) | 03594470 | TVA | 13.8 | 1953-55 | | | Big Creek near Darden (d) | 03594475 | TVA | 10.6 | 1953-55, | | | | | | | 1966-73 | | | Furkey Creek near Decaturville (d) | 03594480 | TVA | 8.40 | 1953-63 | | | Furkey Creek at Middleburg Road, near Decaturville (d) | 03594482 | TVA | 11.5 | 1964-73 | | | Rushing Creek near Decaturville (d) | 03594485 | TVA | 17.0 | 1953-55 | | | Tennessee River at Perryville (d) | 03594500 | USGS | 34,550 | 1931-32 | | | Ouck River near Manchester (d) | 03595000 | USGS | 55.2 | 1932-34 | | | ittle Duck River at Manchester (d) | 03595500 | USGS | 40.4 | 1932-34 | | | Ouck River below Manchester (d) | 03596000 | USGS | 107 | 1934-88 | | | Ouck River at Normandy (d) | 03596500 | USGS | 208 | 1920-31, | | | ouck River at Normandy (u) | 03390300 | 0303 | 200 | 1972-75 | | | Garrison Fork at Fairfield (d) | 03597000 | USGS | 66.3 | 1972-73 | | | Jamison Polk at Pairillia (a) | 0337/000 | USUS | 00.3 | 1955-58,
1966-68 | | | Wartrace Creek at Rell Buckle (d) | 03597500 | USGS | 16.3 | | | | Vartrace Creek at Bell Buckle (d) | 0337/300 | USUS | 10.3 | 1953-61,
1966-75 | | | Wartraga Craak at Wartraga (d) | 02507600 | Hece | 26 1 | | | | Vartrace Creek at Wartrace (d) | 03597600 | USGS | 36.4 | 1966-68 | | | all Creek near Deason (d) | 03598173 | USGS | 16.4 | 1994-95 | | | all Creek near Halls Mill (d) | 03598179 | USGS | 39.0 | 1994-95 | | | Fork Creek near Poplins Crossroad (d) | 03598250 | USGS | 71.9 | 1994-95 | | | Big Rock Creek at Lewisburg (d) | 03599000 | USGS | 24.9 | 1953-61, | | | | | | | 1966-68 | | | | | | | 1995-2000 | | | Fountain Creek near Culleoka (d) | 03599430 | USGS | 26.9 | 1966-68 | | | ountain Creek near Fountain Heights (d) | 03599450 | USGS | 74.0 | 1966-68 | | | Rutherford Creek near Carters Creek (d) | 03600000 | USGS | 68.8 | 1953-58 | | | Rutherford Creek (No. 4) near Columbia (d)
 03600100 | TVA | 112 | 1948-53 | | | | Station | | Drainage | Period
of | |--|-----------|--------|----------------------------|--------------------| | Station name | number | Agency | area
(mi ²) | record | | Autherford Creek (No. 3) near Columbia (d) | 03600200 | TVA | 116 | 1948-49 | | ittle Bigby Creek at Experiment Lane at Columbia (d) | 03600258 | USGS | 42.6 | 1990-92 | | sig Bigby Creek at Sandy Hook (d) | 03600500 | USGS | 17.5 | 1953-87, | | | | | | 1988-89 | | ig Bigby Creek near Mount Pleasant (d) | 03601000 | USGS | 25.8 | 1953-57 | | ig Bigby Creek at Cross Bridges (d) | 03601500 | USGS | 112 | 1938-39 | | buck River at Centerville (d) | 03602000 | USGS | 2,048 | 1919-55 | | iney River at Vernon (d) | 03602500 | USGS | 193 | 1925-93 | | buck River above Hurricane Mills (d) | 03603000 | USGS | 2,557 | 1925-94 | | furricane Creek at Hurricane Mills (d) | 03603500 | USGS | 75.1 | 1932-33 | | oon Creek near Hohenwald (d) | 03604100 | USGS | 10.0 | 1967-74 | | uffalo River below Lobelville (d) | 03604400 | USGS | 702 | 1927-89, | | (4) | | | , , , _ | 1989-94 | | uffalo River near Lobelville (d) | 03604500 | USGS | 707 | 1987-89 | | lue Creek at State Hwy 13 near Waverly (d) | 03604600 | TVA | 24.8 | 1964-71 | | irdsong Creek near Holladay (d) | 03604800 | TVA | 44.9 | 1940-68 | | race Creek at Waverly (d) | 03605500 | USGS | 20.1 | 1932-33 | | otton Creek near Camden (d) | 03606400 | TVA | .43 | 1941-45 | | ig Sandy River at Big Sandy (d) | 03607000 | USGS | 379 | 1935-44 | | Clifty Creek at Clifty Creek Road near Paris (d) | 03607198 | USGS | 8.06 | 1994-95 | | Iolly Fork Creek at Nobles (d) | 03607225 | USGS | 26.8 | 1994-95 | | eaverdam Creek at Sulphur Well Road near Nobles (d) | 03607232 | USGS | 6.69 | 1994-95 | | ennessee River near Buchanan (d) | 03607500 | USGS | 39,730 | 1930-43 | | rooked Creek at Highway 22 near Huntingdon (d) | 07024200 | USGS | 89.8 | 1994-95 | | eaver Creek at Huntingdon (d) | 07024300* | USGS | 55.5 | 1946, 1948, | | cuvor crock at Haikington (a) | 07021300 | CBGB | 55.5 | 1952-54, | | | | | | 1958-88 | | eaver Creek at Hwy 22 Bypass near Huntingdon (d) | 07024305 | USGS | 58.6 | 1994-96 | | outh Fork Obion River near Greenfield (d) | 07024500* | USGS | 383 | 1929-89 | | utherford Fork Obion River near Bradford (d) | 07025000 | USGS | 201 | 1929-57 | | orth Fork Obion River near Union City (d) | 07025500 | USGS | 480 | 1929-71 | | of the Folk Oblon Rever fical Official City (tr) | 07023300 | CSGS | 400 | 1989-93 | | bion River at U.S. Highway 51 near Obion (d) | 07026040 | USGS | 1,875 | 1929-1958, | | olon River at 0.5. Highway 31 hear Oblon (a) | 07020010 | CBGB | 1,075 | 1966-1995 | | Forth Reelfoot Creek at State Hwy 22 near Clayton (d) | 07026370 | USGS | 56.3 | 1980-83, | | form Rechoot creek at State 11wy 22 hear Clayton (u) | 07020370 | CSGS | 30.3 | 1984-89 | | outh Reelfoot Creek near Clayton (d) | 07026400 | USGS | 36.6 | 1984-89 | | eelfoot Creek near Samburg (d) | 07026500 | USGS | 110 | 1951-73 | | eelfoot Lake near Phillippy (e) | 07026690 | USGS | 240 | 1984-88 | | ndian Creek near Samburg (d) | 07026795 | USGS | 8.01 | 1982-86 | | outh Fork Forked Deer River at Jackson (d) | 07020793 | USGS | 495 | 1929-73 | | outil Fork Porked Deer River at Jackson (u) | 07027300 | USUS | 493 | 1988-91 | | outh Fork Forked Deer River at Chestnut Bluff (d) | 07028000 | USGS | 1,003 | 1929-57 | | forth Fork Forked Deer River at Chestnut Bluif (d) | 07028500 | USGS | 73.5 | 1929-37 | | fiddle Fork Forked Deer River near Alamo (d) | 07028300 | USGS | 73.3
369 | 1930-71 | | | 07029000 | | | 1929-73
1929-58 | | atchie River near Stanton (d) | 07030000 | USGS | 1,975
79.8 | 1929-38 | | ane Creek at Three Point (d) | 07030137 | USGS | | | | elly Branch near Clopton (d) | | USGS | 7.79 | 1975-76 | | eaver Creek near Arlington (d) | 07030250 | USGS | 148 | 1994-95 | | oosahatchie River tributary at New Allen Road at Memphis (d) | 07030295 | USGS | 1.26 | 1977-83 | | Volf River at Rossville (d) | 07030500 | USGS | 503 | 1929-72 | | farys Creek at Pisgah Road, near Fisherville (d) | 07031500 | USGS | 13.6 | 1955-57 | | letcher Creek near Cordova (d) | 07031680 | USGS | 1.45 | 1974-83 | | letcher Creek at Whitten Road at Memphis (d) | 07031683 | USGS | 21.4 | 1978-82 | | Station name | Station
number | Agency | Drainage
area
(mi ²) | Period
of
record | |---|-------------------|--------|--|------------------------| | Unnamed tributary at Charles Bryan Road, near Cordova (d) | 07031685 | USGS | 3.18 | 1975-77 | | Lick Creek at Dickinson Street, at Memphis (d) | 07031777 | USGS | 2.96 | 1975-83 | | Nonconnah Creek near Germantown (d) | 07032200 | USGS | 68.2 | 1969-1985 | | | | | | 1985-1995 | | Johns Creek tributary at Holmes Road, near Memphis (d) | 07032222 | USGS | 5.83 | 1975-85 | | Johns Creek at Raines Road, at Memphis (d) | 07032224 | USGS | 19.4 | 1975-82, | | | | | | 1985 | | Black Bayou at Southern Avenue, at Memphis (d) | 07032241 | USGS | .59 | 1975-83 | | Cane Creek at East Person Avenue, at Memphis (d) | 07032248 | USGS | 4.98 | 1975-85 | | Cypress Creek at Neely Road, at Memphis (d) | 07032260 | USGS | 3.18 | 1975-85 | # DISCONTINUED SURFACE-WATER QUALITY STATIONS The following stations were discontinued as continuous-record surface-water-quality stations prior to the 1991 water year. Water-quality data (daily or periodic samples with collection frequency not less than quarterly) were collected and published for the period of record shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Chief at the address given on the back of the title page of this report. [Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority. Type of record: (B) biological, (C) chemical, (S) sediment, (T) temperature.] | Station name | Station
number | Agency | Drainage
area
(mi ²) | Type of record | Period of
record
(water years) | |--|-------------------|--------|--|----------------|--------------------------------------| | Crabapple Branch near La Follette | 03403718 | USGS | 1.07 | C,T | 1981-84 | | Indian Fork above Braytown | 03407804 | USGS | 4.32 | C | 1975-81 | | New River at Stainville | 03407850 | USGS | 66.0 | C,S | 1975-77, 1979-81 | | Green Branch near Hembree | 03407874 | USGS | 1.38 | C,S | 1975-81 | | Smoky Creek above Hembree (361240084245800) | 034078745 | USGS | 8.07 | S | 1982-83 | | Bills Branch near Hembree | 03407875 | USGS | .67 | C,S | 1975-83 | | | | USGS | | C,S,T | 1980-83 | | Shack Creek at Hembree (361341084253900) | 034078755 | USGS | 5.08 | C,S,T | 1982-84 | | Smoky Creek at Hembree | 03407876 | USGS | 17.2 | S | 1978-84 | | | | USGS | | C,T | 1980-84 | | Bowling Branch above Smoky Junction | 03407877 | USGS | 2.19 | C,S | 1975-83 | | Smoky Creek at Smoky Junction | 03407879 | USGS | 32.8 | C,S | 1975-77, 1979-81 | | Anderson Branch near Montgomery | 03407881 | USGS | .69 | C | 1975-81 | | Lowe Branch near Montgomery | 03407882 | USGS | .92 | C | 1975-81 | | New River at Cordell | 03407908 | USGS | 198 | C,S | 1976-77, 1979-82 | | New River at New River | 03408500 | USGS | 382 | C,T | 1977-86 | | | | USGS | | C,S | 1965-67, 1975-77,
1979-81 | | Clear Fork near Robbins | 03409500 | USGS | 272 | T | 1982-86 | | | | USGS | | C | 1982, 1984-86 | | | | USGS | | C,S | 1964-65, 1976-77, | | | | | | | 1979-82, 1984 | | South Fork Cumberland River at Leatherwood Ford | 03410210 | USGS | 806 | C,S,T | 1986 | | | | USGS | | | 1979-80, 1984-85 | | Cumberland River at Celina | 03417500 | USGS | 7,307 | C,T | 1991-97 | | Roaring River near Hilham | 03418000 | USGS | 78.7 | T | 1969-71 | | Roaring River above Gainesboro | 03418070 | USGS | 210 | C,S | 1980-83 | | Cumberland River below Cordell Hull Dam | 03418420 | USGS | 8,095 | CT | 1980-97 | | Collins River near McMinnville | 03421000 | USGS | 640 | C,S | 1964-67,1979-82 | | Cumberland River at Carthage | 03425000 | USGS | 10,690 | C,T | 1975-81 | | East Fork Stones River near Lascassas | 03427500 | USGS | 262 | C,T | 1975-1990 | | West Fork Stones River near Murfreesboro | 03428000 | USGS | 128 | C | 1964-68 | | West Fork Stones River at Manson Pike, at Murfreesbord | | USGS | 165 | C,T | 1973-82 | | West Fork Stones River near Smyrna | 03428500 | USGS | 237 | T | 1974-1990 | | Richland Creek at Charlotte Avenue, at Nashville | 03431700 | USGS | 24.3 | C,S | 1901, 1979-83 | | Harpeth River near Kingston Springs | 03434500 | USGS | 681 | C,S | 1979-83 | | Cumberland River below Cheatham Dam | 03435000 | USGS | 14,163 | C,T | 1993-97 | | Sulphur Fork Red River near Greenbrier | 03435637 | USGS | 34.9 | T | 1976-78 | | Sulphur Fork Red River above Beaverdam Creek, near Springfield | 03435700 | USGS | 49.1 | T | 1975-77 | | Sulphur Fork Red River above Springfield | 03435770 | USGS | 65.6 | C,S | 1976-83 | | Sulphur Fork Red River near Adams | 03436000 | USGS | 186 | C,S | 1964, 1979-83 | | Red River at Port Royal | 03436100 | USGS | 935 | C,S | 1979-83 | | Boiling Springs at Ft. Campbell, KY-TN | 03436421 | USGS | | C,T | 1994-96 | | Yellow Creek near Shiloh | 03436700 | USGS | 124 | C,S | 1964-65, 1979-81 | | French Broad River below Hot Springs, NC | 03454757 | USGS | 1,712 | C | 1970-73 | # DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued $[Agency\ designations:\ USGS, U.S.\ Geological\ Survey;\ TVA,\ Tennessee\ Valley\ Authority.$ $Type\ of\ record:\ (B)\ biological,\ (C)\ chemical,\ (S)\ sediment,\ (T)\ temperature.]$ | Station name | Station | A - | Drainage
area | Type of | |
--|----------------------|------------|------------------|----------|---| | Station name | number | Agency | (mi^2) | record | (water years) | | French Broad River near Newport | 03455000 | TVA | 1,858 | С | 1946-47, 1960-61,
1969-70, 1974-75,
1979-80 | | Muddy Fork near Leesburg | 03465830 | USGS | 13.5 | C,S,T | 1993-95 | | Nolichucky River at Embreeville | 03465500 | USGS | 805 | C,S | 1979-82 | | Jockey Creek near Mount Bethel Church near Limestone | 03466098 | USGS | 18.5 | C,S,T | 1993-95 | | Big Limestone Creek near Limestone | 03466208 | USGS | 79.0 | T | 1996-2000 | | Nolichucky River below Nolichucky Dam | 03466500 | TVA | 1,184 | C | 1974-79 | | | | TVA | , | T | 1962 | | Lick Creek near Holland Mill | 03466825 | USGS | 53.0 | C,S,T | 1993-95 | | Nolichucky River near Lowland | 03467609 | USGS | 1,687 | T | 1998-2000 | | French Broad River at Douglas Dam (tailwater) | 03468510 | TVA | 4,541 | C | 1975-80 | | Little Pigeon River at Sevierville | 03470000 | TVA | 353 | Č | 1967-68, 1970 | | 2 | 02.70000 | TVA | 222 | T | 1969-74 | | | | USGS | | C,S | 1979-82 | | French Broad River near Knoxville | 03470500 | USGS | 5,101 | C,T | 1975-82 | | Tenen broad River near Knoxvine | 03470300 | USGS | 3,101 | B,C,S | | | South Fork Holston River at South Holston Dam | 03476010 | TVA | 703 | C C | 1975-80 | | Watauga River at Stump Knob | 03480000 | TVA | 703
171 | T | 1962 | | Elk River at Elk Mills | | | | C | 1902 | | | 03481450 | TVA | 74.0 | T | | | Roan Creek near Doeville | 03482100 | TVA | 110 | | 1962, 1971-74 | | W. D. 1.1 W. D. | 02402050 | TVA | 460 | С | 1975-76 | | Watauga River below Watauga Dam | 03483950 | TVA | 468 | C | 1973, 1975-80 | | Doe River at Hampton | 03484800 | TVA | 100 | T | 1968-73 | | Doe River at Elizabethton | 03485500 | TVA | 137 | C | 1967-68, 1971 | | | | TVA | | T | 1954-63 | | | | USGS | | C,S | 1979-82 | | South Fork Holston River at Boone Dam (tailwater) | 03486810 | TVA | 1,840 | C | 1975-78 | | South Fork Holston River at Ft. Patrick Henry Dam | 03487010 | TVA | 1,903 | C | 1975-80 | | Reedy Creek at Orebank | 03487550 | TVA | 36.3 | T | 1964-66 | | | | TVA | | C | 1964-67 | | | | USGS | | C,S | 1979-82 | | Holston River near Church Hill | 03490350 | TVA | 2,819 | C | 1974-78 | | Holston River at Surgoinsville | 03490500 | USGS | 2,874 | T | 1975-82 | | | | TVA | | C | 1974-80 | | Big Creek near Rogersville | 03491000 | USGS | 47.3 | T | 1972-75, 1977-79 | | Beech Creek at Kepler | 03491300 | TVA | 47.0 | T | 1966-68 | | Holston River near Rogersville | 03491500 | TVA | 3,035 | T | 1966-75 | | Holston River at Cherokee Dam (tailwater) | 03493510 | TVA | 3,428 | C | 1975-80 | | Holston River near Knoxville | 03495500 | USGS | 3,747 | C,B,S | 1977-93 | | First Creek above Powers Avenue, at Knoxville | 03496200 | USGS | 17.2 | T | 1969-71 | | Tennessee River below Knoxville | 03497100 | TVA | 8,963 | T | 1970-80 | | Little River above Townsend | 03497300 | USGS | 106 | T | 1964-82 | | Entire rayer above Townsena | 03 13 73 00 | USGS | 100 | C | 1982 | | Little River near Maryville | 03498500 | TVA | 269 | C | 1967-68 | | Entire River hear waryvine | 03470300 | USGS | 20) | C,S | 1979-82 | | Tennessee River at Fort Loudon Dam (tailwater) | 03499510 | TVA | 9,550 | C,S
C | 1975-80 | | | | | | | | | Little Tennessee River at Calderwood Dam Little Tennessee River below Chilhowee Dam | 03518210
03518300 | TVA | 1,977 | C
T | 1977-80
1964-78 | | | | TVA | 1,987 | | | | Tellico River at Tellico Plains | 03518500 | TVA | 118 | T | 1964-78 | | | | TVA | | С | 1969-70, 1973-76 | | L'ALTE D' ALC' | 02510500 | USGS | 2 442 | C,S | 1979-82 | | Little Tennessee River at McGhee | 03519500 | TVA | 2,443 | T | 1963 | | Little Tennessee River near Centersville | 03519740 | TVA | | T | 1976-79 | | Clinch River above Tazewell | 03528000 | TVA | 1,474 | T | 1962-66, 1971-75 | | | | TVA | | C | 1971-80 | # DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued $[Agency\ designations:\ USGS, U.S.\ Geological\ Survey;\ TVA,\ Tennessee\ Valley\ Authority.$ $Type\ of\ record:\ (B)\ biological,\ (C)\ chemical,\ (S)\ sediment,\ (T)\ temperature.]$ | Station name | Station
number | Agency | Drainage
area
(mi ²) | Type of record | Period of record (water years) | |---|-------------------|--------|--|----------------|--------------------------------| | Powell River near Arthur | 03532000 | TVA | 685 | C,S | 1965, 1969-72,
1974-82 | | | | TVA | | T | 1963-66, 1971-75 | | Ollis Creek at Ivydell | 03532190 | TVA | 13.3 | C | 1974-78 | | Clinch River below Norris Dam | 03533000 | TVA | 2,913 | C | 1968-70, 1972-80 | | Clinch River at Coal Creek | 03533500 | TVA | 2,921 | T | 1976-79 | | Clinch River near Clinton | 03534100 | TVA | 2,980 | C | 1971-74, 1977 | | Clinch River at Edgemoor | 03534900 | TVA | 3,089 | C | 1969-78 | | Bullrun Creek near Halls Crossroads | 03535000 | USGS | 68.5 | T | 1967-74 | | Clinch River near Eaton Crossroads | 03535915 | TVA | 3,346 | T | 1963-79 | | Poplar Creek near Oak Ridge | 03538225 | USGS | 82.5 | C,S | 1961-65, 1979-81 | | .r | | USGS | | T | 1962-65 | | East Fork Poplar Creek near Oak Ridge | 03538250 | USGS | 19.5 | T | 1962-68 | | Bear Creek near Oak Ridge | 03538275 | USGS | 7.15 | T | 1962-63 | | Emory River near Wartburg | 03538500 | TVA | 83.2 | C | 1965-68, 1975-76 | | Obed River near Lancing | 03539800 | TVA | 518 | T | 1965-66 | | over rever hear baneing | 03237000 | TVA | 210 | C | 1965-68 | | Crooked Fork near Wartburg | 03539860 | TVA | 50.3 | C | 1965-68 | | Crooked Fork fiear wartourg | 03337000 | USGS | 30.3 | C,S | 1979-81 | | Crab Orchard Creek near Deermont | 03540100 | TVA | 33.7 | C,S | 1966-68 | | Crao Orchard Creek near Deermont | 03340100 | TVA | 33.7 | T | 1967-68 | | | | USGS | | C,S | 1979-81 | | Emary Divar at Oakdala | 03540500 | TVA | 764 | C,S | 1965-67, 1974-81 | | Emory River at Oakdale Tannagga River at Wette Par Dam (tailwater) | | | | | | | Tennessee River at Watts Bar Dam (tailwater) | 03543005 | USGS | 17,310 | B,C,S, | | | Dishland Cuarly many Dayton | 02544500 | USGS | 50.2 | T,C
C | 1976-81 | | Richland Creek near Dayton | 03544500 | TVA | 50.2 | | 1966-67 | | II' | 02557050 | USGS | 1 222 | C,S | 1979-82 | | Hiwassee River near Wetmore | 03557050 | TVA | 1,233 | C | 1973-74, 1976 | | Hiwassee River at Patty | 03557400 | TVA | 1,358 | T | 1976-78 | | Hiwassee River near Benton | 03557405 | TVA | 1,362 | С | 1978-80 | | Ocoee River at Parksville | 03564500 | TVA | 595 | С | 1971-72, 1976-80 | | Oostanaula Creek near Sweetwater | 03565428 | USGS | | C,S,T | 1993-95 | | Oostanaula Creek below Johnson Branch near Athens | 03565430 | USGS | | C,S,T | 1993-95 | | Oostanaula Creek near Sanford | 03565500 | USGS | 57.0 | C,S | 1979-82 | | Tennessee River at Sequoyah Nuclear Plant | 03566404 | TVA | 20,630 | C | 1975-78 | | Tennessee River near Harrison Bay State Park | 03566405 | TVA | 20,650 | C | 1969-73 | | Tennessee River at Chickamauga Dam (tailwater) | 03566510 | TVA | 20,790 | C | 1975-80 | | Tennessee River at Nickajack Dam (tailwater gage) | 03570525 | TVA | 21,849 | C | 1975-78 | | Sequatchie River near Dunlap | 03570835 | TVA | 292 | C | 1975-78 | | Sequatchie River near Whitwell | 03571000 | TVA | 402 | T | 1962-71 | | | | TVA | | | 965, 1970, 1974-75 | | | | USGS | | C,S | 1979-82 | | Sequatchie River at Whitwell Waterworks
near Whitwell | 03571200 | TVA | 410 | С | 1975-79 | | Tennessee River at South Pittsburg | 03571850 | USGS | 22,640 | T | 1975-82 | | - | | USGS | | C | 1975-79, 1981 | | | | USGS | | B,C,S, | | | Bradley Creek Tributary at AEDC near Manchester | 03578455 | USGS | | T T | 1993-95 | | Brumalow Creek at AEDC near Manchester | 03578600 | USGS | | T | 1993-95 | | Rowland Creek at AEDC near Manchester | 03578970 | USGS | | T | 1993-95 | | Elk River near Estill Springs | 03578970 | TVA | 275 | C | 1974-78 | | Lik karet near Louis Optingo | 05517100 | 1 1 7 | 213 | | 17/7-10 | # DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued $[Agency\ designations:\ USGS, U.S.\ Geological\ Survey;\ TVA,\ Tennessee\ Valley\ Authority.$ $Type\ of\ record:\ (B)\ biological,\ (C)\ chemical,\ (S)\ sediment,\ (T)\ temperature.]$ | Station name | Station
number | Agency | Drainage
area
(mi ²) | Type of record | Period of record (water years) | |---|-------------------|--------|--|----------------|--------------------------------| | Boiling Fork Creek near Decherd | 03580110 | TVA | 37.7 | Т | 1975-77 | | Elk River below Tims Ford Dam | 03580750 | TVA | 534 | T | 1971-79 | | | | TVA | | C | 1966-67, 1973
1975-80 | | Elk River above Fayetteville | 03582000 | TVA | 827 | C | 1974, 1977-80 | | · | | USGS | | T | 1961-64 | | Elk River at Fayetteville | 03582400 | TVA | 895 | T | 1976-78 | | Cane Creek near Fayetteville | 03582600 | TVA | 106 | T | 1969-73 | | Richland Creek near Pulaski | 03584000 | TVA | 366 | T | 1965-73 | | Elk River near Prospect | 03584500 | TVA | 1,784 | T | 1961-64 | | Shoal Creek at Iron City | 03588500 | TVA | 348 | C,S | 1974-80 | | • | | USGS | | C,S | 1980-83 | | Tennessee River at Pickwick Landing Dam | 03593005 | USGS | 32,820 | C,T | 1976-82 | | Beech River near Chesterfield | 03594439 | TVA | 121 | C | 1969-71, 1976 | | Duck River below Manchester | 03596000 | TVA | 107 | C | 1967-68, 1970-71 | | | | TVA | | T | 1976-80 | | | | USGS | | C,S | 1975, 1979-83 | | Duck River at Normandy | 03596500 | TVA | 208 | T | 1969-75 | | Duck River at Shelbyville Waterworks | 03597850 | TVA | 425 | C | 1975-80 | | Duck River near Shelbyville | 03598000 | TVA | 481 | T | 1961-64, 1976-78 | | Duck River near Columbia | 03599460 | TVA | 1,176
| T | 1974-82 | | Duck River at Columbia Waterworks | 03599482 | TVA | 1,195 | C | 1975-80 | | Piney River at Vernon | 03602500 | TVA | 193 | T | 1964-67 | | Duck River above Hurricane Mills | 03603000 | TVA | 2,557 | C | 1966-67, 1974-80 | | | | TVA | | T | 1961-64 | | Buffalo River near Flat Woods | 03604000 | TVA | 447 | T | 1964-68 | | Buffalo River near Lobelville | 03604500 | TVA | 707 | T | 1961-64 | | | | TVA | | C | 1967-68, 1973-76 | | Trace Creek above Denver | 03605555 | USGS | 31.9 | C | 1979-83 | | Big Sandy River at Bruceton | 03606500 | TVA | 205 | T | 1971-78 | | | | TVA | | C | 1968, 1970-72 | | | | USGS | | C,S | 1976, 1979-83 | | North Reelfoot Creek at Clayton | 07026360 | USGS | 54.7 | C,S | 1982-84 | | North Reelfoot Creek at State Hwy 22 near Clayton | 07026370 | USGS | 56.3 | C,S | 1983-89 | | Obion River at Hwy 51 near Obion | 07026040 | USGS | 1,875 | C,S,T | 1975-95 | | South Reelfoot Creek near Clayton | 07026400 | USGS | 38.6 | C,S | 1984-89 | | Bayou Du Chien near Walnut Log | 07026695 | USGS | 27.8 | C,T | 1986-88 | | Indian Creek near Samburg | 07026795 | USGS | 8.01 | C,S | 1982-84 | | Reelfoot Lake Spillway near Tiptonville | 07027002 | USGS | 240 | C,T | 1975-76, 1986-88 | | Mosses Creek near Pocahontas | 07029410 | USGS | 47.6 | | 1961, 1963, 1977-78 | | Hatchie River near Lacy | 07029425 | USGS | 1,033 | C,S | 1977-78 | | Big Muddy Creek at Stanton | 07030010 | USGS | 84.4 | C,S | 1977-78 | | Cane Creek at Ripley | 07030100 | USGS | 33.9 | S | 1985-87 | | Cane Creek at Three Point | 07030137 | USGS | 79.8 | S | 1985-87 | | Loosahatchie River near Arlington | 07030240 | USGS | 262 | C,S | 1979-82 | | Wolf River at Rossville | 07030500 | USGS | 503 | C | 1961, 1963-68 | | Nonconnah Creek near Germantown | 07032200 | USGS | 68.2 | C,S | 1979-82 | #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey (USGS), in cooperation with State, local, and Federal agencies, obtains a large amount of data pertaining to the water resources of Tennessee each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled "Water Resources Data - Tennessee." This report consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains discharge records for 89 gaging stations; stage only at 1 gaging station; stage and contents at 32 lakes and reservoirs; water quality for 9 stations, and 15 wells; and water levels at 8 observation wells. Also included are data for 98 crest-stage partial-record stations. Locations of these sites are shown on figures 4 through 6. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and miscellaneous analyses or as seepage investigations. This series of annual reports for Tennessee began with the 1961 water year with a report that contained only data relating to the quantities of surface water. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Prior to introduction of this series and for several years concurrent with it, water-resources data for Tennessee were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States." For the 1961 through 1970 years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Water of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225. Publications similar to this report are published annually by the USGS for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report TN-02-1." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (615) 837-4700. #### **COOPERATION** The USGS and agencies of the State of Tennessee have had cooperative agreements for the systematic collection of streamflow records since 1918, for ground-water levels since 1946, and for water-quality records since 1960. Organizations that assisted in collecting data contained in this report through cooperative agreement with the Survey are: Athens Utility District Tennessee Department of Environment and Conservation Tennessee Department of Transportation Tennessee Wildlife Resources Agency **Duck River Development Agency** Harpeth Valley Utility District Hixson Utility District Savannah Valley Utility District Cities, Towns, or Counties; Alcoa Blount Camden Dickson DICKSOII Franklin Germantown Harriman Jackson Knox Lewisburg Lincoln Maryville Medina Memphis Metropolitan Government of Nashville and Davidson County Murfreesboro Rogersville Sevierville Shelby Springfield Wartrace Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, Nashville District, the Tennessee Valley Authority, and by the U.S. Department of Energy. All data are published in this report. Organizations that supplied data are acknowledged in station descriptions. #### SUMMARY OF HYDROLOGIC CONDITIONS #### Surface Water The State of Tennessee derives many benefits from an abundance of water found in many streams, rivers, and lakes throughout the area. Excluding the Mississippi River, which flows south along Tennessee's western border, the largest rivers in the State are the Tennessee and Cumberland Rivers. Other large rivers in Tennessee include the Holston, French Broad, Little Tennessee, Ocoee, Elk, Duck, Buffalo, Obion, and Hatchie Rivers. Tennessee shares the benefits of these rivers with neighboring states. Adequate water supplies in the Tennessee's river systems are dependent upon rainfall and wise management by Federal, State, and local government agencies. Streamflow data, as contained in this report, is an integral part of the wise management of the water resources of the State. Rainfall across Tennessee was significantly above average during the calendar year 2002. Memphis recorded about 20 inches above the long-term average rainfall of 53 inches, both Nashville and Knoxville were about 10 inches above the long-term normal of 48 inches. A comparison of annual mean discharges for the 2002 water year with means for the period-of-record for unregulated streams in Tennessee indicates that streamflow recovered during the 2002 water year and was higher than the 2001 water year across the State. Streamflows in the western parts of Tennessee were well above long-term averages and almost twice the long-term average in many streams. In the central portions of Tennessee, streams and rivers were flowing at average to slightly above average rates during water year 2002. Only the streams and rivers in eastern Tennessee, particularly those flowing out of Virginia and North Carolina, were still below the long-term average flow rates. Although, recovering significantly, the dry conditions that existed for several years in this area will require continued robust rainfall conditions to return to normal. The western portion of Tennessee was affected by several significant flood-producing storms during the 2002 water year. A general rainstorm occurring during late November and early December 2001 produced flooding that was generally a 25-year event. However, several streams had flooding that approached the 50-year recurrence interval. The National Weather Service in Memphis recorded a single-day total of over 6 inches in late November and over 70 inches of rainfall for the calendar year 2002, the third wettest year in over 100 years of record. The central portion of Tennessee was struck by unusually heavy flooding January 23-25, 2002. The storm that produced the heavy flooding was a general rainstorm with an extremely intense leading edge that passed through middle Tennessee in the early morning hours of January 23, 2002. The storm dropped over 7 inches of rainfall and produced heavy flash flooding and generalized flooding on many rivers and streams throughout the area. Recurrence intervals for this flood ranged from about 10 to 25 years, with a select few streams approaching the 50-year event. A few areas of middle Tennessee and most of the upper eastern parts of the State experienced a significant flood during the period from March 17-19, 2002. The storm producing this flood was a general
rainstorm with intense embedded cells that produced in excess of 6 inches of rain through many watersheds in the area. In middle Tennessee, Jones Creek in Dickson County recorded a 50-year flood. In east Tennessee, many streams in the Clinch River and Holston River basins were out of their banks and recorded 10- to 20-year flood events. The Clinch River recorded a flood in excess of the 30-year recurrence interval. Most of the runoff in the Clinch River came from Virginia which received heavier rainfall amounts than Tennessee during this storm. #### **Ground Water** Ground-water levels at key aquifers throughout Tennessee were affected by rainfall during the 2002 water year. Ground-water levels are recorded continuously at a series of observation wells across the State (fig. 1). Water levels at well Hm:O-15 (Hamilton County) are representative of conditions in Middle and East Tennessee. Water levels were near normal during the last 8 months of the year. Wells in Hamilton County (Hm:O-15), Lauderdale County (Ld:F-4), and Shelby County (Sh:P-99) show water levels recovering with increase rain during 2002. Water levels recorded from wells throughout Middle and East Tennessee generally respond faster with larger fluctuations than wells drilled into the sand and gravel aquifers of West Tennessee. Observation wells in Shelby County show that ground water levels are strongly affected by ground-water withdrawals by the City of Memphis and surrounding communities. At well Sh:Q-1 (fig. 2), near downtown Memphis, water levels declined steadily since 1972, although a slower rate of decline began in 1988. The decline in ground-water levels in the Memphis area are not indicative of a reduction in the available ground-water supplies, but the response of the aquifer to additional withdrawals. Hydrographs showing lowest monthly water levels for each of the continuous recording observation wells are included in the body of this report. # Water Quality Water-quality data were collected at 8 surface-water sites and 28 ground-water sites during the 2002 water year. Many of these sites were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Other water-quality activities included: - o Operation of four continuous monitors to measure temperature, dissolved oxygen, pH, and specific conductance in the Cumberland River Basin in support of the U.S. Army Corps of Engineers, Nashville District operations. - o Operation of a continuous monitor to measure temperature, dissolved oxygen, pH, and specific conductance in the West Fork Stones River in support of a water-resources program in cooperation with the City of Murfreesboro, Tennessee. - o Operation of a continuous monitor to measure temperature and dissolved oxygen in the Duck River in cooperation with the Duck River Development Agency. - o Operation of a two continuous monitors to measure temperature, dissolved oxygen, pH, and specific conductance in the Cumberland River at Nashville in cooperation with the Davidson County Metropolitan area, Tennessee. - o Quarterly samples at three sites for the determination of water quality in Carter's Creek in Maury County, Tennessee. Data collected for several NAWQA sites identified low-level concentrations of pesticides in surface water and shallow ground water. **Figure 1.** Ground-water levels for the 2002 water year compared to the maximum, minimum, and median water levels for the period of record. Figure 2. Hydrograph of Shelby County showing long-term decline in the water-level. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Bench-Mark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network ((NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/. Data from the network, as well as information about individual sites, are available through the World Wide Web at: http://nadp.sws.uiuc.edu/ The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_html <u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface water. In addition to the surface water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. #### **EXPLANATION OF RECORDS** The surface-water and ground-water records published in this report are for the 2002 water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 4 through 7. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data
published in this report were collected, analyzed, computed, and arranged for presentation. #### Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the USGS to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for surface-water stations and the "latitude-longitude" system is used for wells. #### Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete number for each station such as 03540500...., which appears just to the left of the station name, includes the 2-digit part number "03" plus the multi-digit downstream order number "540500...." This downstream numbering system is used in most cases; however, in some cases latitude and longitude numbers are assigned to hydrologic stations and partial-record stations as a means of identification (See Numbering System for Wells). # Numbering system for wells Downstream order station numbers are not assigned to wells. The well numbering system of the USGS is based on the grid system of latitude and longitude. The system provides the geographic location of the well and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid. Figure 3.--System for numbering wells (latitude and longitude). # Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. #### **Data Collection and Computation** The data obtained at a complete-record gaging station on a stream consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the USGS. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations (TWRI's), Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed from gage heights and rating tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes of the personnel making the measurements are used in applying the gage heights to the rating tables. The shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and comparable records of discharge for other stations in the same or nearby basins. At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment. For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### Data Presentation Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs
and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileage is that determined and used by the USGS, Tennessee Valley Authority, U.S. Army Corps of Engineers, or other agencies using methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports. GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see "Definition of terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent times. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents. # Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. #### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum line (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS _______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. # Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar water year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic.
Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. When the designated period is not the same as the station period of record published in the manuscript, values and dates of occurrence for daily and instantaneous extremes outside the designated period will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnote. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) MAXIMUM PEAK FLOW.--The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript. MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or for the designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF (AC-FT).--Indicates the depth, in acre-feet, to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it. ANNUAL RUNOFF (CFSM).--Indicates the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area for the year. ANNUAL RUNOFF (INCHES).--Indicates the depth to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it. 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period. 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period. 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. # Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures to more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Data Available Records of discharge, not published by the USGS, are collected in Tennessee at several sites by the U.S. Army Corps of Engineers and Tennessee Valley Authority. The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of these sites as well as an index of records of discharge collected by other agencies but not published by the USGS. Information on records at specific sites can be obtained from that office upon request. Information used in the preparation of the records in this publication, such as discharge-measurements notes, gage-height records, temperature measurements, and rating tables are on file in the Tennessee District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. # Records of Surface-Water Quality Records of surface-water quality ordinarily are collected at or near stream-gaging stations. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. # Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ### On-Site Measurements and Sample Collection In obtaining water-quality
data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in the publications on "Techniques of Water-Resources Investigations," Book 1, Chapter D2; Book 3, Chapter A1, A3, and A4; and Book 9, Chapters A1-A9." These references are listed in the PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (NASQAN) (see definitions) are obtained from at least several verticals. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Present data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the USGS will begin using new trace-element protocols in the near future. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the USGS District Office whose address is given on the back of the title page of this report. # Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, maximum, minimum, and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office and are also published in this report. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar water discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. ### Laboratory Measurements Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the USGS laboratories in Arvada, Colo. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards. #### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-base National data system, NWISWeb [http://water.usgs/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of the U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis. The surface-water-quality records for partial-record stations and
miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|--| | E | Estimated value | | > | Actual value is known to be greater than the value shown | | < | Actual value is known to be less than the value shown | | K | Results based on colony count outside the acceptance range (non-ideal colon count) | | L | Biological organisms count less than 0.5 percent (organisms may be observed rather than counted) | | D | Biological organism count equal to or greater than 15 percent (dominant) | | & | Biological organism estimated as dominant | | V | Analyte was detected in both the environmental sample and the associated blanks. | # Dissolved Trace-Element Concentrations *NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level, Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. # Water Quality-Control Data Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples that may be collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. # Blank Samples Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analyses of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collect in this district are: Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection. Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office). Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank - a blank solution that is treated with the sampler preservatives used for and environmental sample. # Reference Samples Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. ### Replicate Samples Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. ### Spike Samples Spike samples are samples to which known quantities of a solution with one or more well -established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. #### Change in National Trends Network Procedures *NOTE.--Samples handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7495 (Telephone: 217-333-7873). # Records of Ground-Water Levels Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers. # Data Collection and Computation Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability. Tables of water-level data are presented by counties arranged in alphabetical order. Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom). Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit. #### **Data Presentation** Each well record consists of three parts, the station description, the data table of water levels observed during the current water year, and a graph of the water levels for the current water year or other selected period. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings of the well description. LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name. AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well. WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction. INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement. DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft
above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the USGS and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the USGS, may be noted. EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph for a selected period of record follows each water-level table. # Records of Ground-Water Quality Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. #### **Data Collection and Computation** The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years. Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings. #### Data Presentation The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. # **EXPLANATION OF PRECIPITATION-QUALITY RECORDS** ### Collection of the Data The precipitation-quality records in this report are for one site operated by the USGS in the National Trends Network. Field measurements of pH and specific conductance of weekly composite precipitation samples and daily precipitation quantity are made. Other chemical analyses for all National Trends Network sites are performed by the Central Analytical Laboratory of the Illinois Water Survey. A numerical agency code (17003) has been assigned to the Illinois Water-Survey for data storage purposes. #### ACCESS TO WATSTORE DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed at # http://water.usgs.gov Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page) # **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover. - Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). - **Acre-foot** (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") - Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. - Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") - **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. - Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. - Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) - **Aroclor** is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine - atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. - Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") - **Ash mass** is the mass or amount of
residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass") - **Aspect** is the direction toward which a slope faces with respect to the compass. - **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. - **Bankfull stage**, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals. - **Base discharge** (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") - **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. - **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. **Bedload discharge** (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Bottom material (See "Bed material") **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159... From cell volume, total algal biomass expressed as biovolume $(\mu m^3/mL)$ is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cfs-day (See "Cubic foot per second-day") **Channel bars**, as used in this report, are the lowest prominent geomorphic features higher than the channel bed. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stagedischarge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. **Cubic foot per second** (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acrefeet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. **Datum** is a surface or point relative to which measurements of height and/or horizontal position are
reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. **Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium*, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment. **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fecal streptococcal bacteria** are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. **Gage height** (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used
interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. **Geomorphic channel units**, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. **Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site*: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N}$$, where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") **Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") **Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current qualitycontrol data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.] **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_o e^{-\lambda L} ,$$ where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o}.$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.noa.gov/tideglos.html **Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") **Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period. Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. **Method detection limit** (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. **Micrograms per gram** (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. **Micrograms per kilogram** (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One
microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. **Miscellaneous site**, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or waterquality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to pro- vide better areal coverage for defining hydrologic and waterquality conditions over a broad area in a river basin. **Most probable number** (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). **Organic mass** or **volatile mass** of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). **Particle-size classification**, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: ClassificationSize (mm)Method of analysis | Clay | >0.00024 - 0.004 | Sedimentation | |---------|------------------|---------------------| | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. **Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide
represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. **Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") **Primary productivity (oxygen method)** is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. **Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") **Recurrence interval**, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost twothirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-daymean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. **Return period** (See "Recurrence interval") **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. **Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation. **Sensible heat flux** (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. **Seven-day, 10-year low flow** $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") **Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. **Soil heat flux** (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. **Soil-water content** is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. **Specific electrical conductance (conductivity)** is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of
the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. **Substrate** is the physical surface upon which an organism lives. **Substrate embeddedness class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent **Surface area of a lake** is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. **Suspended, recoverable** is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Synoptic studies are short-term investigations of specific waterquality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical waterquality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa (Species) richness** is the number of species (taxa) present in a defined area or sampling unit. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: *Hexagenia* Species: Hexagenia limbata **Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonsporeforming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. **Total in bottom material** is the amount of a given constituent in a representative sample of bottom
material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. **Ultraviolet (UV) absorbance (absorption)** at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens. **Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. **Water-table aquifer** is an unconfined aquifer within which the water table is found. **Water year** in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A dischargeweighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") # TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. # **Book 1. Collection of Water Data by Direct Measurement** # Section D. Water Quality - 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p. - 1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. # **Book 2. Collection of Environmental Data** ### Section D. Surface Geophysical Methods - 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 p. # Section E. Subsurface Geophysical Methods - 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p. - 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI book 2, chap. E2. 1990. 150 p. # Section F. Drilling and Sampling Methods 2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI
book 2, chap. F1. 1989. 97 p. #### **Book 3. Applications of Hydraulics** # Section A. Surface-Water Techniques - 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI book 3, chap. A3. 1968. 60 p. - 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI book 3, chap. A5. 1967. 29 p. - 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI book 3, chap. A6. 1968. 13 p. - 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A7. 1968. 28 p. - 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A8. 1969. 65 p. - 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p. - 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p. - 3–A11. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p. # TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY--Continued - 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 p. - 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI book 3, chap. A14. 1983. 46 p. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI book 3, chap. A15. 1984. 48 p. - 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI book 3, chap. A16. 1985. 52 p. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p. - 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p. - 3–A20. *Simulation of soluble waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p. # Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p. - 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI book 3, chap. B3. 1980. 106 p. - 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI book 3, chap. B4. 1990. 232 p. - 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p. - 3–B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p. - 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3–B7. *Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow,* by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. # Section C. Sedimentation and Erosion Techniques - 3–C1. Fluvial sediment concepts, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p. - 3-C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS-TWRI book 3, chap. C2. 1999. 89 p. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p. # **Book 4. Hydrologic Analysis and Interpretation** #### Section A. Statistical Analysis - 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p. - 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.) # Section B. Surface Water - 4–B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p. - 4–B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 p. - 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. # Section D. Interrelated Phases of the Hydrologic Cycle 4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. # **Book 5. Laboratory Analysis** #### Section A. Water Analysis - 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p. - 5–A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p. # TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY--Continued - 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p. - 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p. - 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p. - 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. #### Section C. Sediment Analysis 5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p. #### **Book 6. Modeling Techniques** #### Section A. Ground Water - 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p. - 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p. - 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p. - 6–A7. *User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow*, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. ### **Book 7. Automated Data Processing and Computations** ### Section C. Computer Programs - 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p. - 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p. ### **Book 8. Instrumentation** # Section A. Instruments for Measurement of Water Level - 8–A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI book 8, chap. A2. 1983. 57 p. # Section B. Instruments for Measurement of Discharge 8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p. # Book 9. Handbooks for Water-Resources Investigations # Section A. National
Field Manual for the Collection of Water-Quality Data - 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p. - 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p. # TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY--Continued - 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p. - 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p. - 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. | Map
number | Station number and name | Page | Map
number | Station number and name | Page | |---------------|--|--------------------|----------------|--|--------------------| | 1 03408500 | NEW RIVER AT NEW RIVER, TN | 42-43 | 47 03539600 D | ADDY'S CREEK NEAR HEBBERTSBURG | 196-197 | | 2 03409500 | CLEAR FORK NEAR ROBBINS, TN | 44-45 | 48 03539778 C | LEAR CREEK AT LILLY BRIDGE NEAR LANCING | 198-199 | | 3 03410210 | SOUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD | 46-49 | 49 03539800 O | BED RIVER NEAR LANCING, TN | 202-203 | | 4 03414500 | EAST FORK OBEY RIVER NEAR JAMESTOWN | 50-51 | 50 03540500 E | MORY RIVER AT OAKDALE | 204-205 | | 5 03415000 | WEST FORK OBEY RIVER NEAR ALPINE | 52-53 | 51 03566000 H | IWASSEE RIVER AT CHARLESTON | 206-207 | | | ROARING RIVER ABOVER GAINESBORO | 60-61 | 52 035661285 N | ORTH MOUSE CR NR ROCKY MTN. HOLLOW NR ATHENS | 208-209 | | | COLLINS RIVER NEAR MCMINNVILLE | 68-69 | | ENNESSEE RIVER AT CHATTANOOGA | 210-211 | | | SMITH FORK AT TEMPERANCE HALL | 70-71 | | EQUATCHIE RIVER NEAR WHITWELL | 212-213 | | | CUMBERLAND RIVER AT OLD HICKORY DAM | 72-73 | | LK RIVER NEAR PELHAM | 214-215 | | | MANSKER CREEK ABOVE GOODLETTSVILLE | 82-83 | | PRING CREEK OFF SPRING CREEK RD AT AEDC | 216-217 | | | DRY CREEK NEAR EDENWOLD | 84-85 | | ICHLAND CREEK AT HWY 64 NEAR PULASKI | 218-219 | | | EAST FORK RIVER NEAR LASCASSAS | 86-87 | | HOAL CREEK AT IRON CITY | 220-221 | | | WEST FORK STONES RIVER AT MURFREESBORO | 88-89 | | | 222-223 | | | STONERS CREEK NEAR HERMITAGE | 96-97 | | ENNESSEE RIVER AT SAVANNAH | | | | MILL CREEK NEAR NOLENSVILLE | 98-99 | | ITTLE DUCK RIVER SOUTHEAST OF MANCHESTER | 224 | | | MILL CREEK AT THOMPSON LANE NEAR WOODBINE | 100-101 | | RUMPTON CREEK AT RUTLEDGE FALLS | 225 | | | BROWNS CR AT STATE FAIRGROUND AT NASHVILLE | 108-109 | | ARRISON FORK ABOVE L&N RAILROAD AT WARTRACE | 226-227 | | | 5 CUMBERLAND RIVER AT WOODLAND ST AT NASHVILLE WHITES CREEK NEAD BODDEAUX | 110-111 | | ARTRACE CREEK BELOW COUNTY ROAD AT WARTRACE | 228-229 | | | WHITES CREEK NEAR BORDEAUX
RICHLAND CREEK AT CHARLOTTE AVE AT NASHVILLE | 118-119
120-121 | | UCK RIVER AT SHELBYVILLE | 230 | | | HARPETH RIVER AT FRANKLIN | 120-121 | | UCK RIVER NEAR SHELBYVILLE | 236-237 | | | 1 HARPETH RIVER TRIB AT MACK HATCHER PKWY. | 124.126 | | ORTH FORK CREEK NEAR POPLINS CROSSROADS | 238-239 | | | SOUTH PRONG SPENCER CREEK NEAR FRANKLIN | 128-129 | | UCK RIVER AT COLUMBIA | 240-241 | | | SPENCER CREEK NEAR FRANKLIN | 130-131 | 68 03600088 C | ARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK | 246-247 | | | HARPETH RIVER BELOW FRANKLIN | 132-133 | 69 03601990 D | UCK RIVER AT HWY 100 AT CENTERVILLE | 250-251 | | | HARPETH RIVER AT BELLEVUE | 134-135 | 70 03602219 P | NEY RIVER AT CEDAR HILL | 252 | | | HARPETH RIVER NEAR KINGSTON SPRINGS | 136-137 | 71 03602500 P | NEY RIVER AT VERNON | 254-255 | | | RED RIVER BELOW HWY 161 AT BARREN PLAINS | 144-145 | 72 03604000 B | UFFALO RIVER NEAR FLATWOODS | 256-257 | | 29 03435970 | MILLERS CREEK AT TURNERSVILLE | 146-147 | 73 03605078 C | YPRESS CREEK AT CAMDEN, TN | 258 | | 30 03436100 | RED RIVER AT PORT ROYAL | 148-149 | 74 036065000 E | SIG SANDY RIVER AT BRUCETON | 260-261 | | 31 03436690 | YELLOW CREEK AT ELLIS MILLS | 150-151 | 75 07024305 B | EAVER CREEK AT HWY 22 BYPASS NEAR HUNTINGDON | 270-271 | | 32 03455000 | FRENCH BROAD RIVER NEAR NEWPORT | 156-157 | 76 070245000 S | OUTH FORK OBION RIVER NEAR GREENFIELD | 272-273 | | 33 03461500 | PIGEON RIVER AT NEWPORT | 158-159 | 77 07025400 N | IORTH FORK OBION RIVER NEAR MARTIN | 274-275 | | 34 03465500 | NOLICHUCKY RIVER AT EMBREEVILLE | 160-161 | 78 07026040 O | BION RIVER AT US HWY 51 NEAR OBION | 276-277 | | 35 03466208 | BIG LIMESTONE CREEK NEAR LIMESTONE | 162-163 | 79 07027000 R | EELFOOT LAKE NEAR TIPTONVILLE | 278-279 | | 36 03467609 | NOLICHUCKY RIVER NEAR LOWLAND | 168-169 | | OUTH FOR FORKED DEER RIVER NEAR OWL CITY | 280-281 | | | LITTLE PIGEON RIVER ABOVE SEVIERVILLE | 174-175 | | IIDDLE FORK FORKED DEER RIVER NEAR FAIRVIEW | 282-283 | | | BIG CREEK NEAR ROGERSVILLE | 176-177 | | ATCHIE RIVER AT BOLIVAR | 284-285 | | | LITTLE RIVER ABOVE TOWNSEND | 178-179 | | OOSAHATCHIE RIVER NEAR ARLINGTON | 286-287 | | | LITTLE RIVER NEAR MARYVILLE | 180-181 | | OLF RIVER AT LAGRANGE | 288-289 | | | LITTLE RIVER NEAR ALCOA | 182-183 | | OLF RIVER AT LAGRANGE OLF RIVER AT ROSSVILLE | 292-293 | | | TELLICO RIVER AT TELLICO PLAINS | 184-187 | | OLF RIVER AT ROSSVILLE OLF RIVER AT GERMANTOWN | 292-293
294-295 | | | CLINCH RIVER ABOVE TAZEWELL | 188-189 | | LETCHER CREEK AT SYCAMORE VIEW | | | | POWELL RIVER NEAR ARTHUR | 190-191 | | | 296-303 | | | BEAVER CREEK AT SOLWAY | 192-193 | | ONCONNALIC PREFERENCE AREA DE CERMANITOWN | 308-309 | | 46 03538235 | EAST FORK POPLAR CR AT BEAR CR RD AT OAK RIDGE | 194-195 | 89 U/U32200 N | ONCONNAH CREEK NEAR GERMANTOWN | 310-311 | Figure 4. Location of streamflow-gaging stations in Tennessee. | number S | tation number and name | Page | r | number | Station number and name | Page | |-------------|--|------------|----------|----------|--|------------| | | | | | | | | | 1 02400000 | WHITE OAK ODEEK NEAD CHADDIOUT | 212 | 50 | 02465790 | CLEAD FORK NEAD FAIDVIEW | 210 | | | WHITE OAK CREEK NEAR SUNBRIGHT
WOLF RIVER NEAR BYRDSTOWN | 312
312 | 51 | | CLEAR FORK NEAR FAIRVIEW 0 LICK CREEK NEAR ALBANY | 319
319 | | | DOE CREEK AT GAINESBORO | 312 | | | 0 BENT CREEK AT TAYLOR GAP | 319 | | | CANE CREEK NEAR SPENCER | 312 | | | 2 CARTER BRANCH NEAR WHITE PINE | 319 | | | CHARLES CREEK NEAR MCMINNVILLE | 313 | 55
54 | | CARTER BRANCH NEAR WHITE PINE CEDAR CREEK NEAR VALLEY HOME | 319 | | | | | | | | 320 | | | MULHERRIN CREEK NEAR GORDONSVILLE | 313 | | | 8 SINKING FORK AT WHITE PINE | 320 | | | PEYTON CREEK NEAR MONOVILLE
SECOND CREEK NEAR WALNUT GROVE | 313
313 | | | 5 DUMPLIN CREEK AT MT. HAREB
0 INDIAN CREEK AT CHILDRESS | 320 | | | | 313 | | | 0 INDIAN CREEK AT CHILDRESS
0 REEDY CREEK AT OREBANK | 320 | | | STATION CAMP CREEK AT COTTONTOWN
EAST FORK STONES RIVER AT WOODBURY | 313 | 59 | | 2 FORGEY CREEK AT ZION HILL | 320 | | | BRAWLEYS FORK BELOW BRADYVILLE | 313 | 60 | | 0 ROBERTSON CREEK NEAR PERSIA | 320 | | | 4 REED CREEK NEAR BRADYVILLE | | | | | 320 | | | | 313 | 61 | | 4 DRY LAND CREEK TRIB NEAR NEW MARKET
0 FLAT CREEK AT LUTTRELL | 321 | | | EAST FORK STONES RIVER NEAR LASCASSAS | 314
314 | 62
63 | | | 321 | | | BUSHMANN CREEK AT PITTS LANE FORD NEAR COMPTON | | | | 0 LITTLE ELLEJOY CREEK AT PROSPECT | | | | LYTLE CREEK SANBYRNE DRIVE AT MURFREESBORO | 314 | 64 | | 05 STOKES CREEK AT PICKENS GAP RD NR HIGH BLUFF | 321 | | | UNNAMED SINK NEAR ALMAVILLE | 314 | | | 5 TEN MILE CREEK AT ROBINSON ROAD NEAR KNOXVILLE | 321
321 | | | WEST FORK STONES RIVER NEAR SMYRNA | 314 | 66 | | 0 BAKER CREEK TRIB NEAR BINFIELD | | | | UNNAMED SINK ON I-840 AT LEANNA | 314 | | | 0 BIG WAR CREEK AT LUTHER
0 CROOKED CREEK NEAR MAYNARDVILLE | 321 | | | UNNAMED SINK AT LEANNA MCCROPY CREEK AT BONWOOD DRIVE AT DONELSON | 315 | | | | 321
321 | | | MCCRORY CREEK AT IRONWOOD DRIVE AT DONELSON | 315 | | | 0 COAL CREEK AT LAKE CITY | | | | MILL CREEK AT NOLENSVILLE | 315 | 70 | | 0 WILLOW FORK NEAR HALLS CROSSROAD | 321 | | | MILL CREEK NEAR ANTIOCH | 315 | | | 30 BEAVER CREEK NR WILLOW FORK AT HALLS CROSSROAD | 322 | | | SEVENMILE CREEK AT BLACKMAN ROAD | 315 | | | 5 BEAVER CREEK AT BRICKYARD ROAD NEAR POWELL | 322 | | | MILL CREEK TRIB AT GLENROSE AVENUE AT WOODBINE | 315 | | | 7 CONNER CREEK AT STEELE ROAD NEAR SOLWAY | 322
322 | | | WEST FK BROWNS CR @ GEN. BATES DR @ NASHVILLE | 316 | | | 0 COKER CREEK NEAR IRONSBURG | 322 | | | EAST FORK BROWNS CREEK AT 100 OAKS MALL AT NASHVILLE | 316 | | | 0 WOLFTEVER CREEK NEAR OOLTEWAH | | | | BROWNS CREEK AT FACTORY STREET AT NASHVILLE |
316 | | | 9 NORTH CHICKAMAUGA CR AT GREENS MILL NR HIXSON | 322 | | | PAGES BRANCH AT AVONDALE | 316 | | | 8 STRINGERS BRANCH AT LEAWOOD DRIVE AT RED BANK | 322 | | | EARTHMAN FORK AT WHITES CREEK | 316 | 78 | | 0 LITTLE SEQUATCHIE RIVER AT SEQUATCHIE | 322 | | | EWING CREEK BELOW KNIGHT ROAD NEAR BORDEAUX | 316 | | | 0 STANDIFER BRANCH AT JASPER | 323 | | | SUGARTREE CR @ YMCA ACCESS RD @ GREEN HILLS | 316 | 80 | | 0 BATTLE CREEK NEAR MONTEAGLE | 323 | | | SUGARTREE CR @ ABBOTT MARTIN RD @ GREEN HILLS | 317 | 81 | | 0 RICHLAND CREEK NEAR CORNERSVILLE | 323 | | | SYCAMORE CREEK NEAR ASHLAND CITY | 317 | | | 3 INDIAN CREEK AT HWY 64 NEAR OLIVEHILL | 323 | | | MURFREES FORK ABOVE BURWOOD | 317 | 83 | | 42 OWL CREEK AT LEXINGTON | 323 | | | LITTLE HARPETH RIVER AT GRANNY WHITE PIKE | 317 | 84 | | 0 WARTRACE CREEK ABOVE BELL BUCKLE | 323 | | | JONES CREEK NEAR BURNS | 317 | 85 | | 30 FOUNTAIN CREEK NEAR CULLEOKA | 324 | | | 1 BARTONS CREEK NEAR CUMBERLAND FURNACE | 317 | | | 0 WEST PINEY RIVER NEAR DICKSON | 324 | | | 5 LOUISE CREEK NEAR GREYS CHAPEL | 317 | 87 | | 0 COON CREEK ABOVE CHOP HOLLOW NEAR HOHENWALD | 324 | | | 5 HONEY RUN CREEK NEAR CROSS PLAINS | 318 | 88 | | 0 BLUE CREEK NEAR NEW HOPE | 324 | | | 3 HONEY RUN CREEK BELOW CROSS PLAINS | 318 | 89 | | 5 TRACE CREEK ABOVE DENVER | 324
324 | | | BEAVER DAM CREEK ABOVE SPRINGFIELD | 318 | 90 | | 0 CANE CREEK NEAR STEWART | | | | SULPHUR FORK RED RIVER ABOVE SPRINGFIELD | 318 | 91
92 | | 5 NEIL DITCH NEAR HENRY | 324
324 | | | SPRING CREEK TRIB NEAR CEDAR HILL | 318 | | | 0 LITTLE REEDY CREEK NEAR HUNTINGDON | | | | SULPHUR FORK CREEK ABOVE PORT ROYAL PASSENCED CREEK NEAD SANCO | 318 | 93
94 | | 0 SPRING CREEK NEAR GREENFIELD | 325 | | | PASSENGER CREEK NEAR SANGO | 318 | | | 0 NORTH FORK OBION RIVER NEAR UNION CITY 5 NORTH FORK FORKED DEED BIVED AT TRENTON | 325 | | | CUMMINGS CREEK NEAR DOTSONVILLE
YELLOW CREEK NEAR SHILOH | 318 | 95
06 | | 5 NORTH FORK FORKED DEER RIVER AT TRENTON
0 LEWIS CREEK NEAR DYERSBURG | 325
325 | | | CANEY CREEK NEAR COSBY | 319
319 | 96
97 | | 0 HATCHIE RIVER AT SUNNYHILL | 325
325 | | | CHEROKEE CREEK NEAR EMBREEVILLE | 319 | | | 0 HAICHIE RIVER AI SUNNYHILL
0 CANE CREEK AT RIPLEY | 325
325 | | +7 U34U30U/ | CHEROREE CREEK IVEAR EVIDREE VILLE | 317 | 70 | 0703010 | U CAME CREEK AT RIFLET | 343 | Figure 5. Location of crest-stage stations in Tennessee. | Map | | Map | | |--|--|---|--| | number Station number and name | Page | number Station number and name | Page | | 1 03417500 CUMBERLAND RIVER AT CELINA 2 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM 3 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM 4 03428200 WEST FORK STONES RIVER AT MURFREESBORO 5 03431091 CUMBERLAND RIVER AT OMAHUNDRO WATER PLANT 6 03431514 CUMBERLAND RIVER AT OMAHUNDRO WATER PLANT 7 03435000 CUMBERLAND RIVER NEAR BORDEAUX 7 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM 8 03466208 BIG LIMESTONE CREEK NR LIMESTONE 9 03467609 NOLICHUCKY RIVER NR LOWLAND 10 03597860 DUCK RIVER AT SHELBYVILLE 11 03600085 CARTERS CREEK AT PETTY LANE NR CARTERS CREEK 12 03600086 CARTERS CREEK TRIB NR CARTERS CREEK 13 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK | 54-59
62-67
74-80
90-95
102-107
112-117
138-143
164-166
170-172
231-234
242-243
244-245 | number Station number and name 16 353839089493500 LD:F 17 350034086422800 LI:G-1 18 353922083345600 SV:E-2 19 350857089591401 SH:P-99 20 351113089583101 SH:P-151 21 351102089582701 SH:P-152 22 350900089482300 SH:Q-1 23 352042089523401 SH:U-100 24 352042089523402 SH:U-101 25 352042089523403 SH:U-102 26 351917089515101 SH:V-211 27 351916089515101 SH:V-212 | 372
373
374
375
376
377
378
379
380
381
382
383 | | 13 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK
14 350750085045802 HM:O-19 | 371 | 27 351916089515101 SH:V-212
28 351917089515102 SH:V-222 | 383
384 | | 15 351428085003600 HM:O-15 | 370 | | | Figure 6. Location of water-quality stations and active observation wells in Tennessee. #### 03408500 NEW RIVER AT NEW RIVER, TN LOCATION.--Lat 36°23'08", long 84°33'17", Scott County, Hydrologic Unit 05130104, on left bank at town of New River, 700 ft downstream from Phillips Creek, 1,000 ft downstream from bridge on U.S. Highway 27, 1.7 mi downstream from Brimstone Creek, and at mile 8.6. DRAINAGE AREA. -- 382 mi². PERIOD OF RECORD.--August 1934 to September 1991, October 1991 to September 1998, as stage only. October 1998 to current year. Gage-height records collected in this vicinity 1908-52 are contained in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 1436: Drainage area. WDR TN-73: 1939(M), 1951(M), 1970(M). GAGE.--Water-stage recorder. Datum of gage is 1,092.67 ft above NGVD of 1929. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $63,700 \text{ ft}^3/\text{s}$, May 27, 1973, gage height, 37.91 ft, from high water mark in gage well, from rating curve extended above $27,000 \text{ ft}^3/\text{s}$ on basis of slope-area and contracted-opening measurements of peak flow; no flow part of each day Aug. 12-14, 1944. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 23, 1929, reached a stage of 41.2 ft, discharge, 74,700 ft³/s, estimated, based on field survey at old U.S. Weather Bureau gage, 1,200 ft upstream at datum 3.41 ft higher. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $12,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 24 | 0130 | 25,900 | 22.70 | Mar 17 | 1730 | 18,100 | 18.50 | | Jan 25 | 0500 | 19,800 | 19.45 | Mar 18 | 1430 | *29,300 | *24.37 | Minimum discharge, 0.50 ft³/s, Sept. 13. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE
LUES | R 2001 TO | SEPTEMBE | ER 2002 | | | |----------------------------------|----------------------------------|---------------------------------|--|---|---------------------------------|---|---------------------------------|--|-----------------------------|----------------------------------|-----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 26 | 27 | 366 | 205 | 729 | 251 | 6150 | 1040 | 102 | 60 | 27 | 7.4 | | 2 | 23 | 24 | 263 | 182 | 930 | 247 | 2330 | 1650 | 89 | 46 | 41 | 5.9 | | 3 | 21 | 23 | 194 | 178 | 819 | 258 | 1490 | 2030 | 79 | 37 | 29 | 5.9 | | 4 | 19 | 23 | 151 | 158 | 780 | 262 | 1080 | 1520 | 69 | 26 | 21 | 5.9 | | 5 | 18 | 23 | 125 | 143 | 650 | 233 | 865 | 1180 | 68 | 21 | 16 | 6.0 | | 6 | 30 | 22 | 108 | 156 | 570 | 214 | 722 | 900 | 93 | 17 | 12 | 5.5 | | 7 | 26 | 21 | 103 | 174 | 790 | 204 | 610 | 738 | 186 | 16 | 9.6 | 4.2 | | 8 | 39 | 21 | 195 | 145 | 1230 | 198 | 537 | 654 | 145 | 14 | 7.6 | 3.2 | | 9 | 45 | 20 | 656 | 140 | 1180 | 203 | 511 | 525 | 94 | 12 | 5.7 | 2.4 | | 10 | 31 | 20 | 600 | 159 | 1020 | 273 | 595 | 461 | 73 | 9.9 | 4.8 | 1.8 | | 11 | 21 | 20 | 893 | 417 | 910 | 278 | 496 | 420 | 58 | 42 | 4.2 | 1.2 | | 12 | 16 | 19 | 839 | 575 | 759 | 278 | 450 | 347 | 46 | 78 | 3.5 | 0.82 | | 13 | 15 | 19 | 717 | 515 | 667 | 330 | 442 | 437 | 41 | 70 | 2.8 | 0.62 | | 14 | 19 | 19 | 2840 | 433 | 574 | 349 | 432 | 810 | 49 | 522 | 2.4 | 1.8 | | 15 | 27 | 18 | 2160 | 377 | 507 | 343 | 410 | 579 | 62 | 363 | 2.4 | 4.2 | | 16
17
18
19
20 | 73
61
43
35
27 | 18
18
18
18 | 1090
763
932
890
698 | 322
283
274
2740
4510 | 461
421
372
335
339 | 530
10400
21900
5360
2420 | 377
346
368
352
317 | 447
364
480
419
314 | 46
38
33
28
25 | 183
104
71
55
49 | 7.0
10
4.4
4.5 | 4.3
3.9
4.3
18 | | 21 | 25 | 18 | 522 | 1920 | 419 | 1780 | 290 | 270 | 22 | 43 | 17 | 104 | | 22 | 23 | 18 | 417 | 1170 | 366 | 1300 | 270 | 232 | 19 | 37 | 17 | 131 | | 23 | 22 | 18 | 408 | 8350 | 334 | 1040 | 245 | 203 | 17 | 35 | 18 | 278 | | 24 | 19 | 20 | 957 | 18300 | 314 | 877 | 225 | 178 | 16 | 70 | 13 | 157 | | 25 | 24 | 581 | 830 | 12700 | 299 | 743 | 690 | 157 | 18 | 68 | 9.9 | 82 | | 26
27
28
29
30
31 |
25
25
40
40
35
31 | 501
250
169
124
136 | 650
522
427
362
302
249 | 3220
1800
1270
993
807
675 | 299
307
276

 | 746
947
801
713
654
3210 | 829
645
558
510
402 | 139
157
186
243
161
121 | 38
36
76
102
93 | 41
30
25
22
20
19 | 12
35
27
17
12
9.2 | 102
616
846
361
197 | | TOTAL | 924 | 2244 | 20229 | 63291 | 16657 | 57342 | 23544 | 17362 | 1861 | 2205.9 | 413.0 | 2977.34 | | MEAN | 29.81 | 74.80 | 652.5 | 2042 | 594.9 | 1850 | 784.8 | 560.1 | 62.03 | 71.16 | 13.32 | 99.24 | | MAX | 73 | 581 | 2840 | 18300 | 1230 | 21900 | 6150 | 2030 | 186 | 522 | 41 | 846 | | MIN | 15 | 18 | 103 | 140 | 276 | 198 | 225 | 121 | 16 | 9.9 | 2.4 | 0.62 | | CFSM | 0.08 | 0.20 | 1.71 | 5.34 | 1.56 | 4.84 | 2.05 | 1.47 | 0.16 | 0.19 | 0.03 | 0.26 | | IN. | 0.09 | 0.22 | 1.97 | 6.16 | 1.62 | 5.58 | 2.29 | 1.69 | 0.18 | 0.21 | 0.04 | 0.29 | # 03408500 NEW RIVER AT NEW RIVER, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1934 - 2002, BY WATER YEAR (WY) | MEAN 137.7 491.1
MAX 1035 2683
(WY) 1990 1958
MIN 0.64 2.35
(WY) 1953 1940 | 3359 4206 3
1991 1937 1
43.9 42.1 | 1458 1539 1074 6
3891 4371 2564
1939 1975 1977
112 530 216
1941 1985 1942 | 671.4 345.5
3095 2850
1973 1989
60.6 4.54
1936 1936 | 274.6 160.3
1986 1159
1967 1942
3.99 5.71
1944 1936 | 126.8
1235
1989
2.68
1953 | |--|---|---|---|--|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALENDAR | R YEAR FOR 2002 WATI | ER YEAR | WATER YEARS 1934 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 15 0 | 209050.24
572.7 Feb 17 21900 Oct 13 0.62 1.7 29300 24.37 0.50 1.50 20.36 938 158 | Mar 18
Sep 13
Sep 8
Mar 18
Mar 18
Sep 13 | 726.0 1350 55.5 a38000 Dec 23 0.10 Aug 9 0.10 Aug 9 a63700 May 27 b37.91 May 27 c0.00 Aug 12 1.90 25.82 1620 257 | 1944
1944
1973
1973 | a Highest daily mean and instantaneous peak flows from rating curve extended above 27,000 ft³/s on basis of slope-area and contracted opening measurements of peak flow. b Maximum stage from high-water mark in gage well. c Minimum discharge also occurred Aug. 13-15, 1944. #### 03409500 CLEAR FORK NEAR ROBBINS, TN LOCATION.--Lat $36^{\circ}23^{\circ}18^{\circ}$, long $84^{\circ}37^{\circ}49^{\circ}$, Scott County, Hydrologic Unit 05130104, on right bank 300 ft downstream from Burnt Mill Bridge, 3.3 mi northwest of Robbins, and at mile 3.7. DRAINAGE AREA. -- 272 mi². PERIOD OF RECORD.--October 1930 to September 1971, July 1975 to September 1991, October 1991 to September 1998, stage only, October 1998 to current year. Published as Clear Fork River near Robbins, October 1951 to September 1954. REVISED RECORDS.--WSP 1306: 1931(M), 1936-37(M), 1943-44(M). WSP 1436: Drainage area. WSP 1910: 1935(M). GAGE.--Data collection platform. Datum of gage is 1,081.46 ft, Sandy Hook datum. Prior to Aug. 10, 1940, nonrecording gage at site 300 ft upstream at datum 1.00 ft higher. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 23, 1929 reached a stage of 22.1 ft, former site and datum, from information by local residents, and flood of May 27, 1973, reached a stage of 18.92 ft, present site and datum, from floodmark; discharge 35,700 ft³/s, from rating curve extended above 14,000 ft³/s, on basis of slope-area measurement at gage height 18.5 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $6,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|------|-----------------------------------|---------------------|-------|------|-----------------------------------|---------------------| | Jan 24
Mar 18 | 0330 | 17,000
*19.800 | 13.70
*14.62 | Apr 1 | 0000 | 7,940 | 9.76 | Minimum discharge, 3.8 ft³/s, Sept. 13, 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | R 2001 TC | SEPTEMBE | R 2002 | | | |----------------------------------|----------------------------|-------------------------------|--|---|---------------------------------|--|----------------------------------|---------------------------------------|-----------------------------|------------------------------|----------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 13 | 11 | 131 | 125 | 466 | 143 | 5070 | 1020 | 83 | 52 | 66 | 23 | | 2 | 11 | 11 | 129 | 131 | 561 | 143 | 2080 | 1730 | 71 | 43 | 54 | 22 | | 3 | 9.1 | 12 | 101 | 104 | 461 | 154 | 1240 | 1150 | 62 | 33 | 42 | 20 | | 4 | 7.7 | 9.6 | 82 | 102 | 444 | 158 | 860 | 923 | 54 | 27 | 35 | 18 | | 5 | 6.6 | 9.1 | 69 | 89 | 379 | 140 | 660 | 898 | 110 | 23 | 29 | 15 | | 6 | 10 | 9.2 | 60 | 87 | 336 | 130 | 527 | 701 | 489 | 20 | 24 | 13 | | 7 | 10 | 9.2 | 59 | 99 | 509 | 124 | 438 | 559 | 778 | 17 | 19 | 10 | | 8 | 8.0 | 9.1 | 120 | 105 | 977 | 119 | 376 | 1620 | 378 | 15 | 15 | 8.5 | | 9 | 16 | 8.7 | 463 | 90 | 955 | 119 | 339 | 957 | 216 | 15 | 12 | 7.3 | | 10 | 13 | 8.7 | 381 | 90 | 798 | 133 | 325 | 698 | 146 | 18 | 9.7 | 6.5 | | 11 | 9.7 | 8.7 | 417 | 264 | 681 | 137 | 289 | 606 | 109 | 14 | 8.3 | 5.5 | | 12 | 8.9 | 8.5 | 435 | 484 | 541 | 130 | 259 | 488 | 85 | 12 | 7.3 | 4.8 | | 13 | 8.7 | 8.2 | 351 | 397 | 452 | 147 | 249 | 582 | 72 | 21 | 6.6 | 4.0 | | 14 | 8.6 | 8.1 | 1180 | 315 | 374 | 193 | 270 | 1460 | 83 | 33 | 5.8 | 3.9 | | 15 | 8.4 | 7.8 | 1270 | 260 | 321 | 177 | 265 | 873 | 149 | 117 | 5.6 | 4.5 | | 16
17
18
19
20 | 14
24
17
14 | 7.8
7.8
8.0
8.3 | 630
424
417
377
297 | 209
180
171
1580
3340 | 290
260
221
193
199 | 190
9160
15900
5100
2280 | 232
203
192
207
181 | 592
436
530
532
373 | 105
82
69
59
53 | 96
63
51
40
32 | 6.1
13
56
43
37 | 4.5
4.3
5.0
5.9 | | 21 | 13 | 7.9 | 230 | 1510 | 264 | 1960 | 163 | 295 | 46 | 29 | 32 | 110 | | 22 | 12 | 7.8 | 187 | 862 | 230 | 1270 | 151 | 242 | 37 | 33 | 29 | 163 | | 23 | 12 | 8.0 | 217 | 5440 | 195 | 919 | 136 | 203 | 33 | 35 | 24 | 89 | | 24 | 11 | 11 | 600 | 15600 | 181 | 725 | 130 | 173 | 33 | 48 | 30 | 68 | | 25 | 12 | 647 | 502 | 10100 | 170 | 578 | 1080 | 148 | 41 | 169 | 32 | 52 | | 26
27
28
29
30
31 | 12
12
32
21
15 | 487
192
123
91
93 | 370
287
234
194
161
129 | 3010
1510
1000
743
581
470 | 167
173
159
 | 712
1290
902
720
591
2730 | 1210
721
538
507
401 | 128
223
193
142
117
98 | 34
70
85
70
64 | 168
102
73
59
51 | 26
32
43
76
45
30 | 82
652
425
228
139 | | TOTAL | 395.7 | 1846.8 | 10504 | 49048 | 10957 | 47174 | 19299 | 18690 | 3766 | 1560 | 893.4 | 2203.7 | | MEAN | 12.76 | 61.56 | 338.8 | 1582 | 391.3 | 1522 | 643.3 | 602.9 | 125.5 | 50.32 | 28.82 | 73.46 | | MAX | 32 | 647 | 1270 | 15600 | 977 | 15900 | 5070 | 1730 | 778 | 169 | 76 | 652 | | MIN | 6.6 | 7.8 | 59 | 87 | 159 | 119 | 130 | 98 | 33 | 12 | 5.6 | 3.9 | | CFSM | 0.05 | 0.23 | 1.25 | 5.82 | 1.44 | 5.59 | 2.37 | 2.22 | 0.46 | 0.19 | 0.11 | 0.27 | | IN. | 0.05 | 0.25 | 1.44 | 6.71 | 1.50 | 6.45 | 2.64 | 2.56 | 0.52 | 0.21 | 0.12 | 0.30 | # 03409500 CLEAR FORK NEAR ROBBINS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2002, BY WATER YEAR (WY) | MEAN 91.04 287.7
MAX 747 1303
(WY) 1990 1958
MIN 1.84 4.97
(WY) 1954 1954 | 638.2 917.0
2470 3418
1991 1937
28.6 32.4
1964 1981 | 1025
2794
1939
141
1941 | 999.7 720.3
2757 1968
1963 1977
333 152
1969 1942 | 459.9
2043
1984
64.1
1948 | 210.8
1742
1989
8.29
1988 | 159.7
1122
1967
6.40
1944 | 101.7
940
1971
8.07
1987 | 93.74
974
1982
2.92
1953 | |---|--|-------------------------------------|---|---|---------------------------------------|--|--|--------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALENDA | AR YEAR | FOR 2002 | WATER YEAR | | WATER YEARS
| 1931 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 107503.0
294.5
9630
4.0
5.1
1.08
14.70
609
83
8.6 | Feb 17
Sep 18
Sep 14 | 4
19800
14
c3
1
22
883
119 | .7 Mar 18
.9 Sep 14
.4 Sep 12
Mar 18
.64 Mar 18
.8 Sep 13
.68 | | 469.9
864
113
a24800
0.51
a34000
b18.50
d0.20
1.73
23.47
1090
155 | Dec 23
Sep 20
Sep 15
Feb 3
Feb 3
Sep 19 | 1932
1932
1939
1939 | Highest daily mean and instantaneous peak flows from rating curve extended above 14,000 ft³/s on basis of slope-area measurement of peak flow. Maximum stage from floodmarks, site and datum then in use. Also occurred Sept. 14. Also occurred Sept. 20, 21, 1932. #### 03410210 SOUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD, TN LOCATION.--Lat 36°28'38", long 84°40'09", Scott County, Hydrologic Unit 05130104, on left bank at bridge on State Route 297, 1.0 mi above Anderson Branch, 1.3 miles below North White Oak Creek, 10.1 mi southwest of Oneida, and at mi 70.1. DRAINAGE AREA. -- 806 mi². PERIOD OF RECORD.--October 1983 to September 1987. October 1998 to September 1999, May 2001 to current year. Occasional discharge measurements, water years 1961-62, 1979-80, 1991-94. GAGE.--Water-stage recorder. Datum of gage is 862.79 ft Sandy Hook datum. REMARKS.--Records good. No daily discharge Oct. 1, 2000 to May 8, 2001. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $20,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|-------|------|-----------------------------------|---------------------| | Jan 24
Mar 18 | 0430
1400 | 43,400
*51,500 | 27.51
*29.94 | Apr 1 | 0215 | 20,700 | 19.13 | Minimum discharge, 20 ft³/s, Sept. 13. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | e600 | 200 | 258 | 505 | 95 | | 2 | | | | | | | | e1000 | 193 | 209 | 283 | 98 | | 3 | | | | | | | | e500 | 238 | 182 | 244 | 118 | | 4 | | | | | | | | e400 | 285 | 157 | 1480 | 132 | | 5 | | | | | | | | e300 | 258 | 154 | 1010 | 184 | | 3 | | | | | | | | 6300 | 250 | 134 | 1010 | 104 | | 6 | | | | | | | | e400 | 243 | 208 | 558 | 141 | | 7 | | | | | | | | e650 | 315 | 220 | 331 | 116 | | 8 | | | | | | | | e570 | 539 | 192 | 214 | 100 | | 9 | | | | | | | | e520 | 583 | 167 | 197 | 88 | | 10 | | | | | | | | 484 | 430 | 204 | 549 | 78 | | | | | | | | | | | | | | | | 11 | | | | | | | | 427 | 310 | 167 | 542 | 69 | | 12 | | | | | | | | 389 | 245 | 166 | 738 | 60 | | 13 | | | | | | | | 344 | 207 | 141 | 1070 | 53 | | 14 | | | | | | | | 298 | 182 | 122 | 1060 | 50 | | 15 | | | | | | | | 258 | 180 | 105 | 483 | 48 | | 4.6 | | | | | | | | 024 | 005 | 0.5 | 0.7.4 | 4.0 | | 16 | | | | | | | | 231 | 225 | 85 | 274 | 40 | | 17 | | | | | | | | 211 | 205 | 69 | 188 | 35 | | 18 | | | | | | | | 192 | 172 | 58 | 150 | 32 | | 19 | | | | | | | | 176 | 149 | 47 | 128 | 33 | | 20 | | | | | | | | 166 | 133 | 54 | 111 | 59 | | 21 | | | | | | | | 159 | 122 | 57 | 101 | 72 | | 22 | | | | | | | | 172 | 134 | 65 | 93 | 109 | | 23 | | | | | | | | 283 | 234 | 70 | 85 | 99 | | 24 | | | | | | | | 342 | 285 | 80 | 83 | 93 | | 25 | | | | | | | | 269 | 210 | 75 | 90 | 106 | | 23 | | | | | | | | 209 | 210 | 75 | 90 | 100 | | 26 | | | | | | | | 240 | 167 | 73 | 89 | 124 | | 27 | | | | | | | | 214 | 150 | 61 | 88 | 121 | | 28 | | | | | | | | 228 | 235 | 77 | 89 | 101 | | 29 | | | | | | | | 268 | 317 | 1610 | 85 | 85 | | 30 | | | | | | | | 253 | 242 | 3430 | 78 | 73 | | 31 | | | | | | | | 223 | | 1190 | 76 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | 10767 | 7388 | 9753 | 11072 | 2612 | | MEAN | | | | | | | | 347.3 | 246.3 | 314.6 | 357.2 | 87.07 | | MAX | | | | | | | | 1000 | 583 | 3430 | 1480 | 184 | | MIN | | | | | | | | 159 | 122 | 47 | 76 | 32 | | CFSM | | | | | | | | 0.43 | 0.31 | 0.39 | 0.44 | 0.11 | | IN. | | | | | | | | 0.50 | 0.34 | 0.45 | 0.51 | 0.12 | | | | | | | | | | | | | | | e Estimated # 03410210 SOUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 2001, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|--|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--|---------------------------------------|--------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 352.7
870
1986
43.4
1999 | 1324
3506
1987
49.4
1999 | 1635
2921
1984
196
2000 | 1928
4553
1999
602
1986 | 2516
3114
1985
1715
2000 | 2054
3648
1984
1104
1985 | 1784
3690
2000
539
1986 | 1773
5631
1984
347
2001 | 617.7
1630
1999
230
1984 | 517.1
1758
1999
124
2000 | 395.4
1302
1985
61.4
1987 | 129.7
454
1986
25.9
1999 | | SUMMARY STATISTICS | | | FOR 2000 CALENDAR YEAR | | | FOR 2001 WATER YEAR | | | | WATER YEARS | 1984 - | 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM | MEAN T ANNUAL M ANNUAL ME T DAILY ME DAILY ME SEVEN-DAY M PEAK FLO M PEAK STA | EAN
EAN
AN
MINIMUM
OW
AGE | | 319081
1165
27600
21
25 | Apr 4
Sep 21
Sep 16 | | 41592
271.8
3430
32
42 | Jul 30
Sep 18
Sep 13 | | 1186
1744
272
49300
18
20
56100
31.22 | Sep 18
Sep 14
May 7
May 7 | 1999
1984
1984 | | ANNUAL
ANNUAL
10 PERC
50 PERC | PANEOUS LO RUNOFF (C RUNOFF (C RUNOFF (C RUNOFF (C RUNOFF EXCER RUNOFF (C RU | CFSM)
INCHES)
EDS
EDS | | 1.44
14.73
3070
472
49 | | | 0.34
1.92
546
182
67 | | | 17
1.47
19.99
2750
478
49 | Oct 1 | 1998 | 03410210 SOUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|-----------------------------------|----------------------------------|--|--|-----------------------|--|-------------------------------------|--|---------------------------------|--|--------------------------------------|-----------------------------------| | 1 | 63 | 76 | 388 | 327 | 1540 | 428 | 14300 | 2030 | 226 | 231 | 149 | 90 | | 2 | 55 | 72 | 409 | 304 | 2000 | 424 | 5630 | 3970 | 202 | 185 | 142 | 74 | | 3 | 50 | 71 | 286 | 300 | 1740 | 464 | 3680 | 3670 | 182 | 162 | 136 | 66 |
 4 | 46 | 70 | 222 | 278 | 1620 | 481 | 2800 | 3160 | 179 | 142 | 112 | 59 | | 5 | 42 | 66 | 188 | 251 | 1340 | 416 | 2150 | 2690 | 293 | 119 | 93 | 50 | | 6 | 93 | 63 | 168 | 254 | 1120 | 375 | 1750 | 2060 | 1040 | 101 | 77 | 44 | | 7 | 93 | 63 | 162 | 283 | 1570 | 356 | 1410 | 1640 | 1470 | 90 | 64 | 39 | | 8 | 70 | 62 | 386 | 254 | 2830 | 342 | 1170 | 2740 | 695 | 88 | 53 | 36 | | 9 | 68 | 60 | 1630 | 248 | 2820 | 338 | 1050 | 2040 | 429 | 82 | 46 | 33 | | 10 | 81 | 59 | 1360 | 255 | 2420 | 415 | 1110 | 1500 | 288 | 75 | 41 | 29 | | 11 | 67 | 57 | 1540 | 671 | 2130 | 464 | 954 | 1250 | 222 | 78 | 38 | 25 | | 12 | 59 | 56 | 1740 | 1420 | 1760 | 436 | 853 | 1000 | 184 | 98 | 32 | 22 | | 13 | 57 | 55 | 1310 | 1200 | 1470 | 533 | 827 | 1270 | 165 | 168 | 26 | 21 | | 14 | 64 | 54 | 4070 | 937 | 1200 | 644 | 877 | 3050 | 165 | 491 | 23 | 22 | | 15 | 77 | 54 | 4460 | 771 | 1000 | 616 | 846 | 2030 | 213 | 584 | 23 | 27 | | 16 | 78 | 54 | 2480 | 634 | 899 | 661 | 759 | 1360 | 194 | 393 | 88 | 32 | | 17 | 120 | 55 | 1660 | 545 | 804 | 20400 | 678 | 980 | 162 | 246 | 80 | 29 | | 18 | 112 | 54 | 1690 | 516 | 691 | 43300 | 642 | 1260 | 144 | 191 | 86 | 26 | | 19 | 97 | 54 | 1710 | 3780 | 604 | 14100 | 677 | 1270 | 130 | 162 | 101 | 25 | | 20 | 88 | 55 | 1300 | 9700 | 607 | 5990 | 603 | 862 | 124 | 149 | 98 | 27 | | 21 | 81 | 54 | 910 | 4340 | 755 | 4820 | 552 | 697 | 135 | 145 | 80 | 307 | | 22 | 75 | 53 | 709 | 2900 | 704 | 3570 | 520 | 594 | 115 | 142 | 78 | 316 | | 23 | 70 | 54 | 730 | 12400 | 603 | 2820 | 466 | 518 | 104 | 139 | 78 | 329 | | 24 | 66 | 65 | 1860 | 37400 | 557 | 2250 | 433 | 450 | 105 | 276 | 75 | 323 | | 25 | 81 | 1100 | 1860 | 26500 | 525 | 1860 | 1810 | 383 | 113 | 288 | 88 | 200 | | 26
27
28
29
30
31 | 90
78
72
100
91
82 | 1420
518
302
216
215 | 1360
1000
793
656
539
423 | 7910
4170
3160
2420
1940
1560 | 518
539
487
 | 2090
3200
2490
2050
1800
6520 | 2670
1770
1350
1200
941 | 330
368
449
400
337
263 | 126
185
267
294
285 | 344
239
188
160
139
150 | 78
75
227
166
127
107 | 299
1240
1600
724
426 | | TOTAL | 2366 | 5207 | 37999 | 127628 | 34853 | 124653 | 54478 | 44621 | 8436 | 6045 | 2687 | 6540 | | MEAN | 76.32 | 173.6 | 1226 | 4117 | 1245 | 4021 | 1816 | 1439 | 281.2 | 195.0 | 86.68 | 218.0 | | MAX | 120 | 1420 | 4460 | 37400 | 2830 | 43300 | 14300 | 3970 | 1470 | 584 | 227 | 1600 | | MIN | 42 | 53 | 162 | 248 | 487 | 338 | 433 | 263 | 104 | 75 | 23 | 21 | | CFSM | 0.09 | 0.22 | 1.52 | 5.11 | 1.54 | 4.99 | 2.25 | 1.79 | 0.35 | 0.24 | 0.11 | 0.27 | | IN. | 0.11 | 0.24 | 1.75 | 5.89 | 1.61 | 5.75 | 2.51 | 2.06 | 0.39 | 0.28 | 0.12 | 0.30 | ### 03410210 SOUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|--------------------------------------|--------------------------------------|---|-------------------------------------|--------------------------------------|--|---------------------------------------|--| | MEAN 313.2 1160
MAX 870 3506
(WY) 1986 1987
MIN 43.4 49.4
(WY) 1999 1999 | 1576 2241
2921 4553
1984 1999
196 602
2000 1986 | 2336
3114
1985
1245
2002 | 2335
4021
2002
1104
1985 | 1788
3690
2000
539
1986 | 1732
5631
1984
347
2001 | 575.6
1630
1999
230
1984 | 476.8
1758
1999
124
2000 | 361.1
1302
1985
61.4
1987 | 139.5
454
1986
25.9
1999 | | SUMMARY STATISTICS | FOR 2001 CAL | ENDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1984 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 87164
355.
4460
32
42
0.
4.
1000
162
56 | Dec 15
Sep 18
Sep 13 | | 455513
1248
43300
21
25
51500
29.94
20
1.55
21.02
2440
327
55 | Sep 13 | | 1194
1744
272
49300
18
20
56100
31.22
17
1.48
20.13
2710
457
51 | Sep :
Sep :
May
May | 1984
2001
7 1984
18 1999
14 1999
7 1984
7 1984
1 1998 | ### 03414500 EAST FORK OBEY RIVER NEAR JAMESTOWN, TN $\label{location.--Lat 36°24'58", long 85°01'35", Fentress County, Hydrologic Unit 05130105, on right bank at bridge 200 ft upstream from bridge on State Highway 52, 0.5 mi upstream from Poplar Cove Creek, 5.3 mi west of Jamestown, and at mile 12.7. }$ DRAINAGE AREA.--202 mi^2 , includes 6.0 mi^2 without surface drainage. PERIOD OF RECORD.--October 1942 to September 1991. October 1991 to September 1992, miscellaneous water-quality measurements. October 1992 to September 2000, crest-stage partial record station. October 2000 to current year. Prior to February 1943 monthly discharges only, published in WSP 1306. REVISED RECORDS.--WSP 1276: 1944, 1946(M). WSP 1506: Drainage area. GAGE.--Water-stage encoder and satellite telemeter at station. Datum of gage is 680.30 ft, Sandy Hook datum. Feb. 24 to April 7, 1943, nonrecording gage 200 ft upstream at same datum. REMARKS.--Records good. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 44,800 ft³/s, May 27, 1973, gage height, 30.46 ft, from rating curve extended above 32,000 ft³/s, on basis of slope-area measurement of peak flow; minimum, 3.6 ft³/s, Sept. 26-28, 1948; minimum gage height, 0.55 ft, Sept. 12-17, 1954. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of about 30.7 ft, from flood profile by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 8,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------------|------|-----------------------------------|---------------------| | Jan 23 | 2300 | *23,100 | *22.42 | Mar 18 | 0700 | 21,900 | 21.82 | | Jan 24 | 1330 | 15,700 | 18.48 | Apr 25 | 0830 | 10,000 | 14.57 | | Mar 17 | 1130 | 21.200 | 21 50 | - | | | | Minimum discharge, 6.4 ft³/s, Sept. 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | R 2001 TC | SEPTEMBE | R 2002 | | | |--|---|--|---|---|---|---|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 21
19
19
18
18 | 27
26
26
24
23 | 278
225
176
146
127 | 146
138
132
120
115 | 415
522
453
417
365 | 168
167
188
203
190 | 3010
1380
916
680
546 | 1960
1500
1140
982
894 | 81
73
66
60
57 | 34
28
26
24
22 | 54
44
35
28
24 | 14
18
18
17
14 | | 6
7
8
9
10 | 47
29
28
28
24 | 22
22
21
20
20 | 115
112
408
897
633 | 119
127
118
115
135 | 319
428
620
575
511 | 181
175
167
163
188 | 464
394
339
304
276 | 686
831
1490
684
500 | 75
164
101
73
58 | 21
19
18
17
19 | 21
19
17
16
15 | 13
11
10
9.5
8.9 | | 11
12
13
14
15 | 22
23
24
43
81 | 20
19
19
19 | 548
473
444
1260
1050 | 295
370
340
295
257 | 483
431
376
322
284 | 184
182
335
437
426 | 246
223
212
235
220 | 426
353
667
1110
733 | 48
42
39
77
81 | 19
22
34
42
35 | 13
13
12
11 | 8.5
8.0
7.5
6.8
6.9 | | 16
17
18
19
20 | 82
67
54
46
41 | 19
19
18
18 | 646
495
471
448
380 | 218
194
187
1290
1900 | 262
241
211
190
198 | 1050
11800
13600
3010
1860 | 205
373
359
242
203 | 527
402
488
491
382 | 63
50
43
37
32 | 37
29
24
23
26 | 14
21
22
28
26 | 7.4
7.2
7.5
8.0
8.4 | | 21
22
23
24
25 | 36
33
32
31
39 | 18
17
18
25
875 | 312
260
281
512
488 | 1010
667
8940
13500
6330 | 247
229
204
190
178 | 1580
1070
811
659
550 | 178
163
160
174
4930 | 303
249
210
177
149 | 28
26
24
28
30 |
35
35
59
632
308 | 23
20
17
16
15 | 23
27
30
22
19 | | 26
27
28
29
30
31 | 45
49
42
35
32
29 | 561
351
229
167
198 | 402
339
280
240
201
169 | 1890
1090
777
603
492
416 | 180
197
179
 | 693
963
763
640
548
3130 | 1620
919
740
707
523 | 127
140
147
117
103
90 | 33
54
80
54
41 | 144
87
65
61
60
73 | 17
19
36
19
15
13 | 97
158
106
73
51 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1137
36.68
82
18
0.19
0.22 | 2879
95.97
875
17
0.49
0.55 | 12816
413.4
1260
112
2.11
2.43 | 42326
1365
13500
115
6.97
8.03 | 9227
329.5
620
178
1.68
1.75 | 46081
1486
13600
163
7.58
8.75 | 20941
698.0
4930
160
3.56
3.97 | 18058
582.5
1960
90
2.97
3.43 | 1718
57.27
164
24
0.29
0.33 | 2078
67.03
632
17
0.34
0.39 | 654
21.10
54
11
0.11
0.12 | 815.6
27.19
158
6.8
0.14
0.15 | ### 03414500 EAST FORK OBEY RIVER NEAR JAMESTOWN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1943 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--|--------------------------------------| | MEAN 98.18 291.5
MAX 589 973
(WY) 1990 1958
MIN 4.76 8.05
(WY) 1948 1954 | 627.1 791.7
2066 2253
1991 1950
22.1 43.6
1964 1981 | 841.9
1900
1956
161
1968 | 881.2
2897
1975
206
1983 | 607.1
1369
1977
139
1986 | 411.3
1909
1984
66.7
1962 | 178.5
682
1989
10.9
1988 | 117.3
961
1967
9.73
1944 | 74.65
722
1982
10.0
1962 | 77.90
494
1944
7.18
1953 | | SUMMARY STATISTICS | FOR 2001 CAL | ENDAR YEAR | I | FOR 2002 WAS | TER YEAR | | WATER YEARS | 1943 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 94199
258.
7300
12
13
1.
17.
553
71 | Feb 16
Jul 21
Jul 17 | | 158730.6
434.9
13600
6.8
7.3
23100
22.42
6.4
2.22
30.13
791
127
18 | Mar 18
Sep 14
Sep 12
Jan 23
Jan 23
Sep 14 | | 415.6
743
218
23200
3.6
3.9
44800
30.46
3.6
2.12
28.81
943
160 | Dec 30
Sep 26
Sep 22
May 27
May 27
Sep 26 | 1948
1948
1973
1973 | ### 03415000 WEST FORK OBEY RIVER NEAR ALPINE, TN LOCATION.--Lat $36^{\circ}23'49"$, long $85^{\circ}10'28"$, Overton County, Hydrologic Unit 05130105, on left bank 20 ft upstream from bridge on State Highway 52, 0.3 mile upstream from Nettlecarrier Creek, 2.4 miles east of Alpine, and at mile 8.0. DRAINAGE AREA.--115 mi^2 , includes 34 mi^2 without surface drainage. PERIOD OF RECORD.--October 1942 to September 1971, October 1979 to November 1981. October 2001 to September 2002. Prior to December 1942 monthly discharges only, published in WSP 1306. REVISIONS.--WSP 1386: 1943-45(P), 1946, 1948, 1952(P). WSP 1506: Drainage area. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 683.28 ft above NGVD of 1929. Oct. 1942 to Sept. 1971 gage at same site at datum 1.0 ft higher. REMARKS.--No estimated daily discharges, records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,100 $\mathrm{ft^3/s}$, Mar. 21, 1955, gage height 17.30 ft present datum; minimum 2.6 $\mathrm{ft^3/s}$ Sept. 13-19, 1954. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of about 15.3 ft (present datum), from flood profile by Corps of Engineers. EXTREMES FOR CURRENT YEAr.--Peak discharges greater than base discharge of $6,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |----------------------------|----------------------|-----------------------------------|-------------------------|------------------|--------------|-----------------------------------|---------------------| | Jan 23
Jan 24
Mar 17 | 2300
1130
0930 | 7,400
8,320
6,960 | 11.87
12.62
11.50 | Mar 18
Apr 25 | 0330
0330 | *10,100
6,450 | *14.00
11.05 | Minimum discharge, 3.6 ft³/s, Sept. 10, 11, 12, 13, 15. | | | DISCHAR | GE, CUBIC | FEET PEF | | WATER YE
Y MEAN VA | AR OCTOBER | R 2001 TC | SEPTEMBE | R 2002 | | | |--|---|--|--|--|--|---|--|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10
9.6
8.9
8.2
9.3 | 15
15
14
13 | 103
71
56
48
41 | 57
53
50
47
44 | 213
209
181
167
145 | 84
85
93
93
87 | 1510
612
391
291
237 | 998
564
351
350
323 | 46
42
38
36
36 | 19
17
16
15
15 | 14
11
10
9.0
8.2 | 5.9
7.4
6.8
5.9
5.2 | | 6
7
8
9
10 | 37
36
23
18
14 | 12
11
11
11
10 | 37
37
427
479
204 | 47
46
42
40
61 | 136
192
221
201
190 | 85
84
82
82
92 | 204
178
162
150
133 | 255
251
313
204
166 | 45
51
39
32
29 | 14
12
12
13
14 | 7.7
7.0
6.5
6.3 | 4.8
4.6
4.3
4.2
3.9 | | 11
12
13
14
15 | 12
13
14
53
93 | 10
9.7
9.5
9.3
9.3 | 193
154
186
769
385 | 130
136
117
104
92 | 179
164
148
133
124 | 87
92
160
169
154 | 123
115
117
128
120 | 145
127
540
533
282 | 27
25
28
78
51 | 12
17
49
67
36 | 6.6
6.2
6.1
5.8
5.8 | 3.9
3.7
4.0
4.1
3.9 | | 16
17
18
19
20 | 50
36
29
25
22 | 9.1
9.1
8.9
8.9
9.4 | 212
163
149
133
112 | 79
74
72
879
737 | 118
109
98
91
100 | 327
5200
6360
1530
971 | 113
141
120
111
104 | 205
173
280
197
162 | 35
30
27
24
21 | 24
18
17
20
29 | 10
12
16
19
14 | 4.4
4.9
5.3
5.0
6.0 | | 21
22
23
24
25 | 20
18
17
16
24 | 9.0
8.9
9.2
14
276 | 96
85
128
197
146 | 350
224
3850
6220
2810 | 119
101
94
90
89 | 711
453
330
263
218 | 99
94
84
117
2990 | 139
120
106
93
81 | 20
18
18
21
23 | 26
20
26
20
15 | 9.4
7.6
6.9
7.2
7.2 | 13
59
35
16
13 | | 26
27
28
29
30
31 | 33
26
22
19
17
16 | 104
63
50
44
117 | 126
111
97
83
70
62 | 908
450
293
226
185
159 | 96
101
90

 | 510
467
329
266
219
2280 | 676
336
297
276
199 | 71
64
64
69
56
50 | 23
23
55
31
23 | 15
13
13
16
15 | 7.7
7.8
11
11
7.8
6.6 | 88
151
79
42
28 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 749.0
24.16
93
8.2
0.30
0.34 | 913.3
30.44
276
8.9
0.38
0.42 | 5160
166.5
769
37
2.05
2.37 | 18582
599.4
6220
40
7.40
8.53 | 3899
139.2
221
89
1.72
1.79 | 21963
708.5
6360
82
8.75
10.09 | 10228
340.9
2990
84
4.21
4.70 | 7332
236.5
998
50
2.92
3.37 | 995
33.17
78
18
0.41
0.46 | 630
20.32
67
12
0.25
0.29 | 277.6
8.955
19
5.8
0.11
0.13 | 622.2
20.74
151
3.7
0.26
0.29 | ### 03415000 WEST FORK OBEY RIVER NEAR ALPINE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1943 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------------------------------------|--
--------------------------------------|-------------------------------------|---|---------------------------------------|--------------------------------------|---|--------------------------------------|--| | MEAN 23.59 84.96 MAX 122 384 (WY) 1980 1958 MIN 3.84 4.61 (WY) 1953 1954 | 202.3
691
1952
6.28
1966 | 308.4
1024
1950
11.2
1981 | 356.1
872
1956
79.4
1968 | 384.5
859
1955
136
1969 | 256.2
528
1962
68.8
1963 | 126.3
357
1958
23.5
1948 | 73.16
266
1969
12.3
1948 | 46.94
327
1967
7.33
1954 | 27.71
142
1971
6.09
1962 | 23.76
183
1944
4.23
1980 | | SUMMARY STATISTICS | FOR | 2001 CALEN | DAR YEAR | : | FOR 2002 W | ATER YEAR | | WATER YEARS | 1943 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 6876.3
71.63
769
8.2
9.0
0.88
3.16
188
24
9.3 | Dec 14
Oct 4
Nov 16 | | 71351.1
195.5
6360
3.7
4.0
10100
14.0(
a3.6
2.4;
32.7;
325
53
7.8 | Sep 9
Mar 18
) Mar 18
Sep 10 | | 158.0
264
13.5
7440
2.6
2.6
10100
14.00
b2.6
1.95
26.50
358
46
6.2 | Sep 1
Sep 1
Mar 1
Mar 1 | 1950
2001
0 1969
3 1954
2 1954
8 2002
8 2002
2 1954 | a Also occurred Sept. 11, 12, 13, 15. b Also occurred Sept. 13-19, 1954. #### 03417500 CUMBERLAND RIVER AT CELINA, TN #### WATER-OUALITY RECORDS LOCATION.--Lat $36^{\circ}33^{\circ}15^{\circ}$, long $85^{\circ}30^{\circ}52^{\circ}$, Clay County, Hydrologic Unit 05130106, on right bank at State Highway 52 bridge, 0.5 mi northwest of courthouse in Celina, 600 ft downstream from Obey River, and at mile 380.8. DRAINAGE AREA. -- 7,307 mi². PERIOD OF RECORD. -- November 1991 to September 1997, October 1999 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: November 1991 to September 1997, October 1999 to current year. pH: November 1991 to September 1997, October 1999 to current year. WATER TEMPERATURE: November 1991 to September 1997, October 1999 to current year. DISSOLVED OXYGEN: October 1992 to September 1997, October 1999 to current year. INSTRUMENTATION .-- Data collection platform and water-quality monitor. REMARKS.--Flow regulated by Lake Cumberland (station 03413500) and Dale Hollow Lake (station 03416500). Interruptions in the record were due to instrument malfunctions. Records for water temperature, specific conductance, and pH are good, dissolved oxygen records are poor. EXTREMES FOR PERIOD OF DAILY RECORD. -- PREMIES FOR PERIOD OF DAILY RECORD.— SPECIFIC CONDUCTANCE: Maximum, 280 microsiemens, Aug. 29, 1992; minimum, 113 microsiemens, Mar. 27, 1994. pH: Maximum, 8.5 units, Mar. 3, 4, 6, 1992; minimum, 6.2 units, Sept. 14, 1993. WATER TEMPERATURE: Maximum, 19.6°C, July 31, 2001; minimum, 2.5°C, Feb. 9, 1995. DISSOLVED OXYGEN: Maximum, 15.3 mg/L, Jan. 29, 2000; minimum, 6.6 mg/L, Sept. 23, 2000. EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: Maximum, 267 microsiemens, Dec. 3; minimum, 142 microsiemens, Mar. 17. pH: Maximum, 8.2 units, several days; minimum, 6.6 units, Mar. 18. WATER TEMPERATURE: Maximum, 18.0°C, June 13; minimum, 4.3°C, Jan. 3. DISSOLVED OXYGEN: Maximum, 13.5 mg/L, Apr. 8; minimum, 6.7 mg/L, June 10. SPECIFIC CONDUCTANCE, in US/CM 0 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 217
215
216
215
215 | 214
212
210
212
210 | 215
213
212
213
213 | 215
215
215
215
213 | 212
211
209
207
206 | 213
213
211
210
209 | 237
246
267
264
256 | 214
232
237
234
232 | 228
238
248
253
243 | 234
230
227
228
227 | 230
225
226
226
226 | 232
227
226
227
227 | | 6
7
8
9
10 | 218
218
218
214
214 | 210
212
212
212
211
210 | 214
214
215
213
212 | 213
211
212
214
218 | 206
204
203
202
202 | 208
207
206
205
209 | 233
232
241
241
244 | 231
230
230
235
238 | 232
231
234
239
241 | 230
230
230
229
229 | 226
229
227
227
227 | 228
229
229
228
228 | | 11
12
13
14
15 | 214
214
215
243
225 | 211
209
212
213
220 | 212
212
213
220
223 | 231
227
231
218
217 | 199
197
197
196
214 | 212
206
208
209
215 | 246
242
239
224
240 | 240
232
209
217
222 | 243
239
225
220
232 | 241
242
242
236
235 | 228
235
236
232
229 | 235
237
239
234
232 | | 16
17
18
19
20 | 230
233
228
225
223 | 224
226
222
217
219 | 226
230
225
220
221 | 217
217
213
213
210 | 214
212
211
209
208 | 215
213
212
211
209 | 248
255
256
253
248 | 239
248
252
241
241 | 242
252
254
251
244 | 231
226
224
228
234 | 224
223
219
222
228 | 227
224
222
225
230 | | 21
22
23
24
25 | 223
224
222
222
224 | 218
218
218
219
217 | 220
220
220
220
220
220 | 210
207
207
227
223 | 206
205
205
203
208 | 208
206
206
207
212 | 243
244
241
243
245 | 238
236
236
241
239 | 240
239
239
242
243 | 239
239
235
191
195 | 234
232
191
157
179 | 236
236
214
176
187 | | 26
27
28
29
30
31 | 225
227
228
224
220
217 | 220
222
223
219
215
214 | 222
226
226
221
217
215 | 218
214
214
223
224 | 209
208
210
210
209 | 212
210
212
216
217 | 244
242
241
242
239
235 | 241
238
232
236
235
233 | 242
240
237
238
236
234 |
227
229
231
241 |
226
225
228
231 | 226
227
230
237 | | MONTH | 243 | 209 | 218 | 231 | 196 | 210 | 267 | 209 | 239 | 242 | 157 | 226 | 55 CUMBERLAND RIVER BASIN 03417500 CUMBERLAND RIVER AT CELINA, TN--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | ۵. | PECIFIC | CONDOCTAN | E, III US. | /CM @ 23 | C, WAIER | YEAR OCTOR | SER 2001 | TO SEPTE | EMBER 2002 | | | |---|--|--|---|--|--|--|--|---|---|--|--|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 243
239
244
246
242 | 237
233
234
241
237 | 240
236
239
244
239 | 232
234
234
234
233 | 228
231
232
232
232 | 231
232
233
233
232 |

212
204 |

203
201 |

208
203 | 207
200
200
195
197 | 192
193
191
189
191 | 201
197
195
192
192 | | 6
7
8
9
10 | 241
241
237
235
236 | 238
236
235
234
234 | 240
238
236
234
235 | 233
232
233
235
237 | 231
231
230
231
235 | 232
232
232
233
236 | 206
208
204
204
202 | 201
201
198
198
197 | 203
205
200
201
199 | 198
197
198
191
189 | 195
191
190
185
186 | 196
194
193
187
187 | | 11
12
13
14
15 | 237
233
231
231
229 | 233
230
229
228
227 | 236
231
230
229
228 | 238
238
236
233
228 | 236
235
232
226
224 | 237
237
234
229
226 | 199
196
201
200
198 | 191
191
196
193
194 | 194
193
199
196
195 | 188
186
188
186
188 | 182
181
184
182
183 |
184
183
186
184
186 | | 16
17
18
19
20 | 229
230
230
229
228 | 227
227
228
226
224 | 228
228
229
227
226 | 225
227
181
218
223 | 221
142
145
177
201 | 223
201
171
192
215 | 199
201
199
199
198 | 196
194
195
194
196 | 198
197
196
196 | 185
186
176
186
186 | 181
173
150
144
181 | 182
180
165
171
183 | | 21
22
23
24
25 | 228
233
235
237
238 | 226
227
233
233
236 | 227
229
234
235
237 | 216
221
224
222
218 | 196
216
220
218
210 | 203
220
222
220
214 | 201
202
202
204
199 | 196
199
195
196
173 | 198
200
198
199
181 | 186
180
177
179
178 | 176
175
173
172
173 | 180
177
176
175
175 | | 26
27
28
29
30
31 | 238
236
230
 | 234
229
228
 | 235
232
229
 | 213
211
203
201 | 208
200
198
197
 | 209
205
201
198
 | 202
210
208
211
211 | 185
202
203
204
202 | 194
207
206
207
207 | 179
177
176
176
176
175 | 175
174
174
172
173
172 | 177
176
175
174
174
173 | | | | | | 220 | 140 | 220 | 212 | 173 | 100 | 207 | 144 | 183 | | MONTH | 246 | 224 | 233 | 238 | 142 | 220 | 212 | 1/3 | 199 | 207 | 111 | | | | | | | | | | | | | | | | | MONTH | 246
MAX | 224
MIN
JUNE | 233
MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | MEAN | | | | MIN | | | MIN | | MAX | MIN | | MAX | MIN | MEAN | | DAY 1 2 3 4 | MAX
174
177
179
180 | MIN
JUNE
172
173
175
175 | MEAN 173 174 177 178 | MAX
190
189
187
186 | MIN
JULY
186
184
183
182 | MEAN
187
186
184
184 | MAX
192
194
193
196 | MIN
AUGUST
186
190
190
187 | MEAN
188
191
191
190 | MAX
186
189
188
187 | MIN
SEPTEMBE
184
183
182
185 | MEAN ER 185 186 185 186 | | DAY 1 2 3 4 5 6 7 8 9 | MAX 174 177 179 180 179 176 | MIN JUNE 172 173 175 175 174 174 | MEAN 173 174 177 178 176 175 | MAX
190
189
187
186
185
186
187
186 | MIN JULY 186 184 183 182 182 183 183 184 184 184 183 182 | MEAN 187 186 184 184 184 185 185 185 185 | MAX 192 194 193 196 190 188 186 185 182 | MIN AUGUST 186 190 190 187 186 185 183 182 181 | MEAN 188 191 191 190 188 186 185 183 181 | MAX
186
189
188
187
186
186
186 | MIN SEPTEMBE 184 183 182 185 185 185 185 185 | MEAN 185 186 185 186 185 185 185 185 187 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX 174 177 179 180 179 176 219 208 199 201 208 | MIN JUNE 172 173 175 175 174 174 197 192 188 171 190 | MEAN 173 174 177 178 176 175 214 197 193 191 | MAX 190 189 187 186 185 186 187 188 187 1990 | MIN JULY 186 184 183 182 182 183 183 183 184 184 184 183 182 182 181 | MEAN 187 186 184 184 184 185 185 185 185 185 | MAX 192 194 193 196 190 188 186 185 182 182 181 182 180 | MIN AUGUST 186 190 197 186 185 183 182 181 181 180 179 178 | MEAN 188 191 191 190 188 186 185 183 181 181 181 179 | MAX 186 189 188 187 186 186 186 188 188 189 187 | MIN SEPTEMBE 184 183 182 185 185 185 185 185 187 186 187 | MEAN ER 185 186 185 186 185 187 187 187 186 186 186 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX 174 177 179 180 179 176 219 208 199 201 208 223 226 220 221 208 | MIN JUNE 172 173 175 174 174 197 192 188 171 190 194 202 194 191 194 | MEAN 173 174 177 178 176 175 214 197 193 191 199 206 212 205 204 201 | MAX 190 189 187 186 185 186 187 188 187 190 190 188 185 186 187 | MIN JULY 186 184 183 182 182 183 183 183 184 184 183 182 182 181 183 183 181 181 | MEAN 187 186 184 184 184 185 185 185 185 185 185 187 188 188 188 | MAX 192 194 193 196 190 188 186 185 182 182 182 181 182 180 178 176 180 184 | MIN AUGUST 186 190 187 186 185 183 182 181 181 180 179 178 175 174 175 180 180 | MEAN 188 191 191 190 188 186 185 183 181 181 179 178 176 175 177 182 185 | MAX 186 189 188 187 186 186 186 188 188 189 187 186 186 187 187 186 185 185 | MIN SEPTEMBE 184 183 182 185 185 185 185 185 186 187 186 185 185 185 185 185 185 185 185 185 | MEAN ER 185 186 185 186 185 187 187 187 186 186 186 186 186 186 187 187 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX 174 177 179 180 179 176 219 208 199 201 208 223 226 220 221 208 209 214 | MIN JUNE 172 173 175 175 174 174 197 192 188 171 190 194 202 194 191 194 192 195 | MEAN 173 174 177 178 176 175 214 197 193 191 199 206 212 205 204 201 200 205 | MAX 190 189 187 186 185 186 187 188 187 190 190 188 185 187 184 186 190 190 190 | MIN JULY 186 184 183 182 182 183 183 183 184 184 184 183 182 182 181 183 183 181 181 181 180 179 182 186 186 183 | MEAN 187 186 184 184 184 185 185 185 185 185 181 183 183 183 181 183 1888 187 186 | MAX 192 194 193 196 190 188 186 185 182 182 182 181 182 180 178 176 180 184 187 187 186 186 185 | MIN AUGUST 186 190 187 186 185 183 182 181 181 180 179 178 175 174 175 180 180 186 185 184 183 183 | MEAN 188 191 191 190 188 186 185 183 181 181 180 179 178 176 175 177 182 185 186 186 185 184 | MAX 186 189 188 187 186 186 186 188 188 189 187 186 186 187 187 186 187 189 189 | MIN SEPTEMBE 184 183 182 185 185 185 185 186 187 186 187 186 185 185 185 185 185 185 185 185 185 185 | MEAN RR 185 186 185 186 185 186 187 187 187 186 186 186 186 186 186 186 186 186 186 | ## 03417500 CUMBERLAND RIVER AT CELINA, TN--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | D311 | | | | | | | | | O SEFIEMBE | | M2.17 | 24727 | |---|---|---|---|---|--|--|---|--|--|---|---|---| | DAY | MAX | MIN | | | OCTO | | NOVE | | DECEM | | JANU | | FEBRU | | MAR | | | 1
2
3
4
5 | 7.5
7.6
7.6
7.6
7.6 | 7.1
7.5
7.5
7.5
7.5 | 7.7
7.7
7.7
7.6
7.6 | 7.6
7.5
7.5
7.5
7.5 | 7.3
7.4
7.6
7.7
7.8 | 7.2
7.3
7.4
7.6
7.7 | 7.8
7.9
8.0
8.0 | 7.8
7.8
7.9
7.9 | 8.1
8.1
8.1
8.1
8.0 | 8.0
8.0
8.0
8.0 | 7.5
7.5
7.5
7.5
7.5 | 7.4
7.5
7.5
7.5
7.5 | | 6
7
8
9
10 | 7.5
7.7
7.7
7.8
7.8 | 7.5
7.5
7.6
7.7
7.8 | 7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.5
7.6
7.5 | 7.8
7.8
7.7
7.8
7.8 | 7.7
7.7
7.7
7.7
7.8 | 8.0
7.9
8.1
8.1 | 7.9
7.9
7.9
7.9 | 8.0
8.0
8.0
7.9 | 7.9
7.9
7.9
7.9 | 7.6
7.6
7.6
7.7
7.6 | 7.5
7.5
7.6
7.6
7.6 | | 11
12
13
14
15 | 7.8
7.8
7.7
7.7 | 7.7
7.7
7.6
7.6
7.7 | 7.7
7.7
7.7
7.7
7.7 | 7.5
7.5
7.5
7.5
7.6 | 7.8
7.8
7.7
7.6
7.6 | 7.7
7.6
7.6
7.5
7.5 | 8.0
8.1
8.1
8.0
8.2 | 7.9
7.9
7.9
7.9 | 8.0
7.9
7.9
7.9
7.8 | 7.9
7.9
7.8
7.8 | 7.7
7.7
7.7
7.7
7.8 | 7.6
7.6
7.6
7.7 | | 16
17
18
19
20 | 7.7
7.7
7.7
7.7
7.6 | 7.6
7.7
7.6
7.5
7.5 | 7.7
7.7
7.7
7.7
7.6 | 7.6
7.6
7.6
7.5
7.5 | 7.7
7.7
7.7
7.8
7.8 | 7.6
7.7
7.7
7.7
7.7 | 8.0
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
7.8
7.8 | 7.8
7.8
7.7
7.7 | 7.8
7.7
7.6
7.8
7.8 | 7.7
7.5
6.6
7.3
7.8 | | 21
22
23
24
25 | 7.6
7.6
7.6
7.5
7.5 | 7.6
7.5
7.5
7.4
7.3 | 7.6
7.6
7.6
7.6
7.5 | 7.5
7.5
7.5
7.4
7.4 | 7.7
7.8
7.8
7.8
7.8 | 7.7
7.7
7.7
7.7
7.8 | 8.0
8.0
8.0
7.8
7.7 | 7.8
7.9
7.8
7.7 | 7.8
7.6
7.5
7.5 | 7.6
7.4
7.4
7.4
7.4 | 7.8
7.8
7.8
7.8
7.8 | 7.7
7.8
7.8
7.8
7.8 | | 26
27
28
29
30
31 | 7.4
7.5
7.5
7.8
7.8
7.7 | 7.4
7.4
7.4
7.6
7.6 | 7.4
7.5
7.4
7.4 | 7.3
7.3
7.3
7.3
7.2 | 7.9
7.8
7.8
7.8
7.8
7.8 | 7.7
7.7
7.7
7.8
7.7
7.7 | 8.2
8.2
8.2
8.2
8.2 | 8.1
8.1
8.0
8.0 | 7.5
7.5
7.5
 | 7.5
7.5
7.5
 | 7.8
7.8
7.7
7.7
 | 7.7
7.7
7.7
7.7
 | | | | | | | 7.9 | 7.2 | 8.2 | 7.7 | 8.1 | 7.4 | 7.8 | 6.6 | | MONTH | 7.8 | 7.1 | 7.7 | 7.2 | 1.9 | 1.4 | 0.2 | | 0.1 | / • 4 | | | | | | | | | | | | | | | | | | MONTH | MAX | MIN | | DAY | MAX
APF | MIN | MAX | MIN | MAX
JUN | MIN
JE | MAX
JUL | MIN
Y | MAX
AUGU | MIN
JST | MAX
SEPTE | MIN
MBER | | | MAX | MIN | MAX | MIN | MAX | MIN
JE | MAX | MIN | MAX | MIN | MAX | MIN | | DAY 1 2 3 4 | MAX APF 7.8 7.8 | MIN RIL 7.8 7.7 | MAX 7.7 7.6 7.6 7.6 7.6 | MIN 7.6 7.6 7.6 7.6 7.6 7.6 | MAX
JUN
7.4
7.4
7.5
7.5 |
MIN
IE
7.4
7.4
7.4
7.4 | MAX
JUL
8.1
8.1
7.8
7.8 | MIN 7.9 7.8 7.7 7.6 | MAX AUGU 7.8 7.8 7.7 7.7 | MIN
JST
7.7
7.6
7.6
7.6
7.6 | MAX
SEPTE
7.5
7.6
7.3 | MIN
MBER
7.3
7.3
7.2
7.2 | | DAY 1 2 3 4 5 6 7 8 9 | MAX APF 7.8 7.8 7.8 7.8 7.8 7.7 | MIN RIL 7.8 7.7 7.8 7.8 7.8 7.7 | MAX 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | MIN 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.5 | MAX 7.4 7.5 7.5 7.5 7.5 | MIN IE 7.4 7.4 7.4 7.5 7.4 7.5 7.4 7.7 88.0 | MAX
JUI
8.1
8.1
7.8
7.8
7.8
7.7
7.9 | MIN 7.9 7.8 7.7 7.6 7.6 7.7 7.7 7.7 7.8 7.8 7.8 7.7 7.7 | MAX AUGU 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.4 7.4 | MIN 7.7 7.6 7.6 7.6 7.6 7.7 7.4 7.3 7.3 7.4 7.6 7.5 | MAX SEPTE 7.5 7.5 7.6 7.3 7.3 7.4 7.4 7.5 7.6 7.5 | MIN MBER 7.3 7.3 7.2 7.2 7.3 7.3 7.3 7.4 7.4 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX APF 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.7 | MIN RIL 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.6 | MAX 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | MIN 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.5 7.5 | MAX JUN 7.4 7.5 7.5 7.5 7.5 7.9 8.1 8.2 8.2 8.2 | MIN IE 7.4 7.4 7.4 7.5 7.4 7.7 7.8 8.0 8.0 8.1 | MAX JUI 8.1 7.8 7.8 7.8 7.9 7.7 7.9 7.8 7.8 | MIN Y 7.9 7.8 7.7 7.6 7.6 7.7 7.7 7.8 7.8 | MAX AUGU 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.4 7.6 7.6 7.6 7.6 7.6 7.6 | MIN 7.7 7.6 7.6 7.6 7.6 7.7 7.4 7.3 7.4 7.6 7.5 7.6 7.7 | MAX SEPTE 7.5 7.5 7.6 7.3 7.4 7.4 7.5 7.6 7.5 7.6 7.6 7.7 7.6 | MIN MBER 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.4 7.5 7.4 7.5 7.4 7.5 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX APF 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.6 7.6 | MIN RIL 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 | MAX 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.5 7.5 7.5 7.5 7.5 | MIN 7.66 7.66 7.66 7.66 7.66 7.55 7.55 7.55 | MAX JUN 7.4 7.5 7.5 7.5 7.5 7.9 8.1 8.2 8.2 8.1 8.0 7.9 7.8 | MIN IE 7.4 7.4 7.4 7.5 7.4 7.7 7.8 8.0 8.0 8.0 8.1 8.0 7.9 7.8 | MAX JUI 8.1 7.8 7.8 7.9 7.7 7.9 7.8 7.8 7.8 | MIN Y 7.9 7.8 7.7 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | MAX AUGU 7.8 7.8 7.7 7.7 7.8 7.8 7.4 7.4 7.6 7.6 7.6 7.6 7.7 7.7 7.5 7.4 7.4 7.7 | MIN 7.7 7.6 7.6 7.6 7.6 7.7 7.4 7.3 7.4 7.6 7.5 7.6 7.6 7.6 7.7 7.4 7.6 7.7 7.4 7.6 7.7 7.4 7.6 7.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | MAX SEPTE 7.5 7.5 7.6 7.3 7.4 7.4 7.5 7.6 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 | MIN MBER 7.3 7.3 7.2 7.3 7.3 7.3 7.4 7.5 7.5 7.4 7.3 7.4 7.5 7.4 7.3 7.3 7.4 7.3 7.3 7.4 7.5 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX APF 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.6 7.6 | MIN RIL 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 | MAX 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.4 7.4 | MIN 7.66 7.66 7.66 7.66 7.55 7.55 7.55 7.5 | MAX JUN 7.4 7.5 7.5 7.5 7.5 7.9 8.1 8.2 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.7 | MIN IE 7.4 7.4 7.4 7.5 7.4 7.7 7.8 8.0 8.0 8.0 8.1 8.0 8.0 7.9 7.8 7.6 7.6 | MAX JUI 8.1 7.8 7.8 7.9 7.7 7.9 7.8 7.8 7.8 | MIN 7.9 7.8 7.7 7.6 7.6 7.7 7.7 7.8 7.8 7.7 7.7 7.6 7.6 7.7 7.7 7.4 7.4 7.4 7.4 7.5 7.6 7.6 | MAX AUGU 7.8 7.8 7.7 7.7 7.8 7.8 7.4 7.4 7.6 7.6 7.6 7.6 7.7 7.7 7.5 7.4 7.4 7.4 7.4 7.4 7.7 7.5 7.7 7.7 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 | MIN 7.7 7.6 7.6 7.6 7.6 7.7 7.4 7.3 7.4 7.6 7.5 7.6 7.6 7.7 7.4 7.3 7.3 7.4 7.6 7.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | MAX SEPTE 7.5 7.5 7.6 7.3 7.4 7.4 7.5 7.6 7.6 7.6 7.6 7.7 7.4 7.4 7.5 7.7 7.2 7.2 7.2 | MIN MBER 7.3 7.2 7.2 7.3 7.3 7.4 7.5 7.5 7.4 7.3 7.4 7.5 7.5 7.4 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 57 03417500 CUMBERLAND RIVER AT CELINA, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WATER TEI | MPERATURE, | in (DEG | REES C), | WATER | EAR OCTOBER | R 2001 T | O SEPTEME | BER 2002 | | | |----------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | | | | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 15.6
15.3 | 14.3
14.8
14.9
14.6
14.5 | 14.7
15.2
15.1
14.9
14.9 | 13.0
14.0
14.6
14.2
13.8 | 12.2
12.8
13.8
13.6
13.3 | 12.6
13.4
14.2
13.9
13.5 | 12.9
12.3
11.8
11.5
11.6 | 12.3
11.8
11.2
11.0
11.2 | 12.6
12.1
11.4
11.2
11.4 | 4.9
4.7
4.6
4.7
5.2 | 4.5
4.4
4.3
4.4
4.5 | 4.7
4.5
4.5
4.5
4.8 | | 6
7
8
9
10 | 15.0
14.6
14.2
14.1
14.6 | 14.4
14.2
13.6
13.6 | 14.8
14.4
13.9
13.8
14.1 | 13.4
12.7
12.6
13.1
12.8 | 12.6
11.9
11.8
12.4
12.2 | 12.8
12.3
12.2
12.7
12.5 | 12.1
12.6
13.0
13.0
12.3 | 11.4
12.0
12.6
12.3
11.5 | 11.8
12.4
12.9
12.7
11.7 | 5.6
6.0
5.6
6.4
7.0 | 5.2
5.5
5.2
5.5
6.4 | 5.4
5.7
5.4
5.9
6.7 | | 12
13
14
15 | 16.4 | 14.4
15.0
15.2
15.6
15.5 | 14.8
15.2
15.4
15.9 | 12.7
12.3
12.2
12.2
12.3 | 12.0
11.8
11.7
11.4
11.8 | 12.4
12.1
12.0
11.9
12.1 | 11.5
11.5
12.9
13.3
13.0 | 11.3
11.2
11.5
12.9
12.8 | 11.4
11.3
12.4
13.1
12.9 | 7.8
7.8
7.7
7.2
7.4 | 7.0
7.4
7.2
7.0
7.0 | 7.4
7.6
7.4
7.1 | | 16
17
18
19
20 | 13.2 | 14.9
13.1
12.3
12.4
12.7 | 15.5
13.9
12.7
12.6
13.1 | 12.6
12.7
13.0
13.0
12.9 | 11.9
12.0
12.3
12.5
12.3 | 12.3
12.4
12.7
12.8
12.6 | 12.8
12.8
12.7
11.9
11.3 | 12.5
12.6
11.9
11.3
10.0 | 12.6
12.7
12.4
11.6
10.6 | 8.0
8.4
8.2
7.9
7.7 | 7.0
7.9
7.7
7.5
7.3 | 7.5
8.1
8.0
7.7
7.5 | | 22
23 | 14.4
14.7
15.4
16.3
16.3 | 13.2
14.2
14.7
15.3
15.0 | 13.7
14.4
15.1
15.8
15.9 | 12.3
11.4
11.3
12.9
13.2 | 11.4
10.7
10.5
11.2
12.6 | 11.8
11.0
10.8
11.9
12.9 | 10.0
9.3
9.4
9.3
8.6 | 9.1
8.7
8.9
8.6
7.4 | 9.4
9.0
9.2
8.9
7.9 | 8.0
7.7
8.6
9.9
9.9 | 7.5
7.0
7.7
8.3
9.1 | 7.7
7.4
8.2
9.5
9.6 | | 27
28 | 15.6
14.2
12.6
11.5
11.8
12.5 | 14.2
12.6
11.4
10.8
10.8
11.5 | 14.8
13.4
11.9
11.0
11.2 | 13.1
13.4
13.3
13.9
13.8 | 12.6
13.0
13.1
13.1
12.9 | 12.9
13.2
13.2
13.5
13.4 | 7.4
6.5
6.1
6.0
5.9
5.4 | 6.5
5.7
5.6
5.7
5.3
4.9 | 6.8
6.1
5.9
5.9
5.6
5.1 | 9.0
10.0
10.8
11.0 | 8.6
9.0
10.0 | 8.9
9.5
10.4
10.8 | | MONTH | 16.4 | 10.8 | 14.2 | 14.6 | 10.5 | 12.6 | 13.3 | 4.9 | 10.4 | 11.0 | 4.3 | 7.2 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 11.0
9.9
8.9
8.0
7.7 | | 8.2
7.8
7.5 | | | | 10.1
9.3
9.9 | | | 14.5
12.9
12.5
12.2
11.7 | 12.0
11.5
11.1
11.0 | 12.0
11.4 | | 7 | 7.7
7.6
7.8
8.3
8.3 | 7.5
7.4
7.4
7.7
8.2 | 7.6
7.5
7.6
8.0
8.3 | 8.2
9.0
9.7
9.9
9.4 | 6.6
7.8
8.2
9.4
8.7 | 7.5
8.4
9.0
9.6
9.1 | 9.9
10.0
10.7
10.3
10.0 | 9.3
9.2
9.7
10.0
9.4 | 9.6
9.6
10.2
10.1
9.8 | 11.8
12.0
12.4
12.4
12.1 | 11.4
11.2
11.9
12.1
11.1 | 11.5
12.2
12.2 | | 12 | 8.6
8.2
8.1
8.0
8.1 | 8.0
7.8
7.6
7.6
7.6 | 8.3
8.0
7.9
7.8
7.8 | 9.0
8.9
9.1
9.7
10.7 | 8.1
8.6
8.6
9.0
9.4 | 8.7
8.7
8.8
9.3
10.1 | 10.8
11.0
10.6
10.7
12.0 | 9.7
10.3
10.2
10.3
10.5 | 10.3
10.6
10.4
10.6
11.3 | 11.6
12.2
12.6
12.4
12.1 | 10.9
11.6
11.9
12.1
11.6 | 11.9 | | 16
17
18
19
20 | 8.5
8.5
8.2
8.1
8.8 | 8.0
7.9
7.6
7.6
8.1 | 8.3
8.3
7.9
7.8
8.5 | 10.5
11.9
11.5
11.2
10.1 | 10.4
10.0
10.9
9.9
9.2 | 10.5
10.6
11.2
11.0
9.7 | 12.8
12.6
12.5
12.7
12.4 | 11.6
11.8
11.8
11.9
11.8 | 12.2
12.2
12.1
12.3
12.1 | 11.8
12.8
13.2
13.2
11.6 | 11.4
11.5
11.6
11.4
11.2 | 11.6
11.8
12.3
12.0
11.4 | | 21
22
23
24
25 | 9.2
8.8
8.0
8.4
9.0 | 8.6
8.0
7.5
7.6
7.9 | 8.9
8.5
7.8
8.0
8.4 | 10.2
9.1
8.5
8.8
9.3 | 9.1
8.3
7.8
8.0
8.6 | 9.8
8.7
8.2
8.4
8.9 | 13.3
14.1
14.2
13.2
13.3 | 12.0
13.2
13.1
11.7
12.3 | 12.5
13.7
13.6
12.3
12.9 | 11.5
11.6
12.0
12.3
12.5 | 11.0
10.8
11.2
11.5
11.8 | 11.2
11.2
11.6
11.9
12.1 | | 26
27
28
29
30
31 | 8.9
8.0
7.2
 | 8.0
6.8
6.5
 | 8.6
7.3
6.8
 | 9.2
8.8
8.6
9.4 | 8.7
8.1
7.8
8.6
 | 8.9
8.5
8.2
8.8 | 13.2
12.4
13.4
14.0
14.5 | 12.2
11.6
11.6
13.2
13.7 | 12.5
11.9
12.3
13.5
14.1 | 12.9
12.7
13.2
12.9
13.1
13.3 | 12.4
12.1
12.3
12.2
12.4
12.5 | 12.6
12.4
12.7
12.6
12.8
12.9 | | MONTH | 11.0 | 6.5 | 8.1 | 11.9 | 6.0 | 8.9 | 14.5 | 8.9 | 11.5 | 14.5 | 10.8 | 12.0 | ## 03417500 CUMBERLAND RIVER AT CELINA, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WATER | TEMPERATURE, | in (DEG | REES C), | WATER | YEAR C | CTOBER |
2001 | TO SEPTEME | BER 2002 | | | |----------------------------------|--------------------------------------|--------------------------------------|----------------------|--|--|--|------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | I | AUGUST | | | SEPTEMBE | IR. | | 1
2
3
4
5 | 13.5
14.3
16.3
17.2
17.2 | 12.7
12.9
14.3
16.3
15.4 | 13.5
15.1
16.6 | 17.4
17.5
16.6
15.8
15.9 | 15.4
16.4
15.0
14.9
15.3 | 16.1
17.0
15.6
15.3
15.5 | 1
1
1 | 5.5
5.6
5.9
6.4
7.8 | 15.2
15.2
15.6
15.6
16.0 | 15.3
15.4
15.7
16.0
16.7 | 16.2
17.3
17.6
16.7 | 15.5
15.8
16.7
16.0
15.6 | 15.8
16.4
17.2
16.3
15.9 | | 6
7
8
9
10 |

17.2 |

15.8 | | 16.3
16.3
17.0
16.6
15.4 | 15.5
15.4
15.5
15.4
14.4 | 15.8
15.8
16.1
15.9
14.8 | 1
1
1 | 7.8
6.6
5.8
5.6
5.6 | 16.6
15.5
15.4
15.3
15.2 | 17.3
16.0
15.6
15.5
15.4 | 16.0
16.0
16.4
17.3 | 15.5
15.6
15.8
16.0
16.8 | 15.7
15.8
16.1
16.5
17.2 | | 11
12
13
14
15 | 17.8
17.6
18.0
16.5
16.1 | 16.6
15.6
15.2
15.2 | 16.5
15.9
15.7 | 14.4
14.1
13.9
14.0
15.3 | 13.5
13.6
13.2
13.0
14.0 | 14.0
13.8
13.5
13.4
14.6 | 1
1
1 | 5.9
7.1
7.0
5.9
5.5 | 15.2
15.5
15.9
15.3
15.3 | 15.5
16.1
16.5
15.5
15.4 | 17.7
16.7
16.2
16.7
16.6 | 16.6
15.8
15.6
15.7
16.0 | 17.0
16.3
15.9
16.1
16.3 | | 16
17
18
19
20 | 15.5
15.3
15.0
15.0 | 14.4
14.0
14.1
14.5 | 14.6
14.5
14.7 | 16.3
16.3
16.2
15.9
16.0 | 15.0
15.4
15.2
15.1
15.0 | 15.6
15.8
15.7
15.5
15.4 | 1
1
1 | 5.4
4.7
5.3
6.4
7.0 | 14.6
14.3
14.3
15.2
15.9 | 15.0
14.5
14.7
15.7
16.4 | 17.0
17.0
16.1
16.2
16.4 | 16.1
16.1
15.6
15.5
16.1 | 16.4
16.5
15.8
15.8 | | 21
22
23
24
25 | 15.2
15.5
15.6
16.3
15.9 | 14.8
14.9
14.8
14.6
15.3 | 15.1
15.1
15.4 | 16.4
17.0
17.2
17.1
15.7 | 15.3
15.4
16.4
15.2
15.0 | 15.8
16.0
16.8
15.9
15.3 | 1
1
1 | 5.9
6.2
6.2
6.2
6.2 | 15.5
15.8
15.9
15.7
15.8 | 15.7
15.9
16.0
16.0 | 16.4
16.2
16.4
16.5
16.1 | 16.2
16.1
15.9
15.7
15.4 | 16.3
16.2
16.2
16.1
15.7 | | 26
27
28
29
30
31 | 15.8
16.1
16.0
15.1
15.9 | 14.7
14.8
15.0
14.6
14.5 | 15.4
15.6 | 15.7
15.4
16.2
17.4
17.6
16.3 | 14.9
14.9
15.1
15.6
16.3
15.2 | 15.3
15.2
15.6
16.3
17.0
15.7 | 1
1
1
1 | 7.1
7.2
6.3
5.9
5.8 | 15.7
16.3
15.4
15.5
15.3 | 16.3
16.8
15.8
15.7
15.6 | 15.6
16.5
17.7
17.7
17.8 | 15.4
15.5
16.4
17.0
16.7 | 15.5
16.1
17.0
17.5
17.1 | | MONTH | 18.0 | 12.7 | 15.3 | 17.6 | 13.0 | 15.5 | 1 | 7.8 | 14.3 | 15.8 | 17.8 | 15.4 | 16.3 | | | | OXY | GEN DISSOLVE | D, in (M | IG/L), WA | TER YEA | AR OCTO | BER 20 | 001 TO | SEPTEMBER | 2002 | | | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | OCTOB | ER | N | OVEMBER | | | DE | ECEMBER | | | JANUARY | 7. | | 1
2
3
4
5 | 9.6
9.6
9.3
9.2
9.0 | 8.8
9.2
8.9
8.8
8.6 | 9.4
9.1
9.0 | 11.2
11.0
10.8
10.5
10.4 | 10.4
10.1
9.9
9.8
9.6 | 10.8
10.5
10.3
10.1
9.9 | 1 | 9.2
9.6
9.6
0.2 | 8.3
8.1
7.8
8.2
8.8 | 9.0
9.1
9.1
9.4
9.8 | 13.0
12.8
12.6
12.8
12.9 | 12.5
12.1
12.3
12.4
12.4 | 12.7
12.4
12.5
12.5
12.6 | | 6
7
8
9
10 | 8.8
9.1
9.5
10.1
10.1 | 8.6
8.5
8.9
9.5
9.6 | 8.8
9.1
9.8 | 10.6
10.5
10.5
10.4 | 9.9
10.2
9.9
9.8
9.7 | 10.2
10.4
10.2
10.2 | 1
1
1 | 0.5
0.3
0.2
0.4
0.5 | 10.0
10.0
9.8
9.9
10.3 | 10.3
10.2
10.0
10.1
10.4 | 12.8
12.3
12.8
12.8 | 12.1
12.0
12.2
12.2
11.8 | 12.5
12.1
12.4
12.5
12.2 | | 11
12
13
14
15 | 10.0
9.6
9.3
9.2
8.6 | 9.3
9.0
8.7
8.6
8.2 | 9.1
9.0
8.8 | 10.4
10.3
10.4
10.3
10.1 | 9.7
9.7
9.6
9.8
9.6 | 10.0
9.9
10
9.9
9.8 | 1
1
1 | 0.9
1.1
1.2
0.4
0.3 | 10.4
10.8
10.2
10.2 | 10.5
10.9
10.7
10.3
10.2 | 12.4
12.4
12.2
12.2
12.8 | 11.6
11.7
11.3
11.7 | 11.9
11.6
11.6
11.9 | | 16
17
18
19
20 | 9.7
10.6
11.3 | 9.1
9.9
10.6 | 9.4
10.2 | 10.1
10.1
10.1
9.9
9.9 | 9.4
9.5
9.5
9.3
9.2 | 9.7
9.8
9.7
9.6
9.5 | 1
1
1 | 0.4
0.6
0.8
0.9 | 10.1
10.4
10.4
10.7
10.9 | 10.2
10.5
10.5
10.8
11.0 | 11.7
11.4
11.6
11.3
11.6 | 11.1
11.0
11.0
11.0 | 11.3
11.2
11.3
11.2
11.4 | | 21
22
23
24
25 | 11.6
11.9
11.9
11.7 | 11.1
11.3
11.3
10.0 | 11.6
11.6
11.3 | 10.1
10.3
10.3
10.2
9.5 | 9.5
9.7
9.8
9.4
8.9 | 9.7
9.9
10.1
9.7
9.1 | 1
1
1 | 1.7
2.2
2.1
1.9
2.3 | 11.2
11.2
11.6
11.6 | 11.5
11.9
11.8
11.7
12.0 | 12.0
12.0
11.8
11.3
11.0 | 11.3
11.7
11.2
10.7
10.7 | 11.6
11.8
11.4
11.0
10.9 | | 26
27
28
29
30
31 |

11.7
11.7
11.5 |

10.7
11.0
10.6 |
11.1
11.4 | 9.0
9.2
9.4
9.4
9.2 | 8.7
8.7
9.0
9.1
9.0 | 8.8
8.9
9.1
9.2
9.1 | 1
1
1
1 | 2.8
3.0
3.1
3.0
3.0
3.0 | 12.3
12.7
12.8
12.8
12.4
12.6 | 12.5
12.8
12.9
12.9
12.8
12.8 | 11.1
10.9
10.7
10.6 | 10.9
10.7
10.5
10.4 | 11.0
10.8
10.6
10.5 | MONTH 11.9 8.2 9.9 11.2 8.7 9.8 13.1 7.8 10.9 13.0 10.4 11.7 # 03417500 CUMBERLAND RIVER AT CELINA, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|---|--|--|--|--|--|--|---|--|---|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 10.6
10.8
11.2
11.5
11.5 | 10.4
10.6
10.8
11.2
11.2 | 10.5
10.7
11.1
11.3
11.4 | 11.7
11.8
11.9
12.3
12.5 | 11.5
11.6
11.6
11.8
12.2 | 11.6
11.7
11.7
12.0
12.4 | 12.0
12.0
12.2 |
11.7
11.6
11.8 |
11.7
11.7
12.0 | 10.9
10.7
10.8
10.9 | 10.4
10.5
10.3
10.4
10.7 | 10.6
10.5
10.7
10.8 | | 6
7
8
9
10 | 11.2
11.4
11.4
11.4
11.4 | 11.2 | 11.2
11.3
11.3
11.4
11.4 | 12.2
12.0
12.0
 | 11.6 | 12.1
11.8
11.7
 | 12.2
12.3
13.5
12.8
12.8 | 12.1 | 12.1
12.2
12.6
12.6
11.6 | 11.4
11.3
10.8
10.7 | 10.8
10.7
10.6
10.6 | 11.0
11.0
10.7
10.6
10.8 | | 11
12
13
14
15 | 11.6
11.6
11.6
11.8
11.8 | 11.5 | 11.5
11.5
11.5
11.7
11.7 | 11.6
11.5
11.6
11.6 | 11.2 | 11.6
11.4
11.4
11.4 | | 11.0
10.9
10.9 | 11.1
11.1
11.0
10.9
10.8 | 11.0
10.9
10.7
10.5 | 10.8
10.7
10.4
10.2
10.4 | 10.9
10.8
10.6
10.3
10.6 | | 16
17
18
19
20 | 11.7
11.9
12.1
12.0
11.7 | 11.6 | 11.6
11.7
11.9
11.9
11.4 | 11.4
11.1
12.2
12.2
11.1 | 10.2
10.3
10.5 | 11.1
10.8
10.8
10.8
11.0 | | 10.7
10.8
10.8 | 10.7
10.7
10.9
10.9 | 11 3 | 10.6
10.3
9.6
9.3
10.4 | 10.7
10.5
10.1
10.0
10.5 | | 21
22
23
24
25 | 11.2
11.3
11.3
11.5
11.6 | 11.1
11.1
11.3 | 11.1
11.2
11.3
11.4
11.5 | 11.1
11.5
11.6
11.5 | 11.1
11.4
11.4 | 10.9
11.3
11.5
11.4
11.4 | 10.9
10.7
10.7
11.2
10.8 | 10.6
10.5
10.7
 10.8
10.6
10.6
11.0
10.4 | 10.6
10.6
10.5
10.3 | 10.4
10.2 | 10.5
10.5
10.4
10.3
10.1 | | 26
27
28
29
30
31 | 11.6
11.6
11.6
 | 11.4 | 11.5
11.5
11.6
 | 11.3
11.3
11.4
11.4 | 11.2
11.3 | 11.2
11.2
11.4
11.3 | 11.0
11.0
10.8 | 9.9
10.5
10.8
10.4 | 10.4
10.8
10.9
10.6 | 10.2
10.1
10.1
10.0
9.9
9.8 | 9.9
9.9
9.8
9.6
9.5 | 10.0
10.0
9.9
9.8
9.8
9.7 | | MONTH | 12.1 | 10.4 | 11.4 | 12.5 | 10.2 | 11.4 | 13.5 | 9.9 | 11.1 | | | 10.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | | 9.6
9.5
9.4
9.4
9.5 | JUNE | 9.5
9.5
9.3
9.3 | MAX | | MEAN | 10.4 | AUGUST
9.9
10.0 | MEAN 10.1 10.2 10.2 10.3 10.3 |

8.5
8.6 | | | | DAY 1 2 3 4 | 9.6
9.5
9.4
9.4 | JUNE 9.5 9.4 9.2 9.2 | 9.5
9.5
9.3
9.3 |

 | JULY | | 10.4
10.5
10.4
10.5
10.7 | 9.9
10.0
9.9
10.1
10.1 | 10.1
10.2
10.2
10.3 |

8.5 | SEPTEMBE 8.2 8.2 8.3 8.3 8.3 |

8.3 | | DAY 1 2 3 4 5 6 7 8 9 10 | 9.6
9.5
9.4
9.4
9.5 | JUNE 9.5 9.4 9.2 9.2 9.2 | 9.5
9.5
9.3
9.3
9.3 |

11.0 | JULY 10.6 |

10.7 | 10.4
10.5
10.4
10.5
10.7
10.7
10.7
10.7 | 9.9
10.0
9.9
10.1
10.1
10.2
9.8 | 10.1
10.2
10.2
10.3
10.3
10.4
10.3
10.4
10.4 |
8.5
8.6
8.7
8.7 | SEPTEMBE 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.3 | ER | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 9.6
9.5
9.4
9.5
9.3

9.1
9.4
9.8
9.6 | JUNE 9.5 9.4 9.2 9.2 9.2 9.2 6.7 8.1 8.2 8.8 8.3 | 9.5
9.5
9.3
9.3
9.3
9.2

8.6
8.9
9.3
9.3 |

11.0
10.9
10.9
10.8
11.0 | JULY 10.6 10.5 10.5 10.7 |

10.7
10.7
10.7
10.7 | 10.4
10.5
10.4
10.5
10.7
10.7
10.7
10.7
10.8
10.6
10.8 | 9.9
10.0
9.9
10.1
10.1
10.2
9.8
10.0
10.2
9.9
9.9
9.2
9.5 | 10.1
10.2
10.2
10.3
10.3
10.4
10.4
10.4
10.4 | 8.5
8.6
8.7
8.7
8.7
9.2
9.4
9.2
9.1
9.3 | SEPTEMBE 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 | 8.3
8.4
8.4
8.6
9.0
8.8
8.7
8.8 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 | 9.6
9.5
9.4
9.4
9.5
9.3

9.1
9.4
9.6
9.7
9.2
10.0
10.3
10.05 | JUNE 9.5 9.4 9.2 9.2 9.2 9.2 6.7 8.1 8.2 8.8 8.3 7.5 8.0 8.2 9.0 9.1 | 9.5
9.3
9.3
9.3
9.2

8.6
8.9
9.3
9.3
9.3
8.6 |

11.0
10.9
10.9
10.8
11.0
11.3
11.3
11.3
11.3 | JULY 10.6 10.5 10.5 10.7 10.7 10.6 10.7 10.8 10.9 | 10.7
10.7
10.7
10.7
10.9
10.9
11.0
11.1
11.1
11.1 | 10.4
10.5
10.4
10.5
10.7
10.7
10.7
10.7
10.8
10.6
10.8
10.6
 | 9.9
10.0
9.9
10.1
10.1
10.2
9.8
10.0
10.2
9.9
9.9
9.2
9.5
 | 10.1
10.2
10.2
10.3
10.3
10.4
10.4
10.4
10.3
10.1
10.2 | 8.5
8.6
8.7
8.7
8.7
9.2
9.4
9.2
9.1
9.3
9.2
9.1 | SEPTEMBE 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.4 8.0 7.2 8.6 | 8.4
8.4
8.6
9.0
8.8
8.7
8.8
8.9 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 9.6
9.5
9.4
9.4
9.5
9.3

9.1
9.4
9.6
9.7
9.2
10.0
10.3
10.5
10.7 | JUNE 9.5 9.4 9.2 9.2 9.2 9.2 6.7 8.1 8.2 8.8 8.3 7.5 8.0 9.1 9.5 9.0 9.5 9.0 9.5 9.0 8.1 | 9.5
9.5
9.3
9.3
9.2

8.6
8.9
9.3
9.3
8.6
9.1
9.5
9.9
10.1
10.3
10.1
19.9
9.8 |

11.0
10.9
10.9
10.8
11.0
11.3
11.3
11.3
11.5
11.5
11.5 | JULY 10.6 10.5 10.5 10.7 10.7 10.6 10.7 10.9 10.9 10.9 10.1 10.1 | 10.7
10.7
10.7
10.8
10.9
11.0
11.1
11.1
11.2
11.0
11.0

10.8 | 10.4
10.5
10.4
10.5
10.7
10.7
10.7
10.7
10.8
10.6
10.8
10.6
 | 9.9
10.0
9.9
10.1
10.1
10.2
9.8
10.0
10.2
9.9
9.2
9.5

7.8
8.0
7.8
7.7
7.6
7.4 | 10.1
10.2
10.2
10.3
10.3
10.4
10.4
10.3
10.1
10.2

8.1
8.1
7.9
7.8
7.7 | 8.5
8.6
8.7
8.7
8.7
9.2
9.4
9.2
9.1
9.3
9.2
9.1
9.2
9.1 | SEPTEMBE 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.4 8.0 7.2 8.6 8.6 8.9 9.0 9.3 10.1 | 8.3
8.4
8.4
8.6
9.0
8.8
8.7
8.8
8.9
8.6
8.2

8.8
8.8 | ### 03418070 ROARING RIVER ABOVE GAINESBORO, TN LOCATION.--Lat $36^{\circ}21^{\circ}04^{\circ}$, long $85^{\circ}32^{\circ}45^{\circ}$, Jackson County, Hydrologic Unit 05130106, near left bank of downstream end of county road bridge. 1.1 mi upstream from Blackburn Fork, 6.3 mi east of Gainesboro, and at mile 9.9. DRAINAGE AREA.--210 mi^2 , includes 34 mi^2 without surface drainage. PERIOD OF RECORD.--October 1974 to September 1991. October 1992 to September 1997, crest-stage partial record station. October 2001 to September 2002. Prior to December 1942 monthly discharges only, published in WSP 1306. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 520.56 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good, except those below 5.0 ft³/s, which are poor. Minimum discharge for current year and period of record, no flow many days each years. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $22,400 \text{ ft}^3/\text{s}$, Mar. 12, 1975, gage height 21.83 ft, from high-water marks; no flow many days each year. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $5,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Jan 24 | 1300 | 12,700 | 17.64 | Mar 31 | 1530 | 5,980 | 12.65 | | Mar 18 | 0500 | *13,300 | *17.93 | Apr 25 | 0500 | 5,580 | 12.21 | Minimum discharge, no flow, many days. | | | DISCH | ARGE, CUB | IC FEET PEF | | WATER Y
LY MEAN V | YEAR OCTOBE
VALUES | R 2001 TO |) SEPTEMBE | ER 2002 | | | |--|--|---|--|--|--|---|--|--|--|--|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.07 | 0.00
0.00
0.00
0.00 | 109
37
8.3
7.4
3.0 | 66
59
52
50
41 | 278
288
225
199
166 | 51
50
54
52
46 | 2700
1240
790
562
439 | 1430
1060
595
637
585 | 8.1
3.9
1.6
0.99 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 135
15
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.12
0.80
839
964
418 | 51
57
44
40
43 | 154
230
293
251
223 | 43
41
37
39
44 | 351
283
234
198
156 | 441
466
601
414
308 | 6.7
16
1.8
0.48
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.00
0.00
174
149 | 0.00
0.00
0.00
0.00
0.00 | 394
296
360
1160
726 | 96
130
103
84
70 | 204
176
155
134
120 | 39
42
52
68
57 | 126
106
92
84
77 | 233
174
777
1140
588 | 0.00
0.00
3.6
109
26 | 0.02
0.00
10
35
1.7 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 53
10
0.15
0.00
0.00 | 0.00
0.00
0.00
0.00 | 401
294
256
206
161 | 58
50
51
618
959 | 109
95
83
76
87 | 93
5500
9650
2820
2180 | 60
47
41
33
28 | 393
274
470
307
207 | 2.4
0.70
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.03 | 0.00
0.00
0.00
0.00
40 | 129
108
188
348
245 | 487
315
3940
9380
5060 | 93
76
67
62
57 | 1580
960
675
522
407 | 23
21
13
60
2970 | 157
121
96
75
58 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
2.0
1.9
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 28
2.3
3.2
15
89 | 191
160
135
112
89
76 | 1720
910
575
397
288
223 | 61
61
55
 | 1170
1160
722
544
427
3120 | 914
458
342
382
223 | 56
52
35
26
19 | 0.00
0.00
18
0.39
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 52
668
180
39
6.0 | |
TOTAL
MEAN
MAX
MIN
CFSM
IN. | 536.25
17.30
174
0.00
0.10
0.11 | 177.50
5.917
89
0.00
0.03
0.04 | 8421.62
271.7
1160
0.12
1.54
1.78 | 26017
839.3
9380
40
4.77
5.50 | 4078
145.6
293
55
0.83
0.86 | 32245
1040
9650
37
5.91
6.82 | 13053
435.1
2970
13
2.47
2.76 | 11808
380.9
1430
13
2.16
2.50 | 200.86
6.695
109
0.00
0.04
0.04 | 46.72
1.507
35
0.00
0.01
0.01 | 0.00
0.000
0.00
0.00
0.00 | 948.90
31.63
668
0.00
0.18
0.20 | ### 03418070 ROARING RIVER ABOVE GAINESBORO, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2002, BY WATER YEAR (WY) | MEAN 75.46
MAX 476
(WY) 1990
MIN 0.000
(WY) 1979 | 174.7
539
1980
0.39
1981 | 404.7
1440
1991
0.43
1981 | 536.1
1271
1979
0.22
1981 | 519.4
1426
1989
74.3
1981 | 603.3
2507
1975
36.6
1983 | 1015
1979
8.05 | 272.7
1361
1984
0.46
1985 | 88.28
483
1981
0.000
1984 | 33.91
147
1989
0.058
1984 | 37.86
331
1982
0.000
1975 | 66.69
261
1982
0.000
1976 | |--|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---|---------------------------------------|---------------------------------------|--|--|---------------------------------------| | SUMMARY STATISTIC | cs | | | FOR 2 | 002 WAT | ER YEAR | | | WATER YEARS | S 1975 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME LOWEST DAILY MEA LOWEST DAILY MEA LOWEST DAILY MEA ANNUAL SEVEN-DAY MAXIMUM PEAK STAG ANNUAL RUNOFF (CE ANNUAL RUNOFF (IN 10 PERCENT EXCEEL 50 PERCENT EXCEEL 50 PERCENT EXCEEL | AN AN I MINIMUM I GE FSM) ICHES) OS | | | 96
133
5 | 32.85
67.2
50
a0.00
0.00
00
17.93
1.52
20.61
86
28 | Mar 18
Oct 1
Oct 26
Mar 18
Mar 18 | | | 264.1
455
83.0
15800
a0.00
0.00
22400
21.83
1.50
20.38
636
38
0.00 | Mar 13
Oct 28
Oct 28
Mar 12
Mar 12 | 3 1974
3 1974
2 1975 | a See REMARKS. ### 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN #### WATER-OUALITY RECORDS LOCATION.--Lat $36^{\circ}17'12"$, long $85^{\circ}56'27"$, Smith County, Hydrologic Unit 05130108, on right bank in powerhouse at Cordell Hull Dam, 2.7 mi north of Carthage, and at mile 313.5. DRAINAGE AREA. -- 8,095 mi². PERIOD OF RECORD. -- October 1980 to September 1997, October 1999 to current year. #### PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: October 1980 to September 1997, October 1999 to current year. pH: October 1990 to September 1997, October 1999 to current year. WATER TEMPERATURE: October 1980 to September 1997, October 1999 to current year. DISSOLVED OXYGEN: October 1980 to September 1997, October 1999 to current year. ${\tt INSTRUMENTATION.--Data\ collection\ platform\ and\ water-quality\ monitor.}$ REMARKS.--Flow regulated by Cordell Hull Dam and other reservoirs above station. Interruptions in the record were due to instrument malfunctions. All parameters affected by release from Cordell Hull Dam. Records for water temperature, specific conductance and pH are good, dissolved oxygen records are poor. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- REMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 290 microsiemens, Mar. 27, 1990; minimum, 140 microsiemens, Sept. 3, 1984. pH: Maximum, 8.9 units, Aug. 14, 29, 2002; minimum, 6.6 units, May 31, 1994, Jan. 1, 2002. WATER TEMPERATURE: Maximum, 23.7°C, July 13, 1995 July 31, 1997; minimum, 2.0°C, Jan. 12, 15-21, 1981. DISSOLVED OXYGEN: Maximum, 15.5 mg/L, Mar. 4, 1983; minimum, 3.7 mg/L, Aug. 5, 1988. ### EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: Maximum, 250 microsiemens, Dec. 21; minimum, 167 microsiemens, Mar. 20. pH: Maximum, 8.9 units, Aug. 14, 29; minimum, 6.6 units, Jan. 1. WATER TEMPERATURE: Maximum, 23.6°C, July 10; minimum, 4.9°C, Jan. 20. DISSOLVED OXYGEN: Maximum, 13.5 mg/L, Jan. 17, 18, 19. SPECIFIC CONDUCTANCE FROM THE DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|--|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 218
213
215
217
216 | 210
211
213
212
213 | 212
211
214
214
214 | 228
224
229
230
228 | 220
221
223
222
222 | 223
223
224
224
224 | 222
221
223
228
225 | 217
217
218
218
218 | 218
218
220
222
221 | 236
238
238
242
242 | 233
235
237
238
239 | 235
237
238
239
240 | | 6
7
8
9
10 | 216
219
216
216
215 | 212
211
212
213
212 | 213
213
214
214
213 | 230
225
231
227
233 | 222
222
222
222
222
222 | 225
223
224
224
224 | 221
222
223
226
229 | 219
219
217
221
225 | 219
220
221
223
227 | 242
241
241
241
240 | 238
240
241
239
239 | 240
240
241
240
240 | | 11
12
13
14
15 | 215
217
217
214
218 | 211
212
213
208
210 | 212
213
214
211
211 | 229
230
225
224
225 | 222
221
221
220
220 | 225
224
222
222
222 | 231
233
238
239
240 | 227
229
230
235
236 | 229
230
233
237
238 | 240
240
240
241
241 | 238
238
238
237
238 | 239
239
239
238
238 | | 16
17
18
19
20 | 218
215
216
217
217 | 210
211
211
211
211 | 212
212
213
213
214 | 225
224
225
222
223 | 219
219
218
218
218 | 221
221
220
220
220 | 248
246
247
248
249 | 240
241
243
245
247 | 242
243
245
246
248 | 240
238
239
237
236 | 238
237
235
232
231 | 239
237
236
234
232 | | 21
22
23
24
25 | 219
219
219
225
220 | 213
214
214
211
213 | 216
216
216
217
216 | 221
222
225
225
220 | 217
217
218
215
217 | 219
219
220
219
218 | 250
249
248
245
243 | 247
246
242
241
237 | 248
247
246
243
239 | 235
234
239
230
229 | 231
231
230
227
187 | 233
232
234
228
208 | | 26
27
28
29
30
31 | 221
220
222
220
225
226 | 215
216
214
215
219
219 | 217
218
218
218
220
221 | 221
220
225
221
219 | 216
216
217
217
217 | 218
218
219
219
218 | 240
232
229
229
234
235 | 230
228
227
227
228
232 | 235
229
228
228
231
233 | 187
170
180
180
184
192 | 169
168
170
176
179
183 | 174
169
176
177
182
187 | | MONTH | 226 | 208 | 215 | 233 | 215 | 221 | 250 | 217 | 232 | 242 | 168 | 225 | 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN--Continued SPECIFIC CONDUCTANCE FROM THE DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SEECTLIC | CONDUCT | ANCE PROM | IIIE DCF, | 111 US/CI | M & 25C, | WAILN ILAN | OCTOBER | 2001 | 10 SEFIEMBE | . 2002 | | |--|--|---|--|---|---|---|---|---
---|--|---|--| | DAY | MAX | MIN | MEAN | | | 1 | FEBRUARY | | | MARCH | | I | APRIL | | | MAY | | | 1
2
3
4
5 | 209
213
220
222
223 | 191
208
213
220
222 | 199
211
217
221
222 | 229
230
229
227
228 | 227
227
226
226
226 | 228
228
227
226
226 | 213
206
204
212
214 | 206
199
198
204
212 | 212
201
200
209
214 | 215
205
208
215
217 | 201
199
201
207
215 | 207
201
204
210
216 | | 6
7
8
9
10 | 225
225
231
231
233 | 223
224
224
229
229 | 224
224
227
230
230 | 227
227
231
227
229 | 225
225
225
225
226 | 225
225
226
226
227 | 214
211
209
210
210 | 211
208
208
208
208
208 | 213
210
209
210
209 | 218
219
216
216
216 | 213
214
212
212
213 | 215
215
214
213
215 | | 11
12
13
14
15 | 233
234
233
232
235 | 231
232
231
231
231 | 232
233
232
231
232 | 231
229
229
232
231 | 226
226
227
229
229 | 228
227
228
229
230 | 209
209
206
204
204 | 206
206
204
203
202 | 207
207
205
203
202 | 218
216
217
209
208 | 214
214
208
207
205 | 216
215
213
208
207 | | 16
17
18
19
20 | 235
232
233
232
231 | 231
230
230
230
230
229 | 232
231
231
231
230 | 233
232
232
213
178 | 229
229
213
172
167 | 231
230
228
192
171 | 205
206
209
213
213 | 202
203
204
206
205 | 203
204
206
208
208 | 206
208
207
206
203 | 204
206
205
202
199 | 205
207
206
204
201 | | 21
22
23
24
25 | 230
230
230
231
230 | 229
229
229
228
228 | 229
229
229
229
228 | 205
211

222
224 | 178
205

214
223 | 189
210

219
224 | 214
219
216
217
217 | 205
207
209
213
206 | 207
212
211
214
210 | 199
190
198
204
206 | 190
182
183
198
203 | 196
186
190
201
204 | | 26
27
28
29
30
31 | 230
229
228
 | 228
227
227
 | 228
228
227
 | 224
223
220
216
212
211 | 223
220
215
212
210
209 | 224
222
217
214
211
210 | 214
217
213
218
216 | 206
208
209
210
210 | 208
211
211
213
213 | 205
205
203
198
196
197 | 201
196
195
195
194
193 | 202
199
198
196
195
194 | | MONTH | 235 | 191 | 227 | 233 | 167 | 220 | 219 | 198 | 208 | 219 | 182 | 205 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
JGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
198
200
202
202
200 | | MEAN 194 197 198 197 197 | 107 | | MEAN
195
194
192
192
194 | AU | | MEAN
190
190
189
189
189 | | SEPTEMBE | | | 1
2
3
4 | 198
200
202
202 | JUNE
193
195
194
194 | 194
197
198
197 | 197
197
198
196 | JULY
192
191
189
190 | 195
194
192
192 | 191
191
191
193 | 189
188
188
188 | 190
190
189
189 | 194
198
196
195 | 189
189
189
190
189 | 192
192
192
192
192 | | 1
2
3
4
5
6
7
8
9
10 | 198
200
202
202
200
202
201
203
201 | JUNE 193 195 194 194 195 194 194 194 194 194 194 196 | 194
197
198
197
197
197
197
197
197
198
201 | 197
197
198
196
199
199
196
199
198 | JULY 192 191 189 190 191 191 190 189 190 191 192 190 | 195
194
192
192
194
195
193
193
192
192 | 191
191
191
193
191
192
194
198
198
198 | 189 188 188 188 187 188 189 189 189 189 189 | 190
190
189
189
189
190
192
192 | 194
198
196
195
195
197

187
188 | 189
189
190
189
190
190
194

185 | 192
192
192
192
192
192
195

185 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 198
200
202
202
200
201
201
203
201
202
208
204
203
200 | JUNE 193 195 194 194 195 194 194 194 194 194 194 196 196 196 196 | 194
197
198
197
197
197
197
197
197
198
201
199
199 | 197
197
198
196
199
199
198
195
198
195
196 | JULY 192 191 189 190 191 191 191 190 191 190 191 192 190 190 189 | 195
194
192
192
194
195
193
193
192
192
194
192 | 191
191
193
191
192
194
198
198
198
199
199 | JGUST 189 188 188 188 187 188 189 189 189 189 190 189 188 187 | 190
190
189
189
189
190
192
192
193
194
193
199
199 | 194
198
196
195
195
197

187
188
188

189 | 189 189 190 189 190 190 194 185 185 | 192
192
192
192
192
195

185
186 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15 | 198
200
202
202
200
201
201
203
201
202
208
204
203
200
202
203
200
202 | JUNE 193 195 194 194 195 194 194 194 194 195 196 196 195 197 198 199 199 199 199 199 199 | 194
197
198
197
197
197
197
197
197
198
201
199
199
198
198
197
194
194
196 | 197
197
198
196
199
199
198
195
198
195
198
195
196
193
196
193
196
192
195 | JULY 192 191 189 190 191 191 199 190 191 192 190 199 188 188 188 187 | 195
194
192
192
194
195
193
193
192
192
194
192
191
192
190
190
190
189 | 191
191
193
191
192
194
198
198
198
199
199
202
197
189 | 189 188 188 188 187 188 189 189 189 189 189 189 189 189 189 | 190
190
189
189
189
190
192
193
194
193
194
193
194
193
191
187 | 194
198
196
195
195
197

187
188
188

189
191
191
193
189
190 | 189 189 190 189 190 194 185 185 186 185 185 186 186 184 185 186 | 192
192
192
192
192
195

185
186
186
188
187
187
187 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 198 200 202 202 200 202 201 203 201 202 208 204 203 200 202 203 197 200 201 200 209 198 198 198 202 200 196 200 | JUNE 193 195 194 194 194 199 199 199 199 199 199 199 | 194
197
198
197
197
197
197
197
197
198
201
199
198
198
198
197
194
194
196
197
196
197
196
196
196
196
196
196
194
196 | 197
197
198
196
199
199
198
195
198
195
196
193
196
195
195
195
195
195
195
195
195
195
195 | JULY 192 191 189 190 191 191 199 190 191 192 190 199 188 188 188 188 188 188 189 189 18 | 195
194
192
192
194
195
193
193
192
192
194
192
190
190
192
189
191
194
195
199
199
199
199
199
199
199
199
199 | 191
191
193
191
192
194
198
198
198
199
202
197
189
197
195
194
193
192
189
190
188
189 | 189 188 188 188 188 188 189 189 189 189 | 190
189
189
189
190
192
193
194
193
194
193
199
187
186
186
189
190
187
188
189
191
191
191 | 194
198
196
195
195
197

187
188
188

189
191
191
193
189
190
190
190
190
188
188
188
188 | 189 189 190 190 194 185 185 186 185 185 186 187 185 184 185 186 187 185 186 187 | 192
192
192
192
192
192
195

185
186
186
188
187
187
187
187
187
188
188
188
188 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 198 200 202 202 201 203 201 202 208 204 203 200 202 203 197 200 201 200 197 200 198 198 198 202 200 196 | JUNE 193 195 194 194 195 194 194 194 195 196 196 195 197 198 199 199 199 199 199 199 199 199 199 | 194
197
198
197
197
197
197
197
197
199
199
199
199 | 197
197
198
196
199
199
198
195
198
195
196
193
195
195
195
195
195
195
195
195
195
195 | JULY 192 191 189 190 191 191 190 189 190 191 192 190 189 188 188 188 1887 187 188 189 189 189 189 189 |
195
194
192
192
194
195
193
193
192
192
194
192
190
190
190
192
189
191
194
195
195
191
194
195
191
195
195
197
197
198
199
199
199
199
199
199
199
199
199 | 191
191
193
191
193
191
192
194
198
198
198
199
199
202
197
189
197
195
194
193
192
189
199
199
199
199
199
199
199
199
199 | 189 188 188 188 188 187 188 189 189 189 189 189 180 181 187 185 184 183 182 186 188 187 185 184 183 182 186 188 | 190
190
189
189
189
192
192
193
194
193
194
193
191
187
186
189
190
189
185
185
188
189 | 194
198
196
195
195
197

187
188
188

189
191
193
190
191
193
190
190
191
193
190
191
193
188
188 | 189 189 190 189 190 194 185 185 186 185 186 187 184 185 186 187 185 186 187 185 186 187 | 192
192
192
192
192
195

185
186
186

186
188
187
187
188
188
188
188
188
188
188 | 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN--Continued PH, WH, FIELD FROM THE DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |---|--|---|---|--|---|---|---|---|--|--|---|--| | | OCTO | OBER | NOVE | /BER | DECEN | /BER | JAN | JARY | FEBRU | JARY | MAF | CH | | 1
2
3
4
5 | 7.8
7.8
7.9
7.9 | 7.2
7.4
7.4
7.4
7.4 | 7.9
7.9
7.8
7.9 | 7.6
7.6
7.5
7.4
7.7 | 7.7
7.6
7.6
7.6
7.8 | 7.6
7.6
7.6
7.5
7.3 | 7.5
7.6
7.7
7.7 | 6.6
6.8
7.6
7.5
7.6 | 7.5
7.5
7.6
7.6 | 7.4
7.4
7.5
7.5 | 7.9
7.9
7.9
7.9
8.0 | 7.9
7.9
7.8
7.8
7.8 | | 6
7
8
9
10 | 7.8
7.9
7.8
7.8
7.9 | 7.6
7.3
7.4
7.4
7.4 | 7.8
7.9
7.9
7.8
7.7 | 7.5
7.6
7.6
7.6
7.3 | 7.8
7.5
7.7
7.6
7.7 | 7.4
7.3
7.3
7.5
7.4 | 7.7
7.7
7.8
7.8
7.9 | 7.5
7.6
7.6
7.6
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.5
7.6
7.6
7.6
7.5 | 7.9
8.0
8.0
8.0 | 7.8
7.8
7.8
7.9
7.8 | | 11
12
13
14
15 | 7.9
7.8
7.7
7.8
7.8 | 7.5
7.5
7.6
7.6
7.5 | 7.6
7.7
7.7
7.9
7.9 | 7.3
7.4
7.6
7.6
7.8 | 7.8
7.7
7.6
7.6
7.5 | 7.6
7.5
7.1
7.3
7.1 | 7.9
7.9
7.9
7.9 | 7.7
7.7
7.7
7.8
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.5
7.5 | 8.1
8.3
8.4
8.3 | 7.8
7.9
8.2
8.3 | | 16
17
18
19
20 | 7.8
7.8
7.8
7.9
7.8 | 7.3
7.4
7.2
7.3
7.4 | 7.8
7.8
7.8
7.9
7.8 | 7.8
7.7
7.7
7.5
7.6 | 7.4
7.7
7.7
7.6
7.5 | 7.1
7.2
7.1
7.3
7.3 | 7.9
8.0
7.9
7.9 | 7.8
7.8
7.8
7.7
7.7 | 7.6
7.6
7.6
7.7
7.9 | 7.5
7.5
7.5
7.5
7.6 | 8.3
8.2
8.0
7.8
7.6 | 8.1
8.0
7.8
7.6
7.6 | | 21
22
23
24
25 | 7.8
7.9
8.0
8.2
8.0 | 7.2
7.5
7.3
7.4
7.3 | 7.8
7.8
7.8
7.7
7.8 | 7.6
7.7
7.7
7.6
7.6 | 7.6
7.6
7.4
7.4 | 7.2
7.2
7.2
7.0
7.2 | 7.7
7.7
7.9
7.9
7.7 | 7.6
7.7
7.6
7.7
7.6 | 7.9
7.9
7.9
7.9
8.0 | 7.8
7.8
7.8
7.8 | 7.7
7.7

7.7
7.8 | 7.6
7.7

7.7
7.7 | | 26
27
28
29
30
31 | 7.8
7.9
7.9
7.9
7.8
8.0 | 7.3
7.3
7.4
7.3
7.7 | 7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.4
7.7
7.7
7.5
7.6
7.7 | 7.2
7.4
6.8
7.2
7.0
7.1 | 7.6
7.5
7.5
7.5
7.5
7.4 | 7.5
7.5
7.5
7.4
7.3
7.3 | 7.9
7.9
7.9
 | 7.8
7.8
7.9
 | 7.8
7.8
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7
7.7 | | MONTH | 8.2 | 7.2 | 7.9 | 7.3 | 7.8 | 6.8 | 8.0 | 6.6 | 8.0 | 7.4 | 8.4 | 7.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | | DAY | MAX
API | | MAX
MA | | MAX
JUI | | MAX
JUI | | MAX
AUGU | | MAX
SEPTE | | | DAY 1 2 3 4 5 | | | | | | | | | | | | | | 1
2
3
4 | 7.7
7.7
7.7
7.7
7.8 | 7.7
7.6
7.6
7.6
7.7 | 8.0
7.8
7.7
7.8 | 7.5
7.4
7.3
7.4 | JUN
8.2
8.2
8.1
8.2 | 7.8
7.7
7.5
7.5 | JUI
8.0
8.2
8.2
8.4 | 7.7
7.6
7.7
7.7 | 7.8
8.2
8.3
8.0 | 7.6
7.5
7.6
7.6 | SEPTE
8.7
8.5
8.6
8.6 | MBER
8.0
8.0
8.0
7.9 | | 1
2
3
4
5
6
7
8 | 7.7
7.7
7.7
7.8
7.8
7.8
7.8 | 7.7
7.6
7.6
7.7
7.7
7.8
7.7
7.8
7.8 | 8.0
7.8
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.7 | 7.5
7.4
7.3
7.4
7.5
7.4
7.3
7.4
7.3 | 8.2
8.2
8.1
8.2
8.2
8.0
8.5
8.6
8.4 | 7.8
7.7
7.5
7.5
7.7
7.6
7.6
7.6 | 8.0
8.2
8.2
8.4
8.3
8.3
8.4
8.0 | 7.7
7.6
7.7
7.7
7.7
7.6
7.8
7.7 | 7.8
8.2
8.3
8.0
8.1
8.2
8.3
8.4 | 7.6
7.5
7.6
7.6
7.7
7.6
7.5
7.6 | SEPTE 8.7 8.5 8.6 8.7 | 8.0
8.0
8.0
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.7
7.6
7.6
7.7
7.7
7.8
7.7
7.8
7.8
7.8
7.7
7.8 | 8.0
7.8
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.9
7.8 | 7.5
7.4
7.3
7.4
7.5
7.4
7.3
7.4
7.4
7.5
7.5
7.5
7.5 | 8.2
8.2
8.1
8.2
8.2
8.5
8.6
8.4
8.1
7.9
8.0
7.6 | 7.8
7.7
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6 | JUI
8.0
8.2
8.4
8.3
8.3
8.4
8.0
8.2
8.3
8.3
8.3 | 7.7
7.6
7.7
7.7
7.7
7.6
7.8
7.7
7.6
7.7
7.7 | AUGU 7.8 8.2 8.3 8.0 8.1 8.2 8.3 8.4 8.2 8.3 8.4 8.2 8.1 8.9 | 7.6
7.5
7.6
7.6
7.7
7.6
7.5
7.6
7.6
7.6
7.6
7.6 | SEPTE 8.7 8.5 8.6 8.6 8.7 8.8 7.8 8.8 7.8 8.1 8.1 | 8.0
8.0
8.0
7.9
7.9

7.8
7.7

7.1
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.7
7.6
7.6
7.7
7.7
7.8
7.7
7.8
7.8
7.8
7.7
7.7
7.7 | 8.0
7.8
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.8 | 7.5
7.4
7.5
7.4
7.5
7.4
7.3
7.4
7.4
7.5
7.5
7.5
7.5
7.7
7.7 | 8.2
8.2
8.1
8.2
8.2
8.0
8.5
8.6
8.4
8.1
7.9
8.0
7.6
7.7 | 7.8
7.7
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.4 | JUI
8.0
8.2
8.4
8.3
8.3
8.4
8.0
8.2
8.3
8.3
8.3
8.3
8.3
8.3
8.2
8.2 | 7.7
7.6
7.7
7.7
7.7
7.6
7.8
7.7
7.6
7.7
7.7
7.6
7.7 | AUGU 7.8 8.2 8.3 8.0 8.1 8.2 8.3 8.4 8.2 8.3 8.4 8.2 8.3 8.6 8.5 8.6 8.5 8.6 8.5 | 7.6
7.5
7.6
7.6
7.7
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7 | SEPTE 8.7 8.5 8.6 8.6 8.7 8.8 7.8 8.1 8.1 7.7 7.8 7.9 8.0 8.0 | 8.0
8.0
8.0
7.9
7.9
7.9

7.8
7.7

7.1
6.9
7.0
7.1
7.2
6.8
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.7
7.6
7.6
7.7
7.7
7.8
7.7
7.8
7.8
7.8
7.7
7.7
7.7 | 8.0
7.8
7.7
7.8
7.7
7.7
7.7
7.8
7.7
7.8
7.8 | 7.5
7.4
7.5
7.4
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.5
7.7
7.7
7.7
7.7
7.7
7.7 | 8.2
8.2
8.1
8.2
8.2
8.0
8.5
8.6
8.4
8.1
7.9
8.0
7.6
7.7
7.9
7.5
7.7
8.2
8.0 | 7.8
7.7
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.6
7.6
7.5
7.6 | JUI
8.0
8.2
8.4
8.3
8.3
8.4
8.0
8.2
8.3
8.3
8.3
8.3
8.3
8.2
8.2
8.2
8.2
8.2 | 7.7
7.6
7.7
7.7
7.7
7.6
7.8
7.7
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6 | AUGU 7.8 8.2 8.3 8.0 8.1 8.2
8.3 8.4 8.2 8.3 8.4 8.2 8.3 8.2 8.1 8.9 8.6 8.5 8.6 8.5 8.8 8.8 8.8 | 7.6
7.5
7.6
7.6
7.7
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.7
8.0 | SEPTE 8.7 8.5 8.6 8.6 8.7 8.8 7.8 8.1 8.1 7.7 7.8 7.9 8.0 8.0 7.8 7.6 7.4 7.6 7.7 | 8.0
8.0
8.0
7.9
7.9
7.9
7.8
7.7

7.8
7.7
7.1
7.2
6.8
7.0
7.0
7.0 | 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN--Continued 65 WATER TEMPERATURE FROM THE DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|--|---|---|--|--|---|--|--|---|--| | | | OCTOBER | | | NOVEMBER | | | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 17.1
17.0
17.3
17.3 | 16.4
16.3
16.4
16.2 | 16.7
16.7
16.7
16.9
17.0 | 14.9
15.6
14.8
14.9 | 14.4 | 14.6
14.8
14.5
14.5 | 12.9
12.7
12.9
12.6
13.0 | 12.5
12.3
12.3
12.2
12.2 | 12.6
12.6
12.6
12.4
12.5 | 7.8
7.4
6.9
6.7
6.5 | 7.4
6.8
6.2
5.9 | 7.6
7.1
6.6
6.4
6.2 | | 6
7
8
9
10 | 16.9
16.7
16.8
16.7
16.7 | 16.1
16.2
16.2
16.1
16.2 | 16.4
16.4
16.4
16.3
16.5 | 14.6
14.7
14.9
14.3 | 14.1
13.8
13.9
13.8
13.6 | 14.3
14.2
14.2
14.0
13.9 | 13.3
12.9
13.2
12.9 | 12.2
12.6
12.7
12.6
12.5 | 12.6
12.7
12.9
12.8
12.6 | 6.1
6.0
5.7
5.8
5.9 | 5.9
5.6
5.3
5.2
5.4 | 6.0
5.8
5.5
5.5
5.6 | | 11
12
13
14
15 | 16.9
16.9
17.1
17.2
16.9 | 16.6
16.6
16.6
16.9
16.6 | 16.7
16.7
16.8
17.1
16.7 | 14.0
13.8
13.6
13.6
13.4 | 13.2 | 13.7
13.6
13.3
13.3 | 12.6
12.7
12.8
12.7
12.6 | 12.4
12.4
12.6
12.6
12.4 | 12.6
12.5
12.7
12.6
12.5 | 5.9
5.8
5.8
6.0
5.8 | 5.6
5.5
5.3
5.5
5.3 | 5.7
5.7
5.6
5.7
5.6 | | 16
17
18
19
20 | 16.8
16.4
16.0
16.0 | 16.3
16.0
15.7
15.7 | 16.5
16.2
15.9
15.9 | 13.2
13.2
13.3
13.2
13.0 | 12.7
12.6
12.7
12.7
12.5 | 12.9
12.9
13.0
12.9 | 12.6
12.8
12.5
12.4
12.1 | 12.5
12.0 | 12.4
12.6
12.4
12.2
11.9 | 5.5
5.7
5.3
5.2
5.2 | 5.3
5.3
5.1
5.0
4.9 | 5.4
5.4
5.2
5.1
5.0 | | 21
22
23
24
25 | 15.8
16.0
17.0
16.7
16.8 | 15.4
15.5
15.6
16.1
15.8 | 15.6
15.7
16.1
16.4
16.3 | 12.6
12.4
12.3
12.5
12.8 | 12.2
11.9
12.0
12.1
12.1 | 12.4
12.2
12.1
12.3
12.3 | 12.1
11.5
11.2
11.1
10.7 | 10.6
10.1 | 11.7
11.3
11.1
10.9
10.5 | 5.7
6.3
7.0
8.3
9.5 | 5.1
5.2
6.2
7.0
8.3 | 5.4
5.8
6.5
7.7
9.0 | | 26
27
28
29
30
31 | 16.1
15.7
15.4
15.4
15.1 | 15.4
15.1
14.8
14.6
14.5
14.4 | 15.8
15.4
15.1
15.0
14.8
14.7 | 12.5
12.8
12.8
12.9
12.9 | 12.2
12.1
12.4
12.5
12.7 | 12.3
12.4
12.5
12.7
12.8 | 10.1
9.8
9.4
9.0
8.8
8.3 | 9.7
9.3
9.0
8.6
8.3
7.7 | 10
9.5
9.2
8.9
8.6
8.1 | 9.9
9.9
9.9
10.4
10.4 | 9.5
9.7
9.7
9.8
10.2
10.3 | 9.7
9.8
9.8
10.1
10.3
10.5 | | MONTH | 17.5 | 14.4 | 16.2 | 15.6 | 11.9 | 13.3 | 13.3 | 7.7 | 11.6 | 11.0 | 4.9 | 6.8 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | | MARCH | | | APRIL | | | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | 11.1
10.3 | FEBRUARY | | | | | MAX
10.4
10.7
10.9
10.9 | APRIL | MEAN 10.2 10.4 10.8 10.7 10.5 | | | MEAN 16.2 16.0 15.7 15.6 15.4 | | 1
2
3
4
5 | 11.1
10.3
10.2
10.0 | 10.3
10.1
10.0
9.7 | 10.7
10.2
10.1
9.8
9.5 | 7.6
7.8
7.8
7.3
7.6 | 7.3
7.5
7.2
6.7 | | | 10.0
10.2
10.6
10.5
10.3 | | 16.4
16.2
15.9
15.8
15.5 | MAY 15.9 15.8 15.6 15.3 15.2 14.9 14.6 | 16.2
16.0
15.7
15.6 | | 1
2
3
4
5
6
7
8
9 | 11.1
10.3
10.2
10.0
9.7
9.4
8.8
7.9
7.4
7.6 | FEBRUARY 10.3 10.1 10.0 9.7 9.4 8.8 7.9 7.3 7.1 | 10.7
10.2
10.1
9.8
9.5
9.2
8.4
7.6
7.3
7.4 | 7.6
7.8
7.8
7.3
7.6
7.2
8.0
8.2
8.4 | 7.3
7.5
7.2
6.7
6.5
6.7
7.1
7.4
7.8
8.0 | 7.5
7.6
7.6
7.0
7.0
7.0
7.5
7.6
8.2
8.4 | 10.4
10.7
10.9
10.6
10.5
10.5
10.8 | APRIL 10.0 10.2 10.6 10.5 10.3 10.0 9.8 10.3 10.7 10.9 11.5 11.6 11.5 | 10.2
10.4
10.8
10.7 | 16.4
16.2
15.9
15.8
15.5
15.4
15.0
15.2
14.9 | MAY 15.9 15.8 15.6 15.3 15.2 14.9 14.6 14.6 14.8 | 16.2
16.0
15.7
15.6
15.4
15.2
14.8
14.9
14.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.1
10.3
10.2
10.0
9.7
9.4
8.8
7.9
7.4
7.6 | FEBRUARY 10.3 10.1 10.0 9.7 9.4 8.8 7.9 7.3 7.1 7.3 7.4 7.5 7.5 7.7 | 10.7
10.2
10.1
9.8
9.5
9.2
8.4
7.6
7.3
7.4 | 7.6
7.8
7.3
7.6
7.2
8.0
8.2
8.4
8.7
9.1
9.1 | 7.3
7.5
7.2
6.7
6.5
6.7
7.1
7.4
7.8
8.0
8.1
8.4
8.8 | 7.5
7.6
7.0
7.0
7.0
7.5
7.6
8.2
8.4
8.6
8.7
9.2 | 10.4
10.7
10.9
10.9
10.6
10.5
10.5
10.8
10.9
11.6 | APRIL 10.0 10.2 10.6 10.5 10.3 10.0 9.8 10.3 10.7 10.9 11.5 11.6 11.5 11.9 | 10.2
10.4
10.8
10.7
10.5
10.2
10.1
10.5
11.2
11.7
11.8
11.7 | 16.4
16.2
15.9
15.8
15.5
15.4
15.0
15.2
14.9
15.1 | MAY 15.9 15.8 15.6 15.3 15.2 14.9 14.6 14.8 14.8 14.8 14.8 | 16.2
16.0
15.7
15.6
15.4
15.2
14.8
14.9
14.8
14.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.1
10.3
10.2
10.0
9.7
9.4
8.8
7.9
7.4
7.6
7.8
7.8
8.2
8.3
8.4
8.5
8.6
8.5 | FEBRUARY 10.3 10.1 10.0 9.7 9.4 8.8 7.9 7.3 7.1 7.3 7.4 7.5 7.5 7.7 8.0 8.1 8.1 8.0 8.0 | 10.7
10.2
10.1
9.8
9.5
9.2
8.4
7.6
7.3
7.4
7.6
7.7
9.8
2
8.2
8.2
8.2 | 7.6
7.8
7.8
7.3
7.6
7.2
8.0
8.2
8.4
8.7
9.1
9.1
9.9
10.4 | MARCH 7.3 7.5 7.2 6.7 6.5 6.7 7.1 7.4 7.8 8.0 8.1 8.4 8.8 9.5 9.7 9.8 10.8 11.4 | 7.5
7.6
7.6
7.0
7.0
7.5
7.6
8.2
8.4
8.6
8.7
9.2
9.7
9.9
10.2
11.0 | 10.4
10.7
10.9
10.9
10.6
10.5
10.5
10.8
10.9
11.6
12.0
12.0
12.2
12.8
13.7
13.9
15.0 | APRIL 10.0 10.2 10.6 10.5 10.3 10.0 9.8 10.3 10.7 10.9 11.5 11.6 11.5 11.9 12.0 12.6 12.9 13.3 13.6 | 10.2
10.4
10.8
10.7
10.5
10.2
10.1
10.5
10.8
11.2
11.7
11.8
11.7
12.0
12.3
12.9
13.3
14.0 | 16.4
16.2
15.9
15.8
15.5
15.4
15.0
15.2
14.9
15.1
15.2
14.7
14.6
14.9 | MAY 15.9 15.8 15.6 15.3 15.2 14.9 14.6 14.8 14.8 14.8 14.8 14.9 14.5 14.4 | 16.2
16.0
15.7
15.6
15.4
15.2
14.8
14.9
15.0
15.1
15.1
14.8
14.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11.1
10.3
10.2
10.0
9.7
9.4
8.8
7.9
7.4
7.6
7.8
7.9
8.2
8.3
8.4
8.5
8.6
8.5
8.9
9.1
9.0
8.8
7.9 | FEBRUARY 10.3 10.1 10.0 9.7 9.4 8.8 7.9 7.3 7.1 7.3 7.4 7.5 7.7 8.0 8.1 8.1 8.0 8.3 8.7 8.8 8.6 8.4 | 10.7
10.2
10.1
9.8
9.5
9.2
8.4
7.6
7.3
7.4
7.6
7.7
7.9
8.2
8.2
8.2
8.2
8.3
8.6 | 7.6
7.8
7.8
7.3
7.6
7.2
8.0
8.2
8.4
8.7
9.4
9.1
9.9
10.4
10.2
10.8
11.4
12.1
12.2 | MARCH 7.3 7.5 7.2 6.7 6.5 6.7 7.1 7.4 7.8 8.0 8.1 8.4 8.8 9.5 9.7 9.8 10.8 11.4 12.1 | 7.5
7.6
7.6
7.0
7.0
7.5
7.6
8.2
8.4
8.6
8.7
9.2
9.7
9.9
10.2
11.8
12.2
11.7
10.4 |
10.4
10.7
10.9
10.9
10.6
10.5
10.5
10.8
10.9
11.6
12.0
12.0
12.2
12.8
13.7
13.9
15.2
15.2 | APRIL 10.0 10.2 10.6 10.5 10.3 10.0 9.8 10.3 10.7 10.9 11.5 11.6 11.5 11.9 12.0 12.6 12.9 13.3 13.6 13.9 14.8 15.0 14.8 15.6 | 10.2
10.4
10.8
10.7
10.5
10.2
10.1
10.5
10.8
11.2
11.7
11.8
11.7
12.0
12.3
14.0
15.5
15.4
15.5
15.4 | 16.4
16.2
15.9
15.8
15.5
15.4
15.0
15.2
14.9
15.1
15.2
15.6
15.3
15.1
14.7
14.6
14.9
14.8
14.2
13.6 | MAY 15.9 15.8 15.6 15.3 15.2 14.9 14.6 14.8 14.8 14.8 14.8 14.9 14.5 14.4 14.3 14.6 14.3 14.6 14.3 14.6 14.8 | 16.2
16.0
15.7
15.6
15.4
15.2
14.8
14.9
14.8
14.9
15.0
15.1
14.8
14.5
14.5
14.4
14.7
14.6
13.8
13.5 | 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN--Continued WATER TEMPERATURE FROM THE DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 17.6
17.3
17.0
18.1
18.6 | 16.3
16.5
16.5
16.4
16.7 | 16.9
16.9
16.7
17.0
17.5 | 21.4
22.3
22.4
23.2
22.9 | 20.1
20.1
19.8
20.1
20.1 | 20.8
20.7
20.8
21.2
21.4 | 21.3
22.6
23.1
22.2
22.4 | 20.3
19.9
20.1
20.1
20.1 | 20.9
21.0
21.3
21.2
21.1 | 22.5
21.8
22.2
22.2
22.6 | 20.2
20.3
20.0
20.1
20.5 | 21.1
21.0
21.0
21.1
21.2 | | 6
7
8
9
10 | 17.9
19.7
20.2
20.3
20.4 | 16.7
17.0
17.0
17.5
18.1 | 17.4
17.7
18.2
18.6
18.7 | 22.7
22.9
21.8
22.8
23.6 | 20.4
20.3
20.1
20.4
20.3 | 21.0
21.1
21.0
21.2
21.5 | 22.7
23.1
23.5
22.8
23.2 | 20.6
20.5
20.5
20.6
20.7 | 21.2
21.3
21.8
21.8
21.7 | 20.8

22.6
22.8 | 20.5

20.8
20.3 | 20.6

21.5
21.1 | | 11
12
13
14
15 | 19.9
21.0
21.7
20.2
21.3 | 17.6
18.0
18.7
18.7
19.2 | 18.7
19.1
19.8
19.5
19.9 | 23.4
22.9
23.1
22.4
22.3 | 20.3
20.2
20.4
20.7
20.5 | 21.6
21.5
21.7
21.4
21.2 | 22.6
22.1
22.2
23.4
22.4 | 20.8
20.9
20.4
20.1
19.9 | 21.6
21.3
21.3
21.5
21.3 | 20.8

22.4
22.4
22.2 | 20.6

20.4
20.5
20.5 | 20.7

21.7
21.5
21.1 | | 16
17
18
19
20 | 22.1
21.1
21.2
23.2
22.8 | 19.6
19.8
19.9
20.0
20.2 | 20.2
20.4
20.4
21.1
21.4 | 22.0
21.4
20.9
21.6
21.7 | 20.2
19.6
19.0
18.9
19.0 | 21.0
20.7
20.0
19.8
19.9 | 22.1
22.1
21.3
22.2
21.4 | 19.7
19.7
19.5
19.9
20.1 | 21.0
20.8
20.4
20.5
20.8 | 21.8
21.8
22.3
22.4
22.2 | 20.2
20.1
20.0
19.9
20.4 | 20.9
20.8
20.9
21.3
21.3 | | 21
22
23
24
25 | 22.8
22.9
23.0
22.7
22.8 | 20.0
20.0
20.0
19.9
19.9 | 21.1
21.1
21.2
21.2
21.2 | 20.7
21.1
20.6
21.8
22.7 | 19.1
19.1
19.1
19.1
19.4 | 20.1
19.8
19.3
20.3
20.6 | 22.6
22.7
22.3
21.9
21.5 | 20.2
19.9
19.6
19.8
19.7 | 21.1
21.1
20.8
20.8
20.5 | 21.4
21.4
20.9
20.9
20.6 | 20.1
20.1
19.7
19.9 | 20.6
20.6
20.3
20.3
20.3 | | 26
27
28
29
30
31 | 23.0
21.4
20.9
22.3
22.2 | 20.1
20.0
19.7
19.8
19.9 | 21.3
20.8
20.3
20.5
20.7 | 22.7
22.0
22.2
22.7
21.8
22.4 | 19.5
19.6
19.7
20.0
20.1
20.2 | 20.9
20.7
20.7
21.2
20.8
21.0 | 22.0
22.0
21.1
22.8
22.2
22.5 | 19.7
19.9
20.0
20.1
20.2
20.3 | 20.5
20.6
20.6
21.1
21.0
21.1 | 20.3
20.2
19.9
19.5
19.4 | 19.8
19.7
19.3
19.1
18.6 | 20.2
20.0
19.6
19.2
19.0 | | MONTH | 23.2 | 16.3 | 19.5 | 23.6 | 18.9 | 20.8 | 23.5 | 19.5 | 21.1 | 22.8 | 18.6 | 20.7 | OXYGEN DISSOLVED FROM THE DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|----------------------------------|--|--|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|--------------------------------------|--|--------------------------------------| | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 9.1
9.5
9.5
9.6 | 5.7
8.2
8.0
8.5
8.6 | 8.5
8.6
8.8
9.0
9.1 | 10.6
11.4
11.5
11.7
12.2 | 7.2
10.3
9.0
9.0
11.2 | 9.6
10.7
10.7
10.8
11.6 | 9.6
9.5
9.5
9.4
9.9 | 9.2
9.1
9.1
8.2
8.4 | 9.5
9.3
9.3
9.1
9.2 | 10.2
10.5
11.0
11.0 | 9.4
10.1
10.4
10.6
10.6 | 10.0
10.4
10.7
10.8
11.0 | | 6
7
8
9
10 | 9.3
9.4
9.2
9.4
9.6 | 8.6
7.7
8.5
7.5 | 8.9
8.9
9.0
9.0 | 11.9
12.4
12.4
12.3
11.8 | 9.2
11.6
10.3
11.3
8.3 | 11.6
12.0
11.8
11.8
11.3 | 10.2
9.8
9.5
9.3
9.0 | 9.2
8.6
8.7
8.7 | 9.6
9.4
9.2
9.1
8.9 | 11.4
11.8
12.2
12.3
12.5 | 10.8
11.1
11.3
11.4
11.7 | 11.1
11.4
11.8
11.9
12.2 | | 11
12
13
14
15 | 9.5
9.3
9.1
9.3
9.2 | 9.1
8.7
8.7
8.8
8.6 | 9.3
9.1
8.9
9.1
9.0 |

10.7
10.7 | 10.2
10.1 | 10.5
10.5 | 9.0
9.1
9.0
8.9
9.2 | 8.1
7.5
8.7
8.5
8.7 | 8.8
8.7
8.9
8.7
8.9 | 12.5
12.7
12.9
13.2
13.2 | 12.0
12.2
12.2
12.6
12.2 | 12.3
12.4
12.6
12.9
12.9 | | 16
17
18
19
20 | 9.4
9.2
9.4
9.5
9.5 | 8.5
5.9
4.5
5.5
5.1 | 9.1
8.8
8.6
9.0
9.0 | 10.7
10.6
10.5
10.7
10.3 | 10.3
10.1
10.1
9.4
9.3 | 10.4
10.3
10.2
10
9.9 | 9.3
9.6
9.6
9.6
9.9 | 8.8
9.1
8.8
8.6
9.0 | 9.2
9.3
9.4
9.6 | 13.2
13.5
13.5
13.5
13.4 | 12.9
13.0
12.9
13.2
13.0 | 13.1
13.2
13.3
13.4
13.2 | | 21
22
23
24
25 | 9.4
9.7
9.9
10.2
9.6 | 6.2
6.7
8.8
8.5
3.7 | 8.7
9.3
9.5
9.5
8.7 | 10.3
10.6
10.4
10.3
10.4 | 8.8
9.4
9.9
9.6
9.9 | 9.9
10.2
10.2
10.1
10.2 | 10.2
10.4
10.2
10.1
10.0 | 9.0
9.6
9.6
9.1
8.9 | 9.9
10
9.9
9.8
9.7 | 13.2
13.1
12.8
12.2
11.5 | 13.0
12.6
12.2
11.5
10.4 | 13.1
13.0
12.5
11.8
10.9 | | 26
27
28
29
30
31 | 9.2
9.3
9.3
9.9
9.9 | 6.3
4.3
7.3
5.3
8.0
9.5 | 8.8
8.3
8.9
8.8
9.5
9.8 | 10.2
10.2
10.1
9.8
9.8 | 9.8
9.5
9.4
9.5
9.6 | 10.0
9.9
9.9
9.7
9.7 | 9.9
9.9
9.8
9.8
9.9 | 8.9
8.9
8.6
9.2
9.0
9.2 | 9.5
9.5
9.6
9.6
9.9 | 10.4
10.2
10.1
10.1
10.1 | 10.1
10.0
9.5
9.5
9.6
9.6 | 10.2
10.2
10.0
10
10 | | MONTH | 10.5 | 3.7 | 9.0 | 12.4 | 7.2 | 10.5 | 10.4 | 7.5 | 9.4 | 13.5 | 9.4 | 11.7 | 67 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM, TN--Continued OXYGEN DISSOLVED FROM THE DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | 0211 | OLIV DIDD | OLVED INO | ii iiib bei, | 111 (110 | , b), willbit | ILAN OC | TOBER 20 | 01 10 DE. | FIEMBER 20 | 02 | | |---|--|---|--|--|--|--|---|--|---|--|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 10.6
10.8
10.8
10.9
11.0 | 10.2
10.7
10.6 | 10.3
10.6
10.8
10.7 | 12.2
12.2
12.5
12.3
12.8 | 12.0 | 12.1
12.1
12.1
12.2
12.5 | 11.3
11.1
11.0
11.2
11.4 | 11.1
11.0
10.9
11.0 | 11.3
11.0
11.0
11.1
11.3 | 10.9
9.8
9.5
9.7
9.8 | 4.9
7.5
6.3
8.8
9.2 |
9.8
9.5
8.9
9.4
9.6 | | 6
7
8
9
10 | 11.1
11.2
11.4
11.5
11.7 | 10.7
11.0 | 10.8
11.0
11.2
11.3
11.5 | 13.2
12.8
12.7
12.7
12.6 | 12.3
12.2
12.0 | 12.5
12.6
12.5
12.5 | 11.5
11.5
11.6
11.4
11.3 | 11.3 | 11.4
11.4
11.5
11.3 | 9.8
10.0
10.2
10.4
10.6 | 8.0
8.1
9.2
9.6
9.7 | 9.4
9.6
9.8
10.1
10.2 | | 11
12
13
14
15 | 11.7
11.8
11.8
11.8
11.8 | 11.4
11.6
11.4 | 11.6
11.7
11.7
11.7 | 12.6
12.7
12.9
12.9 | 11.4
12.0
12.3 | 12.3
12.3
12.5
12.6
12.6 | 11.3
11.3
11.4
11.3
11.4 | 11.1
11.0
11.1
11.1 | 11.2
11.2
11.2
11.2
11.1 | 10.6
10.6
10.2
10.2 | 9.7
8.7
9.7
9.9
9.6 | 10.3
10.2
10.1
10.1
10.2 | | 16
17
18
19
20 | 11.8
11.9
12.0
12.0
12.0 | 11.5
11.7
11.7 | 11.7
11.8
11.8
11.9 | 13.0
12.8
12.2
11.6
10.2 | 12.2
11.0
10.2 | 12.7
12.6
11.8
10.6
10.1 | 11.9
11.8
12.2
11.8
11.5 | 10 0 | 11.2
11.2
11.3
11.2
10.9 | 10.6
10.1
10.0
10.3
10.4 | 9.7
9.6
10.0 | 10.2
9.9
9.8
10.2
10.3 | | 21
22
23
24
25 | 11.7
11.7
11.9
11.9
12.1 | 11.5
11.6
11.7 | 11.6
11.6
11.7
11.8
11.9 | 10.8
11.0

11.6
12.2 | | 10.4
11.0

11.4
11.7 | 11.2
10.6
10.6
10.2
10.4 | 9.4
9.4
8.2
7.4 | 10.8
10.0
9.8
9.7
10.1 | 11.5
9.6
10.6
10.5
10.8 | G 3 | 10.1
9.5
9.7
10.1
10.5 | | 26
27
28
29
30
31 | 12.0
12.1
12.2
 | 11.7 | 11.8
11.9
12.0
 | 11.7
11.6
11.6
11.5
11.6 | 11.4
11.3
11.4 | 11.6
11.5
11.4
11.5 | 10.6
10.9
10.8
10.9
11.0 | 8.6
7.8
8.5
7.7
8.2 | 10.1
10
10.1
10.1
10.1 | 10.9
11.2
11.8
11.7
11.8
11.9 | 9.9
7.9
7.9
10.5
10.6
10.4 | 10.6
10.5
10.7
11.0
11.2
11.3 | | MONTH | 12.2 | 10.0 | 11.5 | 13.2 | 10.0 | 11.9 | 12.2 | 7.4 | 10.8 | 11.9 | 4.9 | 10.1 | | MONIA | 12.2 | | | | | | | | | | | | | DAY | MAX | MIN | | | MIN | | MAX | MIN | | MAX | MIN | MEAN | | | | | | MAX | | | | | | | MIN
SEPTEMBE | | | | | MIN
JUNE
10.6
10.4 | MEAN | MAX
9 0 | MIN | | | | | | | | | DAY 1 2 3 4 | MAX 11.9 11.7 | MIN
JUNE
10.6
10.4 | MEAN 11.4 11.2 | 9.0
9.7
9.4
9.8
9.8 | MIN
JULY
6.2
7.0
7.6
6.4 | MEAN 8.2 8.2 8.5 8.6 8.3 | 9.9
11.0
10.9
10.2
10.5 | | MEAN 9.0 9.2 9.0 8.5 |

 | SEPTEMBE

 | R | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | MAX 11.9 11.7 8.7 8.8 | MIN JUNE 10.6 10.4 | MEAN 11.4 11.2 7.7 7.7 | 9.0
9.7
9.4
9.8
9.8
9.8
9.9
8.8
9.9 | MIN JULY 6.2 7.0 7.6 6.4 6.4 5.6 7.3 6.7 4.8 | MEAN 8.2 8.2 8.5 8.6 8.3 8.2 8.4 8.2 7.8 7.9 8.0 8.3 | 9.9
11.0
10.9
10.2
10.5
10.2
10.0
9.4
9.5
9.5
8.9 | 7.3
7.1
5.6
6.0
3.8
4.9
2.8
4.5
2.8 | 9.0
9.2
9.0
8.5
8.4
8.0
7.0
8.1
6.4
5.7 | | SEPTEMBE | R | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX 11.9 11.7 8.7 8.8 8.5 7.6 | MIN JUNE 10.6 10.4 6.1 6.5 4.6 5.5 | MEAN 11.4 11.2 7.7 7.7 7.1 | 9.0
9.7
9.4
9.8
9.8
9.9
9.9
9.1
9.2
9.4
9.8 | MIN JULY 6.2 7.0 7.6 6.4 6.4 5.6 7.3 6.7 4.8 7.2 6.8 7.2 8.4 6.8 | MEAN 8.2 8.2 8.5 8.6 8.3 8.2 8.4 8.2 7.8 7.9 8.0 8.3 8.9 8.7 | 9.9
11.0
10.9
10.2
10.5
10.2
10.0
9.4
9.5
9.5
8.9
9.3
10.2 | 7.3
7.1
5.6
6.0
3.8
4.9
2.8
4.5
2.8
3.5 | MEAN 9.0 9.2 9.0 8.5 8.4 8.0 7.0 8.1 6.8 6.4 5.7 5.3 5.5 6.4 |

 | SEPTEMBE | R | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 | MAX 11.9 11.7 8.7 8.8 8.5 7.6 7.1 | MIN JUNE 10.6 10.4 6.1 6.5 4.6 5.5 5.1 | MEAN 11.4 11.2 7.7 7.7 7.1 7.0 6.2 7.7 | 9.0
9.7
9.4
9.8
9.8
9.9
9.1
9.2
9.4
9.9
10.4 | MIN JULY 6.2 7.0 7.6 6.4 6.4 5.6 7.3 6.7 4.8 7.2 6.8 7.2 8.8 7.9 8.5 7.6 8.0 7.4 | 8.2
8.2
8.5
8.6
8.3
8.2
8.4
8.2
7.8
7.9
8.0
8.3
8.9
8.7
9.0
9.0
9.1 | 9.9
11.0
10.9
10.2
10.5
10.2
10.0
9.4
9.5
9.5
8.9
9.3
10.2
8.8 | 7.3 7.1 5.6 6.0 3.8 4.9 2.8 4.5 2.8 3.5 2.4 2.1 2.1 6.1 | 9.0
9.2
9.0
8.5
8.4
8.0
7.0
8.1
6.8
6.4
5.7
5.3
5.5
6.4
7.3 | | SEPTEMBE | R | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 7 18 19 20 21 22 23 24 | MAX 11.9 11.7 8.7 8.8 8.5 7.6 7.1 9.4 8.7 8.9 8.9 8.9 8.7 | MIN JUNE 10.6 10.4 6.1 6.5 4.6 5.5 5.1 6.9 7.1 6.9 7.3 6.5 6.4 | MEAN 11.4 11.2 7.7 7.7 7.1 7.0 6.2 7.7 7.7 7.7 7.8 7.9 7.6 7.6 | 9.0
9.7
9.4
9.8
9.8
9.9
8.8
9.0
9.1
9.2
9.4
9.8
9.9
10.4
10.6
10.0
9.9
10.5
10.7 | MIN JULY 6.2 7.0 6.4 6.4 6.4 5.6 7.3 6.7 4.8 7.2 6.8 7.2 6.8 7.9 8.5 7.6 8.0 7.4 7.7 7.6 7.1 7.8 | 8.2
8.2
8.5
8.6
8.3
8.2
8.4
8.2
7.8
7.9
8.0
8.3
8.7
9.0
9.3
9.0
9.1
9.4
9.0
8.9 | 9.9
11.0
10.9
10.2
10.5
10.2
10.0
9.4
9.5
9.5
8.9
9.3
10.2
8.8 | 7.3 7.1 5.6 6.0 3.8 4.9 2.8 4.5 2.8 3.5 2.4 2.1 2.1 6.1 7.3 6.5 | 9.0
9.2
9.0
8.5
8.4
8.0
7.0
8.1
6.8
6.4
5.7
5.3
5.5
6.4
7.3 | | SEPTEMBE | R | ### 03421000 COLLINS RIVER NEAR MCMINNVILLE, TN LOCATION.--Lat $35^{\circ}42'32"$, long $85^{\circ}43'46"$, Warren County, Hydrologic Unit 05130107, on left bank at downstream side of bridge on U.S. Highway 70S, 1.8 mi downstream from Barren Fork River, 2.5 mi northeast of McMinnville, and at mile 19.5. DRAINAGE AREA. -- 640 mi². M: PERIOD OF RECORD.--October 1924 to current year. Prior to April 1925 monthly discharge only, published in WSP 1306. REVISED RECORDS.--WSP 873: 1929, 1932(M), 1934-35, 1936(M), 1937. WSP 1276: 1925-26, 1928(M), 1933, 1936, 1940. WSP 2110: Drainage area. GAGE.--Data collection platform. Datum of gage is 825.78 ft, Sandy Hook datum. Prior to Oct. 16, 1926, nonrecording gage on upstream side of bridge at same datum. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1854 is believed to have been about equal to that of Mar. 23, 1929, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $11,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | | oischarge
(ft ³ /s) | Gage height
(ft) | |--------------------|--------------|-----------------------------------|---------------------|--------------------------------------|-----------------|-----------------------------------|---------------------| | Jan 24
Mar 18 | 0730
0130 | *47,300
34,300 | *32.56
27.22 | Apr 1 | 0230 | 21,400 | 20.78 | | Minimum discharge, | | - | T DED GEGOVE | AMED HEAD COMODED 20 | 01 50 655555 | 2002 | | | | DISCHA | RGE, CUBIC FE | | IATER YEAR OCTOBER 20
MEAN VALUES | UI TO SEPTEMBER | 2002 | | | | | | | | DAI | LY MEAN VA | LUES | | | | | | |----------------------------------|--|------------------------------------|---|---|-----------------------|--|---------------------------------|--|---------------------------------|--|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 192 | 177 | 1660 | 674 | 1780 | 618 | 16600 | 608 | 427 | 156 | 137 | 139 | | 2 | 178 | 173 | 1330 | 622 | 2100 | 590 | 7100 | 818 | 398 | 153 | 128 | 130 | | 3 | 166 | 169 | 989 | 585 | 1730 | 585 | 3900 | 2890 | 362 | 162 | 123 | 124 | | 4 | 151 | 166 | 764 | 553 | 1530 | 597 | 2770 | 6880 | 337 | 153 | 121 | 120 | | 5 | 151 | 163 | 622 | 519 | 1360 | 594 | 2170 | 6710 | 358 | 148 | 118 | 115 | | 6 | 184 | 159 | 538 | 532 | 1250 | 571 | 1800 | 3490 | 404 | 144 | 114 | 110 | | 7 | 175 | 157 | 495 | 543 | 1590 | 549 | 1560 | 2260 | 395 | 139 | 108 | 106 | | 8 | 165 | 152 | 539 | 536 | 2070 | 529 | 1370 | 1680 | 434 | 139 | 105 | 104 | | 9 | 158 | 149 | 959 | 519 | 1890 | 519 | 1250 | 1330 | 396 | 137 | 102 | 102 | | 10 | 151 | 147 | 1100 | 586 | 1680 | 528 | 1120 | 1160 | 328 | 148 | 101 | 100 | | 11 | 144 | 145 | 1130 | 674 | 1530 | 563 | 1010 | 1340 | 287 | 259 | 102 | 100 | | 12 | 142 | 142 | 1180 | 684 | 1370 | 582 | 930 | 1350 | 256 | 178 | 102 | 99 | | 13 | 153 | 141 | 1210 | 666 | 1240 | 918 | 868 | 2270 | 247 | 187 | 100 | 94 | | 14 | 826 | 138 | 5580 | 633 | 1100 | 1430 | 821 | 3320 | 242 | 316 | 102 | 94 | | 15 | 993 | 136 | 6220 | 601 | 970 | 1360 | 773 | 1650 | 228 | 385 | 114 | 97 | | 16 | 781 | 135 | 3240 | 564 | 897 | 1420 | 718 | 1230 | 214 | 270 | 117 | 107 | | 17 | 574 | 133 | 2420 | 535 | 833 | 17500 | 664 | 993 | 207 | 211 | 145 | 113 | | 18 | 454 | 131 | 4000 | 527 | 762 | 32800 | 616 | 1140 | 197 | 186 | 145 | 117 | | 19 | 371 | 131 | 3100 | 1960 | 703 | 21100 | 581 | 1100 | 189 | 167 | 152 | 196 | | 20 | 315 | 135 | 2200 | 5760 | e725 | 8080 | 551 | 886 | 178 | 156 | 143 | 135 | | 21 | 279 | 130 | 1660 | 3900 | e950 | 4340 | 522 | 743 | 170 | 145 | 127 | 527 | | 22 | 250 | 128 | 1350 | 2590 | 895 | 3110 | 501 | 654 | 166 | 162 | 133 | 312 | | 23 | 230 | 131 | 1370 | 16400 | 809 | 2420 | 473 | 584 | 162 | 236 | 129 | 254 | | 24 | 214 | 279 | 2080 | 41500 | 756 | 2010 | 475 | 529 | 159 | 381 | 139 | 181 | | 25 | 243 | 3170 | 1650 | 30200 | 714 | 1710 | 462 | 481 | 159 | 215 | 622
 166 | | 26
27
28
29
30
31 | 220
223
218
200
188
181 | 2690
1490
1020
760
999 | 1370
1180
1040
922
821
734 | 12100
5070
3370
2620
2130
1800 | 693
675
652
 | 1870
2230
1610
1410
10700
19600 | 441
455
459
448
418 | 441
457
647
633
537
485 | 166
181
183
180
164 | 184
162
149
139
138
140 | 504
220
172
161
174
150 | 398
1500
1420
865
529 | | TOTAL | 8870 | 13776 | 53453 | 139953 | 33254 | 142443 | 51826 | 49296 | 7774 | 5845 | 4910 | 8454 | | MEAN | 286.1 | 459.2 | 1724 | 4515 | 1188 | 4595 | 1728 | 1590 | 259.1 | 188.5 | 158.4 | 281.8 | | MAX | 993 | 3170 | 6220 | 41500 | 2100 | 32800 | 16600 | 6880 | 434 | 385 | 622 | 1500 | | MIN | 142 | 128 | 495 | 519 | 652 | 519 | 418 | 441 | 159 | 137 | 100 | 94 | | CFSM | 0.45 | 0.72 | 2.69 | 7.05 | 1.86 | 7.18 | 2.70 | 2.48 | 0.40 | 0.29 | 0.25 | 0.44 | | IN. | 0.52 | 0.80 | 3.11 | 8.13 | 1.93 | 8.28 | 3.01 | 2.87 | 0.45 | 0.34 | 0.29 | 0.49 | e Estimated ### 03421000 COLLINS RIVER NEAR MCMINNVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002, BY WATER YEAR (WY) | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|-------------------------------------|--|-------------------------------------|-------------------------------------|--|-------------------------------------|---------------------------------------|---|--|---------------------------------------| | MEAN 317.8
MAX 2345
(WY) 1976
MIN 63.5
(WY) 1932 | 768.2
4286
1958
69.0
1932 | 1592
6783
1991
107
1940 | 2149
6262
1974
126
1940 | 2377
6564
1939
391
1941 | 2535
6279
1929
619
1988 | 1793
4412
1994
462
1986 | 1075
3825
1984
225
1941 | 632.1
4216
1928
85.9
1988 | 431.0
2091
1989
115
1944 | 320.1
1439
1942
76.2
1925 | 290.7
1204
1992
62.9
1925 | | SUMMARY STATIST | ICS | FOR | 2001 CALE | ENDAR YEAR | F | OR 2002 | WATER YEAR | | WATER YEARS | 1925 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL LOWEST DAILY ME LOWEST DAILY ME ANNUAL SEVEN-DA MAXIMUM PEAK FL MAXIMUM PEAK ST INSTANTANEOUS L ANNUAL RUNOFF (ANNUAL RUNOFF (20 PERCENT EXCE 50 PERCENT EXCE 50 PERCENT EXCE | EAN EAN EAN EAN EAN EAN EAN EASE EASE EA | | 392695
1076
21000
124
131
1.6
22.8
2680
434
156 | | | 519854
1424
41500
94
98
47300
32.
91
2.
30.
2330
519
131 | Sep 13 | | 1185
2193
409
64100
37
50
75300
39.10
35
1.85
25.15
2600
530
113 | Dec 23
Oct 28
Sep 24
Mar 23
Mar 23
Sep 21 | 1961
1925
1929
1929 | ### 03424730 SMITH FORK AT TEMPERANCE HALL, TN DRAINAGE AREA.--214 mi². PERIOD OF RECORD.--August 1991 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 499.00 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,000 $\ \hbox{\it ft}^3/\hbox{\it s}$ and $\max $(*)$: }$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 1930 | *17,000 | *24.06 | Mar 18 | 0700 | 9,340 | 16.92 | | Jan 24 | 1500 | 12,200 | 20.01 | Mar 31 | 1700 | 10,300 | 18.10 | | Mar 17 | 1300 | 13,300 | 20.97 | May 1 | 0830 | 7,940 | 15.18 | Minimum discharge, 11 ft³/s, Sept. 11, 12. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE | R 2001 TC | SEPTEMBE | R 2002 | | | |----------------------------------|-----------------------------------|-------------------------------|---------------------------------------|---|-----------------------|---|---------------------------------|-------------------------------------|----------------------------|----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 24 | 35 | 340 | 87 | 405 | 151 | 2610 | 3150 | 67 | 28 | 37 | 22 | | 2 | 22 | 33 | 182 | 80 | 473 | 150 | 1070 | 1070 | 62 | 26 | 36 | 20 | | 3 | 20 | 32 | 119 | 75 | 379 | 156 | 620 | 984 | 61 | 59 | 30 | 19 | | 4 | 20 | 31 | 88 | 71 | 335 | 150 | 428 | 1080 | 58 | 51 | 26 | 17 | | 5 | 19 | 29 | 71 | 67 | 283 | 139 | 339 | 823 | 60 | 45 | 22 | 15 | | 6 | 32 | 28 | 60 | 71 | 268 | 136 | 285 | 503 | 73 | 36 | 21 | 16 | | 7 | 79 | 26 | 58 | 81 | 481 | 133 | 250 | 358 | 81 | 29 | 20 | 16 | | 8 | 51 | 24 | 1100 | 83 | 642 | 131 | 226 | 273 | 64 | 26 | 19 | 16 | | 9 | 39 | 25 | 1130 | 78 | 514 | 130 | 208 | 222 | 54 | 25 | 18 | 14 | | 10 | 33 | 25 | 412 | 76 | 426 | 135 | 185 | 192 | 49 | 25 | 17 | 12 | | 11 | 28 | 25 | 606 | 87 | 369 | 127 | 168 | 176 | 47 | 37 | 16 | 12 | | 12 | 27 | 25 | 382 | 98 | 320 | 133 | 158 | 153 | 44 | 86 | 18 | 12 | | 13 | 28 | 25 | 413 | 103 | 285 | 212 | 149 | 1280 | 41 | 141 | 16 | 12 | | 14 | 697 | 25 | 1260 | 98 | 249 | 252 | 141 | 1140 | 40 | 124 | 15 | 13 | | 15 | 404 | 24 | 652 | 91 | 226 | 225 | 133 | 480 | 40 | 84 | 15 | 13 | | 16 | 166 | 23 | 354 | 84 | 212 | 240 | 125 | 307 | 39 | 54 | 17 | 15 | | 17 | 99 | 23 | 261 | 78 | 195 | 7000 | 118 | 241 | 38 | 42 | 26 | 16 | | 18 | 71 | 24 | 277 | 80 | 177 | 6830 | 112 | 479 | 36 | 37 | 27 | 21 | | 19 | 54 | 24 | 243 | 1170 | 164 | 2100 | 105 | 279 | 34 | 43 | 25 | 26 | | 20 | 46 | 25 | 197 | 1100 | 178 | 1640 | 99 | 205 | 33 | 42 | 35 | 29 | | 21 | 40 | 26 | 158 | 507 | 238 | 1220 | 95 | 170 | 31 | 36 | 28 | 105 | | 22 | 35 | 26 | 134 | 322 | 208 | 704 | 94 | 144 | 30 | 31 | 25 | 148 | | 23 | 32 | 25 | 522 | 8370 | 188 | 513 | 92 | 125 | 29 | 29 | 27 | 96 | | 24 | 30 | 28 | 631 | 10300 | 177 | 410 | 103 | 109 | 28 | 30 | 19 | 47 | | 25 | 195 | 60 | 344 | 4760 | 165 | 335 | 348 | 96 | 29 | 35 | 17 | 37 | | 26
27
28
29
30
31 | 147
81
58
48
42
39 | 80
55
77
137
1020 | 247
194
161
136
114
97 | 1390
769
544
427
350
297 | 168
172
159
 | 782
702
475
383
544
4930 | 201
148
127
287
199 | 104
159
107
87
78
72 | 29
31
32
31
30 | 32
28
27
25
27
30 | 25
39
32
26
25
24 | 248
1350
386
165
99 | | TOTAL MEAN MAX MIN CFSM IN. | 2706 | 2065 | 10943 | 31794 | 8056 | 31168 | 9223 | 14646 | 1321 | 1370 | 743 | 3017 | | | 87.29 | 68.83 | 353.0 | 1026 | 287.7 | 1005 | 307.4 | 472.5 | 44.03 | 44.19 | 23.97 | 100.6 | | | 697 | 1020 | 1260 | 10300 | 642 | 7000 | 2610 | 3150 | 81 | 141 | 39 | 1350 | | | 19 | 23 | 58 | 67 | 159 | 127 | 92 | 72 | 28 | 25 | 15 | 12 | | | 0.41 | 0.32 | 1.65 | 4.79 | 1.34 | 4.70 | 1.44 | 2.21 | 0.21 | 0.21 | 0.11 | 0.47 | | | 0.47 | 0.36 | 1.90 | 5.53 | 1.40 | 5.42 | 1.60 | 2.55 | 0.23 | 0.24 | 0.13 | 0.52 | ### 03424730 SMITH FORK AT TEMPERANCE HALL, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC J | AN FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | MEAN 81.08 173.2
MAX 270 559
(WY) 1996 1997
MIN 15.1 29.5
(WY) 2001 2000 | 422.2 613
811 10
1992 19
72.7 82
2000 20 | 81 1190
99 1994 | 738.0
1516
1994
401
2001 | 439.4
1095
1994
158
1992 | 269.2
506
1995
61.4
1992 | 213.7
768
1998
44.0
2002 | 119.0
460
1992
25.6
2000 | 68.57
225
1996
22.5
1999 | 77.63
389
1992
12.5
1999 | | SUMMARY STATISTICS | FOR 2001 | CALENDAR YEAR | 3 | FOR 2002 | WATER YEAR | | WATER YEARS | 3 1991 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 53 | 65
12.5
50 Feb 16
15 Aug 25
16 Aug 24
0.99
13.48
12
66
23 | 5 | 117052
320.
10300
12
13
17000
24.
all
1.
20.
569
87
23 | Jan 24
Sep
10
Sep 9
Jan 23
06 Jan 23
Sep 11 | | 305.6
488
31.0
11800
9.7
10
19900
26.12
9.0
1.43
19.40
631
105
22 | Jan 23
Jan 23 | 1999
1999
1999 | a Also occurred Sept. 12. ### 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN LOCATION.--Lat $36^{\circ}17^{\circ}47^{\circ}$, long $86^{\circ}39^{\circ}28^{\circ}$, Davidson County, Hydrologic Unit 05130202, at right bank in powerhouse, at Old Hickory Dam, 2.0 mi west of Hendersonville, and at mile 216.2. DRAINAGE AREA. -- 11,673 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1931 to September 1942, October 1947 to current year. Prior to July 1953, published as "at dam 3, near Old Hickory". July 1953 to September 1986 published as "below Old Hickory". GAGE. -- Datum of gage is NGVD of 1929. REMARKS.--Flow regulated by six lakes or reservoirs (see p. 152). COOPERATION. -- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 173,000 ${\rm ft}^3/{\rm s}$, Jan. 29, 1937; maximum gage height, 438.80 ft, Mar. 14, 1975; minimum daily discharge, 86 ${\rm ft}^3/{\rm s}$, Aug. 15, 1936; minimum gage height since filling of Cheatham Lake on Oct. 1, 1956, 383.49 ft, Sept. 10, 1962, at present datum. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1793, 437.4 ft Dec. 31, 1926, at present datum, from profile by U.S. Army Corps of Engineers, discharge, 200,000 ft³/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|---|--|-----------------------------|--|--|--|--------------------------------------|--|---|---| | 1 | 7020 | 6330 | 19100 | 9190 | 33800 | 23800 | 70500 | 24500 | 14500 | 8650 | 12200 | 8160 | | 2 | 6780 | 4270 | 12400 | 9620 | 28900 | 22200 | 70400 | 27300 | 10800 | 8380 | 9890 | 7610 | | 3 | 7890 | 5690 | 10200 | 10400 | 31600 | 12200 | 57800 | 28900 | 8890 | 9810 | 8680 | 7020 | | 4 | 9040 | 4980 | 9360 | 9100 | 28400 | 6240 | 47200 | 24000 | 6660 | 9490 | 7600 | 8450 | | 5 | 10500 | 5520 | 7980 | 7000 | 28300 | 10300 | 42200 | 30700 | 6960 | 12800 | 7860 | 9960 | | 6 | 8500 | 5520 | 5800 | 6790 | 28000 | 11300 | 46000 | 27400 | 8030 | 9060 | 9050 | 9410 | | 7 | 7790 | 5510 | 5750 | 6850 | 30600 | 9000 | 42800 | 23500 | 10700 | 6790 | 8800 | 7370 | | 8 | 7640 | 5510 | 5780 | 7600 | 31100 | 13400 | 37500 | 32100 | 5760 | 7590 | 10400 | 7900 | | 9 | 7920 | 5530 | 10100 | 8360 | 28800 | 12200 | 35600 | 29500 | 5750 | 6690 | 10500 | 7930 | | 10 | 6990 | 5520 | 18600 | 8920 | 19400 | 7370 | 37400 | 29000 | 9870 | 9780 | 9650 | 7330 | | 11 | 7880 | 4770 | 12200 | 10000 | 23400 | 6780 | 37200 | 31200 | 8440 | 14700 | 7750 | 8390 | | 12 | 8140 | 5570 | 12300 | 7820 | 25900 | 6780 | 36900 | 30800 | 8420 | 11400 | 7880 | 8710 | | 13 | 6970 | 5270 | 15000 | 6760 | 19900 | 8720 | 35400 | 31500 | 8400 | 10400 | 7880 | 8740 | | 14 | 7820 | 5260 | 27400 | 6480 | 19600 | 10900 | 29300 | 43700 | 12600 | 13700 | 8970 | 9080 | | 15 | 18000 | 5710 | 21800 | 5480 | 22400 | 11700 | 24100 | 34900 | 8450 | 7660 | 10100 | 7430 | | 16 | 9160 | 7320 | 12300 | 8000 | 22100 | 12200 | 16700 | 34500 | 8640 | 10100 | 11800 | 5720 | | 17 | 6050 | 5010 | 12400 | 9510 | 19600 | 35300 | 15900 | 34600 | 8630 | 11000 | 14800 | 7590 | | 18 | 6360 | 4980 | 7960 | 8580 | 15600 | 87900 | 14000 | 42000 | 8660 | 10900 | 9730 | 8940 | | 19 | 8050 | 4820 | 9320 | 10600 | 14600 | 84300 | 15800 | 41800 | 7250 | 10400 | 7610 | 9850 | | 20 | 5750 | 4800 | 6850 | 15700 | 17800 | 70800 | 15900 | 32600 | 8400 | 9490 | 7900 | 9640 | | 21 | 4990 | 5240 | 6580 | 10300 | 20400 | 66900 | 14200 | 28100 | 8360 | 7310 | 9190 | 8450 | | 22 | 5270 | 5380 | 5780 | 12300 | 18300 | 66800 | 13100 | 27800 | 7560 | 8330 | 9120 | 9010 | | 23 | 6820 | 5700 | 6030 | 24200 | 19300 | 64200 | 7350 | 26600 | 6500 | 8670 | 9910 | 7870 | | 24 | 6800 | 5220 | 6020 | 73900 | 19400 | 56600 | 6870 | 26500 | 7880 | 10500 | 8780 | 7770 | | 25 | 6610 | 7400 | 10800 | 82100 | 14100 | 53000 | 25200 | 23500 | 9080 | 11900 | 9330 | 8070 | | 26
27
28
29
30
31 | 6260
6050
5460
4280
5840
6080 | 9430
7410
8410
14200
17900 | 12700
10500
11000
7350
5850
7620 | 72400
50200
41000
30500
30700
35000 | 12600
18200
20800
 | 49700
56400
52500
46300
46000
50900 | 20400
16600
9080
14700
13800 | 17500
17100
13500
15400
17000
17300 | 9780
9280
9320
6830
5740 | 12800
11900
6580
9010
8130
8900 | 8700
9320
8700
9800
12200
7860 | 9170
26100
19600
17000
5900 | | TOTAL | 228710 | 194180 | 332830 | 635360 | 632900 | 1072690 | 869900 | 864800 | 256140 | 302820 | 291960 | 284170 | | MEAN | 7378 | 6473 | 10740 | 20500 | 22600 | 34600 | 29000 | 27900 | 8538 | 9768 | 9418 | 9472 | | MAX | 18000 | 17900 | 27400 | 82100 | 33800 | 87900 | 70500 | 43700 | 14500 | 14700 | 14800 | 26100 | | MIN | 4280 | 4270 | 5750 | 5480 | 12600 | 6240 | 6870 | 13500 | 5740 | 6580 | 7600 | 5720 | ## 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2002, BY WATER YEAR (WY) | MEAN | 9095 | 12070 | 21420 | 27890 | 27170 | 31150 | 28360 | 20390 | 15580 | 12650 | 11990 | 9965 | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | MAX | 29430 | 29530 | 43590 | 79580 | 61700 | 73880 | 74400 | 65100 | 40510 | 28410 | 21400 | 27600 | | (WY) | 1990 | 1980 | 1979 | 1974 | 1957 | 1975 | 1994 | 1984 | 1997 | 1967 | 1982 | 1979 | | MIN | 2660 | 3449 | 3974 | 4656 | 8524 | 6778 | 6963 | 5465 | 6048 | 4211 | 4991 | 2723 | | (WY) | 1969 | 1981 | 1981 | 1981 | 1981 | 1981 | 1986 | 1988 | 1988 | 1974 | 1975 | 1968 | | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 W | ATER YEAR | *WATER YEAR | RS 1957 - 2002 | |--------------------------|----------------|----------|------------|-----------|-------------|----------------| | ANNUAL TOTAL | 3885230 | | 5966460 | | | | | ANNUAL MEAN | 10640 | | 16350 | | 18940 | | | HIGHEST ANNUAL MEAN | | | | | 28560 | 1974 | | LOWEST ANNUAL MEAN | | | | | 8780 | 1988 | | HIGHEST DAILY MEAN | 77700 | Feb 17 | 87900 | Mar 18 | 146000 | Mar 14 1975 | | LOWEST DAILY MEAN | 2840 | May 20 | 4270 | Nov 2 | 200 | Nov 3 1957 | | ANNUAL SEVEN-DAY MINIMUM | 4740 | May 16 | 5130 | Nov 17 | 1070 | Oct 28 1969 | | 10 PERCENT EXCEEDS | 17800 | | 35100 | | 40600 | | | 50 PERCENT EXCEEDS | 9040 | | 9730 | | 13500 | | | 90 PERCENT EXCEEDS | 5170 | | 5820 | | 5300 | | * Regulated period only. ### 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued WATER-OUALITY RECORDS PERIOD OF RECORD. -- April 1979 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1979 to current year. PH: April 1979 to current year. WATER TEMPERATURE: April 1979 to current year. DISSOLVED OXYGEN: April 1979 to current year. TURBIDITY: October 1992 to current year. INSTRUMENTATION. -- Water-quality monitor since April 1979. REMARKS.--Flow regulated by Old Hickory Dam and other reservoirs above station. Periods of missing record were due to instrument malfunctions. Supersaturation of dissolved oxygen may occur due to local hydraulic conditions. All parameters affected by release from Old Hickory Dam. Records for water temperature are excellent, specific conductance are good, pH and dissolved oxygen are poor and turbidity are fair. EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum, 269 microsiemens, Jan. 3, 4, 2002; minimum, 137 microsiemens, March 14, 1994. pH: Maximum, 9.8 units, March 26, 1988; minimum, 6.4 units, July 28, 1991, July 24, 25, 26, 1993. WATER TEMPERATURE: Maximum, 27.6°C, August 8, 1988; minimum, 2.1°C, Dec. 24, 1989. DISSOLVED OXYGEN: Maximum, 17.2 mg/L, February 8, 2001; minimum, 2.9 mg/L, Sept. 5, 1988, July 8, 1993. TURBIDITY: Maximum recorded, 170 NTU, March 5, 1997, minimum, 1 NTU, many days during the 1996, Sept. 20, 1997, and many days during the 2000, 2001, and 2002 water years. EXTREMES FOR CURRENT YEAR . -- THEMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 269 microsiemens, Jan. 3, 4; minimum, 182 microsiemens, Sept. 30. pH: Maximum, 8.8 units, Jan. 18, 20-23; minimum, 6.8 units, July 29, 30. WATER TEMPERATURE: Maximum, 27.4°C, Aug. 8; minimum, 5.6°C, Jan. 9. DISSOLVED OXYGEN: Maximum, 14.9 mg/L, Jan. 25; minimum, 3.4 mg/L, July 3. TURBIDITY: Maximum, 120 NTU, Mar. 19; minimum, 1 NTU, several days. SPECIFIC CONDUCTANCE FROM THE DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 200 | 198 | 199 | 212 | 211 | 211 | 219 | 217 | 218 | 267 | 266 | 267 | | 2 | 202 | 199 | 201 | 216 | 212 | 214 | 219 | 217 | 218 | 268 | 267 | 268 | | 3 | 202 | 200 | 202 | 219 | 215 | 218 | 218 | 218 | 218
 269 | 268 | 268 | | 4 | 203 | 200 | 202 | 220 | 218 | 218 | 218 | 217 | 218 | 269 | 268 | 268 | | 5 | 203 | 201 | 202 | 220 | 219 | 220 | 219 | 218 | 218 | 268 | 267 | 268 | | 6 | 204 | 201 | 202 | 220 | 218 | 219 | 222 | 219 | 221 | 267 | 266 | 266 | | 7 | 201 | 200 | 201 | 220 | 218 | 219 | 224 | 222 | 223 | 266 | 261 | 264 | | 8 | 205 | 200 | 201 | 220 | 218 | 219 | 225 | 224 | 224 | 262 | 261 | 261 | | 9 | 204 | 200 | 201 | 220 | 219 | 219 | 226 | 225 | 225 | 261 | 255 | 258 | | 10 | 202 | 201 | 202 | 219 | 218 | 219 | 229 | 226 | 226 | 256 | 246 | 251 | | 11 | 203 | 200 | 202 | 222 | 217 | 218 | 233 | 228 | 230 | 248 | 242 | 244 | | 12 | 203 | 201 | 202 | 221 | 217 | 218 | 236 | 233 | 235 | 243 | 235 | 239 | | 13 | 203 | 202 | 202 | 219 | 217 | 218 | 238 | 234 | 237 | 237 | 231 | 234 | | 14 | 203 | 201 | 202 | 217 | 215 | 216 | 239 | 235 | 238 | 231 | 226 | 230 | | 15 | 203 | 203 | 203 | 217 | 214 | 216 | 235 | 231 | 233 | 226 | 224 | 225 | | 16 | 203 | 201 | 202 | 214 | 213 | 214 | 234 | 231 | 232 | 225 | 223 | 224 | | 17 | 203 | 202 | 203 | 217 | 213 | 215 | 241 | 234 | 238 | 223 | 216 | 220 | | 18 | 206 | 203 | 204 | 219 | 214 | 215 | 242 | 240 | 241 | 217 | 215 | 216 | | 19 | 207 | 204 | 205 | 220 | 215 | 217 | 243 | 242 | 243 | 215 | 212 | 213 | | 20 | 207 | 205 | 206 | 221 | 217 | 218 | 245 | 243 | 244 | 212 | 209 | 210 | | 21 | 210 | 206 | 208 | 221 | 218 | 218 | 245 | 245 | 245 | 209 | 208 | 209 | | 22 | 210 | 206 | 208 | 220 | 216 | 218 | 247 | 245 | 245 | 209 | 206 | 208 | | 23 | 209 | 205 | 207 | 218 | 216 | 217 | 249 | 246 | 247 | 207 | 205 | 206 | | 24 | 211 | 207 | 209 | 219 | 217 | 218 | 250 | 248 | 249 | 246 | 207 | 224 | | 25 | 212 | 207 | 208 | 220 | 218 | 218 | 253 | 250 | 252 | 252 | 215 | 239 | | 26
27
28
29
30
31 | 210
213
211
211
209
211 | 207
207
207
207
208
209 | 208
208
208
208
209
210 | 220
219
220
220
218 | 218
217
218
215
216 | 219
217
219
217
217 | 255
258
263
266
267
267 | 252
254
258
263
265
266 | 254
255
260
265
266
267 | 215
213
211
209
202
197 | 203
211
209
202
197
193 | 209
213
209
205
200
194 | | MONTH | 213 | 198 | 204 | 222 | 211 | 217 | 267 | 217 | 238 | 269 | 193 | 233 | 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued SPECIFIC CONDUCTANCE FROM THE DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIFIC | CONDUCT | ANCE FROM | 1 THE DCP, | in US/C | M @ 25C, | WATER YEA | R OCTOBE | R 2001 T | J SEPTEMBI | ER 2002 | | |---|--|--|--|--|---|---|--|--|---|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 193
193
195
195
197 | 191
192
192
194
195 | 192
192
193
195
196 | 222
222
227
226
226 | 221
221
222
225
223 | 222
221
224
225
224 | 218
216
219
219
213 | 213
209
214
211
207 | 214
212
216
216
210 | 207
214
218
222
223 | 198
207
214
218
217 | 203
211
217
220
221 | | 6
7
8
9
10 | 203
208
211
212
212 | 197
202
208
210
210 | 200
204
209
211
211 | 223
219
217
217
219 | 219
216
215
216
216 | 220
217
216
216
218 | 208
209
209
210
207 | 203
204
207
206
203 | 205
207
208
207
205 | 220
222
220
220
221 | 217
219
217
218
219 | 219
221
219
219
220 | | 11
12
13
14
15 | 215
219
221
222
227 | 212
214
218
220
221 | 214
217
219
221
224 | 219
219
222
224
225 | 218
218
219
222
223 | 219
219
220
223
224 | 204
201
200
199
198 | 200
197
197
196
196 | 202
199
199
197
197 | 220
217
214
210
208 | 214
214
210
203
203 | 217
215
212
207
206 | | 16
17
18
19
20 | 224
224
222
224
225 | 222
221
221
221
221
224 | 224
222
222
222
222
224 | 227
228
229
224
233 | 225
218
219
209
215 | 226
224
224
214
227 | 198
198
199
202
203 | 196
196
196
198
200 | 197
197
197
200
202 | 206
212
213
208
205 | 204
205
207
201
201 | 205
210
210
205
203 | | 21
22
23
24
25 | 226
227
226
225
225 | 225
226
225
224
222 | 225
227
226
224
224 | 233
227
192
203
203 | 227
189
188
192
201 | 231
203
190
199
202 | 203
203
202
202
202 | 201
200
199
199
197 | 202
202
201
201
200 | 205
209
212
212
208 | 202
204
208
207
206 | 204
206
210
209
207 | | 26
27
28
29
30
31 | 222
221
221

 | 219
219
219
 | 220
220
219
 | 205
209
211
214
217
217 | 200
205
206
211
214
213 | 202
207
209
212
215
216 | 199
199
200
200
201 | 196
197
197
198
198 | 198
198
199
199
200 | 206
203
199
196
197
201 | 202
197
194
193
195
196 | 204
200
197
194
196
198 | | MONTH | 227 | 191 | 214 | 233 | 188 | 216 | 219 | 196 | 203 | 223 | 193 | 209 | | 11011111 | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | MAX
204
207
209
209
209 | | MEAN 201 205 207 208 208 | MAX
201
203
203
200
201 | | MEAN
199
201
200
198
198 | | | MEAN 191 191 190 191 191 | MAX
198
198
198
197
199 | | | | DAY 1 2 3 4 | 204
207
209
209 | JUNE
199
204
206
206 | 201
205
207
208 | 201
203
203
200 | JULY
198
199
197
197 | 199
201
200
198 | 194
192
192
193 | 188
189
188
189 | 191
191
190
191 | 198
198
198
197 | SEPTEMBE
193
193
194
191 | 194
195
196
194 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 11 12 | 204
207
209
209
209
209
209
208
208
208 | JUNE 199 204 206 206 207 201 205 205 206 206 206 206 | 201
205
207
208
208
207
207
206
208
208
208 | 201
203
200
201
201
202
202
204
205
203
203 | JULY 198 199 197 197 199 198 199 198 200 200 198 | 199
201
200
198
198
200
200
201
200 | 194
192
192
193
193
193
193
192
193
195
198 | 188
189
189
190
190
190
190
191
193
194 | 191
191
190
191
191
191
191
192
194
195 | 198
198
198
197
199
196
197
194
196
195 | 193
193
194
191
193
191
191
190
191
192
189 | 194
195
196
194
196
194
193
192
193
193
193 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 204
207
209
209
209
208
208
209
209
209
209 | JUNE 199 204 206 206 207 201 205 206 206 206 206 206 206 206 206 207 | 201
205
207
208
208
207
207
206
208
208
207
208
208 | 201
203
203
200
201
201
202
202
204
205
203
203
199
199 | JULY 198 199 197 197 192 199 198 199 198 200 200 198 196 | 199 201 200 198 198 200 200 201 200 201 202 201 198 197 | 194
192
192
193
193
193
193
193
195
198
197 | 188
189
188
189
190
190
190
191
193
194
193
194
193 | 191
191
190
191
191
191
191
192
194
195
195 | 198
198
197
199
196
197
194
195
194
193
195 | 193
193
194
191
193
191
191
190
191
192
189
189
191 |
194
195
196
194
196
194
193
192
193
193
192
193
193 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 204
207
209
209
209
208
208
209
209
209
209
209
209
209
208 | JUNE 199 204 206 207 201 205 206 206 206 206 206 206 206 206 206 207 205 204 201 200 | 201
205
207
208
208
207
207
206
208
208
208
207
207
208
208
208
208
207
207
208
208
208
208
208
209
209
209
209
209
209
209
209
209
209 | 201
203
203
200
201
201
202
202
204
205
203
203
199
199
199
202
211
207 | JULY 198 199 197 192 199 198 199 198 200 200 198 196 196 196 195 197 197 | 199 201 200 198 198 200 200 201 200 201 202 201 198 197 198 197 202 200 199 | 194
192
193
193
193
193
193
193
195
198
197
196
197
195 | 188
189
188
189
190
190
190
190
191
193
194
193
193
193
192
191
192 | 191
191
190
191
191
191
191
192
194
195
195
195
194
193
194
195
194 | 198
198
197
199
196
197
194
195
194
193
195
198
195 | 193 193 194 191 193 191 191 190 191 192 189 189 189 191 192 192 192 192 | 194
195
196
194
196
194
193
193
193
193
193
193
193
193
193
193 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 204
207
209
209
209
208
208
209
209
210
209
209
208
205
202
202
202
202
202
202
209
209
209
209 | JUNE 199 204 206 207 201 205 206 206 206 206 206 206 201 201 201 201 201 201 201 201 201 201 | 201
205
207
208
208
208
207
206
208
208
208
207
208
208
207
201
201
202
200
197
198
198
196 | 201
203
203
200
201
201
202
204
205
203
203
203
199
199
199
202
211
207
207
202
197
199
194
195
197
199
199
199 | JULY 198 199 197 197 192 199 198 200 200 198 196 196 196 196 197 197 197 197 197 197 197 197 197 197 | 199 201 200 198 198 200 200 201 200 201 202 201 198 197 198 197 202 200 199 196 195 195 199 194 194 191 190 190 191 | 194
192
193
193
193
193
193
193
195
198
197
196
197
195
195
195
195
195
196
197
197
196
196
199
196
199 | 188
189
189
190
190
190
190
191
193
194
193
193
194
193
193
194
195
191
192
193
194
199
199
199 | 191
191
190
191
191
191
191
192
194
195
195
195
194
194
194
194
194
194
194
194
194
194 | 198
198
197
199
196
197
194
195
195
194
193
195
195
194
194
194
194
195
195
195
195
195
195
195
195
195
195 | 193 193 194 191 193 191 191 190 191 192 189 189 189 191 192 192 192 192 192 192 192 192 19 | 194
195
196
194
196
194
193
193
193
193
193
193
193
193
193
193 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 204
207
209
209
209
208
208
209
209
209
209
209
209
209
209
209
209 | JUNE 199 204 206 207 201 205 206 206 206 206 206 207 205 201 201 201 201 201 201 201 201 201 201 | 201
205
207
208
208
207
207
206
208
208
208
208
207
205
203
201
201
201
202
200
197
198
198
196 | 201
203
203
200
201
201
202
204
205
203
203
203
199
199
202
211
207
207
207
207
207
207
207
207
207
207 | JULY 198 199 197 192 199 198 200 200 198 196 196 196 197 197 197 197 197 197 197 197 199 198 198 198 198 198 198 198 198 198 | 199 201 200 198 198 200 200 201 200 201 202 201 198 197 198 197 202 200 199 196 195 195 192 194 194 191 190 190 | 194
192
193
193
193
193
193
195
198
197
196
197
195
195
197
195
197
196
197
197
199
196
197 | 188
189
188
189
190
190
190
190
191
193
194
193
193
192
191
193
191
193
191
193
191
193
191
193
191
193 | 191
191
190
191
191
191
191
192
194
195
195
195
194
195
194
193
194
193
194
193
194
193
194
193
194 | 198
198
198
197
199
196
197
194
195
195
198
195
195
194
194
194
195
195
195
195
195
195
195
195
195
195 | 193 193 194 191 193 191 191 190 191 192 189 189 191 192 192 192 192 192 192 192 192 19 | 194
195
196
194
196
194
193
193
193
193
193
193
193
193
193
193 | 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued PH, WH, FIELD FROM THE DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |--|---|--|--|---|---|---|---|---|--|--|---|--| | | OCTO | OBER | NOVE | /BER | DECEN | /IBER | JANU | JARY | FEBRU | JARY | MAR | CH | | 1
2
3
4
5 | 8.0
8.2
8.6
8.5 | 7.7
7.5
7.9
7.7
7.7 | 8.3
8.2
8.1
8.0
8.0 | 8.1
8.1
7.9
7.8
7.8 | 7.8
7.8
8.1
8.3
8.4 | 7.7
7.7
7.7
8.1
8.3 | 8.0
7.9
8.0
8.1
8.1 | 7.9
7.2
7.5
8.0
8.0 | 8.4
8.4
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.1
8.1
8.2
8.2 | 8.1
8.1
8.0
8.0
8.1 | | 6
7
8
9
10 | 7.9
8.3
8.2
8.2 | 7.3
7.9
7.7
7.7
7.6 | 8.2
8.0
8.1
8.0
8.1 | 7.8
7.9
7.8
7.9
7.9 | 8.3
8.3
8.3
8.2 | 8.3
8.3
8.2
8.1
8.2 | 8.2
8.2
8.3
8.3 | 8.1
8.1
8.2
8.3
8.2 | 8.4
8.4
8.3
8.3 | 8.4
8.3
8.2
8.2 | 8.3
8.3
8.3
8.3 | 8.2
8.2
8.3
8.1
8.1 | | 11
12
13
14
15 | 8.0
7.6
7.3
7.5 | 7.5
7.3
7.2
7.2
7.3 | 8.1
8.0
8.0
8.0 | 7.7
7.7
7.8
7.9
7.8 | 8.2
8.2
8.2
8.1
8.1 | 8.1
8.1
8.0
8.0 | 8.5
8.5
8.6
8.6 | 8.2
8.3
8.4
8.4 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.2
8.2 | 8.2
8.2
8.2
8.2 | | 16
17
18
19
20 | 7.4
7.3
7.7
7.8
7.7 | 7.1
7.1
7.2
7.6
7.4 | 7.9
7.9
8.1
8.2
8.2 | 7.8
7.6
7.7
7.7
7.8 | 8.1
8.0
8.1
8.1 | 8.1
8.0
8.0
8.0 | 8.7
8.7
8.8
8.7
8.8 | 8.4
8.6
8.6
8.6
8.5 | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.0
8.0
7.7
7.6 | 8.0
7.9
7.7
7.6
7.6 | | 21
22
23
24
25 | 7.8
7.9
8.1
7.9
7.5 | 7.3
7.4
7.8
7.3
7.2 | 8.2
8.3
8.3
8.1
8.0 | 7.8
8.0
8.1
7.9
7.9 | 8.0
8.0
8.0
8.1
8.0 | 8.0
8.0
8.0
8.0
7.9 | 8.8
8.8
8.8
8.4 | 8.6
8.7
8.4
7.8 | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.1
8.1
8.1 | 7.6
7.6
7.5
7.5
7.4 | 7.5
7.5
7.4
7.4 | | 26
27
28
29
30
31 | 7.5
7.4
7.6
8.0
8.2
8.2 | 7.2
7.1
7.3
7.0
7.8
8.0 | 7.9
7.9
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7
7.7 | 8.0
8.1
8.0
7.9
8.0
8.0 | 8.0
8.0
7.9
7.9
7.9 | 7.9
7.7
8.0
8.1
8.3
8.3 | 7.4
7.5
7.7
7.8
8.1
8.3 | 8.2
8.2
8.2
 | 8.1
8.1
8.2
 | 7.4
7.4
7.5
7.5
7.5 | 7.3
7.4
7.4
7.4
7.4
7.3 | | MONTH | 8.6 | 7.0 | 8.3 | 7.6 | 8.4 | 7.7 | 8.8 | 7.2 | 8.4 | 8.1 | 8.3 | 7.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | | DAY | MAX
API | | MAX
MA | | MAX
JUI | | MAX
JUI | | MAX
AUGU | | MAX
SEPTE | | | DAY 1 2 3 4 5 | | | | | | | | Ϋ́ | | | | | | 1
2
3
4 | 7.3
7.3
7.3
7.6 | 7.3
7.3
7.3
7.3
7.3 | M2
8.2
7.9
7.9
7.8 | 7.8
7.8
7.7
7.7 | JUN
7.7
7.5
7.6
7.5 | 7.3
7.3
7.2
7.2
| JUI
7.5
7.5
7.5
7.5 | 7.3
7.3
7.2
7.4 | AUGU
7.1
7.1
7.2
7.3 | 7.0
7.1
7.1
7.1 | SEPTE
8.2
8.1
8.0
7.9 | 7.9
7.9
7.9
7.9
7.8 | | 1
2
3
4
5
6
7
8
9 | 7.3
7.3
7.3
7.6
7.6
7.6
7.7 | 7.3
7.3
7.3
7.3
7.6
7.6
7.6
7.6
7.6 | 8.2
7.9
7.9
7.8
7.7
7.7
7.7 | 7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.6
7.7 | 7.7
7.5
7.6
7.5
7.6
7.4
7.5
7.9
7.8 | 7.3
7.3
7.2
7.2
7.1
7.2
7.2
7.4
7.3 | 7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.7
7.7 | 7.3
7.3
7.2
7.4
7.4
7.5
7.6
7.4 | 7.1
7.1
7.2
7.3
7.4
8.1
8.2
8.2
8.0 | 7.0
7.1
7.1
7.1
7.2
7.3
7.8
8.0
7.9 | SEPTE 8.2 8.1 8.0 7.9 8.1 8.2 8.1 8.2 8.1 | MBER 7.9 7.9 7.9 7.8 7.8 7.8 7.9 7.9 7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.3
7.3
7.6
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7 | 7.3
7.3
7.3
7.3
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 8.2
7.9
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.7
7.7
7.7
7.6
7.6 | 7.7
7.5
7.6
7.5
7.6
7.4
7.5
7.8
7.6
7.4
7.4
7.4
7.4 | 7.3 7.3 7.2 7.2 7.1 7.2 7.2 7.3 7.3 7.3 7.3 7.3 | JUI
7.5
7.5
7.5
7.5
7.5
7.6
7.7
7.7
7.8
7.7
7.8
7.8
7.8 | 7.3
7.3
7.4
7.4
7.4
7.5
7.6
7.4
7.5
7.4
7.5 | 7.1
7.1
7.2
7.3
7.4
8.1
8.2
8.0
8.0
7.9
8.2
8.3 | 7.0
7.1
7.1
7.1
7.2
7.3
7.8
8.0
7.9
7.8
7.8
7.8 | SEPTE 8.2 8.1 8.0 7.9 8.1 8.2 8.1 8.0 8.0 8.0 8.0 8.0 8.1 8.3 8.4 8.5 | 7.9
7.9
7.9
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
8.1
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 7.3
7.3
7.6
7.6
7.6
7.6
7.7
7.7
7.7
7.7
8.0
8.1
8.0
8.1 | 7.3
7.3
7.3
7.3
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 8.2
7.9
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.7
7.6
7.5
7.2
7.6 | 7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.7
7.7
7.7
7.6
7.5
7.5
7.4
7.1 | 7.7
7.5
7.6
7.5
7.6
7.4
7.5
7.8
7.6
7.4
7.4
7.3
7.3
7.5 | 7.3 7.3 7.2 7.2 7.1 7.2 7.2 7.4 7.3 7.3 7.2 7.1 7.2 7.2 7.2 7.1 7.1 7.2 7.2 7.2 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | JUI
7.5
7.5
7.5
7.5
7.6
7.7
7.8
7.7
7.8
7.8
7.8
7.8
7.7 | 7.3
7.3
7.4
7.4
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5 | AUGU 7.1 7.1 7.2 7.3 7.4 8.1 8.2 8.0 8.0 7.9 8.2 8.3 8.4 8.1 8.2 8.3 8.4 8.1 8.2 | 7.0
7.1
7.1
7.1
7.2
7.3
7.8
8.0
7.9
7.8
7.7
8.0
7.9
7.8
7.9
7.8
7.9 | SEPTE 8.2 8.1 8.0 7.9 8.1 8.2 8.1 8.0 8.0 8.0 8.1 8.3 8.4 8.5 8.2 8.1 8.2 8.1 | 7.9
7.9
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.3
7.3
7.6
7.6
7.6
7.7
7.7
7.7
7.7
8.0
8.1
8.0
8.1
8.1
7.8
8.2
8.1 | 7.3 7.3 7.3 7.3 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 8.2
7.9
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.7
7.6
7.5
7.5
7.5
7.5
7.5 | 7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.7
7.7
7.7
7.6
7.6 | 7.7 7.5 7.6 7.6 7.5 7.6 7.4 7.5 7.6 7.4 7.3 7.3 7.5 7.6 7.4 7.4 7.3 7.3 7.5 7.6 7.4 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | 7.3 7.3 7.2 7.1 7.2 7.2 7.4 7.3 7.3 7.3 7.2 7.1 7.2 7.2 7.1 7.2 7.2 7.1 7.2 7.2 7.2 7.1 7.2 7.2 7.3 7.3 | JUI
7.5
7.5
7.5
7.5
7.6
7.7
7.8
7.7
7.8
7.8
7.8
7.7
7.6
7.5
7.5
7.6
7.6
8.0 | 7.3
7.3
7.4
7.4
7.4
7.5
7.6
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5 | 7.1
7.1
7.2
7.3
7.4
8.1
8.2
8.0
8.0
7.9
8.2
8.3
8.4
8.1
8.2
8.3
8.4
8.1 | 7.0
7.1
7.1
7.1
7.2
7.3
7.8
8.0
7.9
7.8
7.8
7.7
8.0
7.9
8.0
7.9
8.0
7.9
8.1
8.0
7.9
8.0
7.9
8.0
8.0
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | SEPTE 8.2 8.1 8.0 7.9 8.1 8.2 8.1 8.0 8.0 8.1 8.3 8.4 8.5 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 | 7.9
7.9
7.8
7.8
7.9
7.9
7.9
7.9
7.9
8.1
8.1
7.9
7.9
7.9
7.9
8.0
8.0
8.0 | 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued WATER TEMPERATURE FROM THE DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | WAILK | | | | | | | | | | | | |---|---|--|--|--|--|--|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | | | D | | | | JANUARY | | | 1
2
3
4
5 | 19.6
19.6
19.8
19.9 | 19.1
19.2
19.2 | 19.4
19.4
19.5
19.5 | 15.8
16.0
16.0
16.0 | 15.5
15.7
15.7
15.6
15.7 | 15.6
15.8
15.8
15.9 | 13.8
13.5
13.4
13.4 | 13.5
13.3
13.2
13.2
13.3 | 13.7
13.4
13.3
13.3 | 7.8
7.3
6.9
6.4
6.2 | 7.3
6.9
6.4
6.1
5.9 | 7.6
7.0
6.7
6.2
6.1 | | 6
7
8
9
10 | 19.2
18.9
19.0
18.8
18.7 | 18.5
18.4
18.6 | 18.7
18.7
18.7
18.7
18.5 | 15.9
15.8
15.7
15.5 | 15.6
15.6
15.4
15.3
15.2 | 15.8
15.7
15.5
15.4
15.3 | 13.4
13.5
13.6
13.4
13.0 | 13.2
13.4
13.4
13.0
12.7 | 13.4
13.4
13.5
13.2
12.8 | 6.1
6.1
5.9
6.0
6.5 | 6.1
5.9
5.7
5.6
6.0 | 6.1
6.0
5.8
5.8
6.3 | | 11
12
13
14
15 | 18.6
18.8
18.9
18.9 | 18.5
18.4
18.6
18.7
18.4 | | 15.4
15.2
15.1
15.1
14.9 | | | 12.8
12.7
12.8 | | | 6.6
6.9
7.0
7.3
7.3 | | | | | 18.7
17.9
17.4
17.3 | 17.9
17.2
17.1
17.0
17.0 | 18.3
17.6
17.2
17.1
17.1 | 14.8
14.9
15.0
15.0
14.8 | 14.6
14.6
14.6
14.8
14.1 | | | | 13.0
13.0
12.9
12.6 | 7.4
7.6
7.5
7.3
7.3 | 7.1
7.4
7.3 | 7.3
7.5
7.4
7.3 | | 21
22
23
24
25 | 17.3
17.5
18.1
18.1
17.9 | 16.9
17.0
17.4
17.6
17.3 | 17.1
17.2
17.8
17.9
17.6 | 14.1
13.9
13.8
14.1
14.2 | 13.9
13.7
13.6
13.8
14.0 | 14.0
13.8
13.7
14.0
14.1 | 12.0
11.6
11.6
11.3
10.8 | 11.6
11.4
11.3
10.8
10.2 | 11.8
11.5
11.5
11.0
10.6 | 7.6
7.8
8.3
8.5
9.0 | 7.3
7.4
7.8
7.4
7.3 | 7.4
7.6
8.0
8.1
8.0 | | 26
27
28
29
30
31 | 17.3
16.6
16.0
15.9
15.7 | 16.0
15.7 | 16.9
16.3
15.8
15.7
15.6
15.5 | 14.1
14.3
14.2
14.2
14.2 | 13.9
14.0
14.0
14.0 | 13.9
14.2
14.1
14.1
14.0 | 10.2
9.7
9.3
9.3
8.7
8.2 | 9.7
9.1
9.1
8.7
8.2
7.8 | 9.9
9.3
9.2
9.1
8.5
8.0 | 9.6
9.7
9.9
10.3
10.7
11.3 | 9.0
9.3
9.6
9.9
10.2
10.7 | 9.4
9.5
9.7
10.1
10.5
11.0 | | MONTH | 19.9 | 15.4 | 17.9 | 16.0 | 13.6 | | 13.8 | | | 11.3 | | 7.6 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 11.1
10.7
10.2
9.6 | 9.6 | 11.2
10.9
10.5 | 8.4
8.5
8.4
8.0 | 8.0
8.2
8.0
7.6 | 8.2
8.3
8.2 | 11.2
11.7
11.7
11.5
11.6 | 10.7
11.0
11.4 |
11.0
11.3
11.6 | 18.4
18.1
17.9 | 17.7
17.7
17.5 | 18.0
18.0
17.7
17.3 | | 7 | 0 0 | | 9.2 | 7.8 | 7.3 | 7.7 | 11.5
11.6 | 11.1
11.1 | 11.3 | 17.5
17.7 | 17.2 | 17.3 | | 9
10 | 9.0
8.6
8.6
8.9
8.9 | | | | | | | | 11.4 | 17.5 | 17.1 | 17.3
17.6
17.9 | | 9
10
11
12 | 8.9
8.9 | 8.6
8.3
8.3
8.4
8.6 | 8.8
8.4
8.6
8.8 | 8.1
8.4
9.1
9.5
9.2
9.6
9.8 | 7.7
8.0
8.3
9.0
8.9
9.1
9.6 | 7.9
8.2
8.6
9.2
9.1 | 11.9
12.1
12.1
12.1
12.8 | 11.3
11.4
11.7
11.9
11.9 | 11.3
11.4
11.6
11.7
11.8
12.0
12.2 | 17.5
17.7
17.6
17.8
18.1
18.0
18.0 | 17.2
17.1
17.1
17.3
17.6
17.6
17.6 | 17.3
17.6
17.9
17.8
17.8 | | 9
10
11
12
13
14 | 8.9
8.9
8.8
8.8 | 8.6
8.3
8.3
8.4
8.6
8.7
8.7
8.7 | 8.8
8.4
8.6
8.8
8.8
8.7
8.6 | 8.1
8.4
9.1
9.5
9.2
9.6
9.8
9.9 | 7.7
8.0
8.3
9.0
8.9
9.1
9.6
9.6
9.8 | 7.9
8.2
8.6
9.2
9.1
9.3
9.7
9.7 | 11.9
12.1
12.1
12.1
12.8
13.0
13.5
13.9
14.2 | 11.3
11.4
11.7
11.9
11.9
12.3
12.8
13.3
13.7 | 11.3
11.4
11.6
11.7
11.8
12.0
12.2
12.6
13.1
13.6
14.0 | 17.5
17.7
17.6
17.8
18.1
18.0
18.0
17.7
17.7
17.7 | 17.2
17.1
17.3
17.6
17.6
17.6
17.2
17.2
17.2 | 17.3
17.6
17.9
17.8
17.8
17.5
17.4
17.3
16.8 | | 9
10
11
12
13
14
15
16
17
18
19 | 8.9
8.8
8.8
8.7
8.9
9.0
9.0 | 8.6
8.3
8.4
8.6
8.7
8.5
8.4
8.6
8.6
8.6
8.7 | 8.8
8.4
8.6
8.8
8.8
8.7
8.6
8.7
8.6
8.7
8.8
8.8 | 8.1
8.4
9.1
9.5
9.2
9.6
9.8
9.9
10.6
10.9
11.3
11.5
12.2 | 7.7
8.0
8.3
9.0
9.1
9.6
9.8
10.5 | 7.9
8.2
8.6
9.2
9.1
9.3
9.7
9.7
10.1
10.7
10.7
11.5
12.0 | 11.9
12.1
12.1
12.1
12.8
13.0
13.5
13.9
14.2
15.2
15.7
16.5
16.5 | 11.3
11.4
11.7
11.9
11.9
12.3
12.8
13.3
13.7
13.9
14.9
15.2
15.4
15.9 | 11.3
11.4
11.6
11.7
11.8
12.0
12.2
12.6
13.1
13.6
14.0
14.5
15.2
15.4
15.8
16.1 | 17.5
17.7
17.6
17.8
18.1
18.0
18.0
17.7
17.7
17.6
17.0
17.0
16.9
17.0
16.8
15.9 | 17.2
17.1
17.1
17.3
17.6
17.6
17.6
17.2
17.2
17.0
16.6
16.5
16.5 | 17.3
17.6
17.9
17.8
17.5
17.4
17.3
16.8
16.7 | | 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 8.9
8.8
8.8
8.7
8.9
9.0
9.0
9.5
9.8
9.7
9.6 | 8.6
8.3
8.4
8.6
8.7
8.5
8.4
8.6
8.6
8.6
8.7
9.0
9.1
9.2
9.3
8.3
8.3
8.3 | 8.8
8.4
8.4
8.6
8.8
8.8
8.7
8.6
8.7
8.6
8.7
9.2
9.5
9.5
9.4
9.5
9.4
9.5 | 8.1
8.4
9.1
9.5
9.2
9.6
9.8
9.9
10.6
10.9
11.3
11.5
12.2
12.1
12.3
11.8
11.4
11.1
11.2 | 7.7
8.0
8.3
9.0
8.9
9.1
9.6
9.8
10.5
10.5
11.3
11.5
12.0
11.7
11.2
11.1
10.6
10.3
10.6
10.3
10.6 | 7.9
8.2
8.6
9.2
9.1
9.3
9.7
9.7
10.1
10.7
10.9
11.5
12.0
12.1
11.3
11.2
10.9
10.8
10.9
10.4
10.5
11.0 | 11.9
12.1
12.1
12.1
12.8
13.0
13.5
13.9
14.2
15.2
15.7
16.5
16.3
16.5
17.3
17.5
18.3
18.1
18.0 | 11.3
11.4
11.7
11.9
11.9
12.3
12.8
13.3
13.7
13.9
14.9
15.2
15.4
15.9
16.1
16.3
17.7
17.4
17.2
17.0
17.2 | 11.3
11.4
11.6
11.7
11.8
12.0
12.2
12.6
13.1
13.6
14.0
14.5
15.2
15.4
16.3
16.7
16.7
17.8
17.9
17.8
17.8
17.4
17.5
18.1 | 17.5
17.7
17.6
17.8
18.1
18.0
18.0
17.7
17.6
17.0
17.0
16.9
17.0
16.8
15.9
16.0
16.1
16.3
16.5
16.5
17.2 | 17.2
17.1
17.3
17.6
17.6
17.6
17.6
17.2
17.2
17.0
16.6
16.5
16.5
16.5
15.4
15.4
15.6
15.6
15.6
15.6
15.6
17.2
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | 17.3
17.6
17.8
17.8
17.8
17.5
17.4
17.3
16.8
16.7
16.6
15.7
15.8
15.9
16.2
16.2
16.2
16.2
17.0
17.5
17.9
18.4
18.6 | | 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 8.9
8.8
8.8
8.7
8.9
9.0
9.0
9.5
9.7
9.7
9.7
9.8
9.9
9.0
8.4 | 8.6
8.3
8.3
8.4
8.6
8.7
8.5
8.4
8.6
8.6
8.6
8.7
9.0
9.1
9.2
9.3
8.3
8.3 | 8.8
8.4
8.4
8.8
8.8
8.7
8.6
8.7
8.6
8.7
9.2
9.5
9.5
9.4
9.5
9.4
9.5 | 8.1
8.4
9.1
9.5
9.2
9.6
9.8
9.9
10.6
10.9
11.3
11.5
12.2
12.1
12.3
11.8
11.4
11.1
11.2 | 7.7
8.0
8.3
9.0
8.9
9.1
9.6
9.6
9.8
10.5
10.6
11.3
11.5
12.0
11.7
11.2
10.7
10.6
10.3
10.5 | 7.9
8.2
8.6
9.2
9.1
9.3
9.7
9.7
10.1
10.7
10.9
11.5
12.0
12.1
11.3
11.2
10.9
10.8 | 11.9
12.1
12.1
12.1
12.8
13.0
13.5
13.9
14.2
15.7
15.7
16.5
16.3
16.5
17.3
17.5
18.3
18.1
18.0 | 11.3
11.4
11.7
11.9
11.9
12.3
12.8
13.3
13.7
13.9
14.9
15.2
15.4
15.9
16.1
16.3
16.0
17.3
17.7
17.4 | 11.3
11.4
11.6
11.7
11.8
12.0
12.2
12.6
13.1
13.6
14.0
14.5
15.2
15.4
16.3
16.7
16.7
17.8
17.9
17.8 | 17.5
17.7
17.6
17.8
18.1
18.0
17.7
17.7
17.6
17.0
17.0
16.9
17.0
16.8
15.9
16.0 | 17.2
17.1
17.3
17.6
17.6
17.6
17.6
17.2
17.2
17.0
16.6
16.5
16.5
16.5
16.5
16.5
15.4
15.4
15.6
15.6
15.6
15.9
16.2
16.6 | 17.3
17.3
17.6
17.9
17.8
17.5
17.4
17.3
16.8
16.7
16.6
15.6
15.7
15.8
15.9
16.2
16.2
16.9 | 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued WATER TEMPERATURE FROM THE DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1 | 19.5 | 18.5 | 19.0 | 26.3 | 25.3 | 25.8 | 26.6 | 24.8 | 25.5 | 26.1 | 25.2 | 25.5 | | 2 | 19.5 | 18.8 | 19.2 | 26.8 | 25.6 | 26.0 | 26.1 | 25.2 | 25.7 | 25.7 | 25.3 | 25.5 | | 3 | 20.4 | 18.7 | 19.6 | 26.8 | 25.6 | 26.2 | 26.2 | 24.9 | 25.6 | 25.5 | 25.1 | 25.2 | | 4 | 20.5 | 19.2 | 19.9 | 26.4 | 25.6 | 26.0 | 26.0 | 25.0 | 25.4 | 25.2 | 24.6 | 25.0 | | 5 | 21.3 | 20.0 | 20.5 | 26.6 | 26.1 | 26.3 | 25.8 | 25.0 | 25.3 | 26.1 | 24.5 | 25.1 | | 6 | 21.1 | 19.6 | 20.2 | 26.5 | 26.0 | 26.2 | 26.6 | 25.0 | 25.5 | 26.1 | 24.9 | 25.4 | | 7 | 21.8 | 20.1 | 21.1 | 26.5 | 26.1 | 26.3 | 26.9 | 25.9 | 26.5 | 25.7 | 24.8 | 25.2 | | 8 | 23.1 | 21.6 | 22.2 | 26.4 | 25.8 | 26.2 | 27.4 | 26.2 | 26.7 | 25.4 | 24.7 | 25.0 | | 9 | 23.2 | 21.4 | 22.3 | 26.5 | 25.5 | 26.1 | 26.8 | 26.0 | 26.4 | 25.5 | 24.8 | 25.1 | | 10 | 23.5 | 21.8 | 22.6 | 26.5 | 25.8 | 26.0 | 26.8 | 26.0 | 26.3 | 25.5 | 24.8 | 25.1 | | 11 | 23.0 | 22.2 | 22.7 | 27.2 | 26.3 | 26.7 | 26.5 | 25.5 | 26.0 | 25.4 | 24.6 | 24.9 | | 12 | 23.0 | 22.4 | 22.7 | 26.6 | 25.9 | 26.3 | 26.5 | 25.5 | 26.0 | 25.8 | 25.2 | 25.5 | | 13 | 23.6 | 21.9 | 22.8 | 26.4 | 25.6 | 26.0 | 26.5 | 25.6 | 26.1 | 25.9 | 25.4 | 25.5 | | 14 | 23.5 | 22.3 | 23.0 | 26.5 | 25.7 | 26.0 | 26.5 | 25.6 | 26.0 | 26.0 | 25.4 | 25.6 | | 15 | 23.4 | 22.8 | 23.0 | 26.0 | 25.7 | 25.8 | 26.2 | 25.6 | 25.9 | 25.7 | 24.8 | 25.3 | | 16 | 23.9 | 23.3 | 23.6 | 26.2 | 25.6 | 25.9 | 26.1 | 25.6 | 25.9 | 25.1 | 24.5 | 24.8 | | 17 | 24.6 | 23.4 | 23.9 | 25.9 | 25.1 | 25.6 | 26.2 | 25.5 | 25.9 | 25.1 | 24.5 | 24.7 | | 18 | 24.8 | 23.5 | 24.1 | 25.7 | 24.7 | 25.2 | 25.8 | 25.2 | 25.4 | 25.7 | 24.5 | 25.1 | | 19 | 24.9 | 23.7 | 24.4 | 25.8 | 24.8 | 25.3 | 25.8 | 25.4 | 25.6 | 25.7 | 24.6 | 25.2 | | 20 | 24.6 | 23.4 | 24.1 | 25.6 | 24.9 | 25.3 | 25.8 | 25.3 | 25.6 | 25.7 | 24.5 | 25.3 | | 21 | 24.9 | 23.7 | 24.4 | 26.0 | 25.1 | 25.6 | 26.2 | 25.6 | 25.8 | 25.2 | 24.3 | 24.7 | | 22 | 24.7 | 23.8 | 24.2 | 26.1 | 25.6 | 25.9 | 26.1 | 25.4 | 25.7 | 24.9 | 24.1 | 24.5 | | 23 | 24.7 | 24.2 | 24.5 | 26.2 | 25.9 | 26.0 | 26.0 | 25.0 | 25.5 | 24.4 | 24.1 | 24.2 | | 24 | 24.8 | 24.2 | 24.5 | 26.4 | 25.9 | 26.2 | 25.6 | 24.8 | 25.1 | 24.2 | 23.8 | 23.9 | | 25 | 24.8 | 23.2 | 24.2 | 26.9 | 25.8 | 26.3 | 25.5 | 24.8 | 25.1 | 23.8 | 23.4 | 23.6 | | 26
27
28
29
30
31 | 25.1
25.4
25.4
25.6
25.6 | 23.7
24.1
24.2
25.0
25.0 | 24.5
24.7
24.9
25.2
25.3 | 26.5
26.0
25.4
25.6
25.2
25.8 | 25.8
25.3
24.4
24.4
24.7
24.8 | 26.2
25.7
25.1
25.0
25.0
25.3 |
25.5
26.0
26.0
25.9
26.2
26.0 | 24.8
25.3
25.5
25.5
25.4
25.4 | 25.3
25.7
25.8
25.7
25.8
25.6 | 23.4
22.7
22.3
22.3
22.6 | 22.7
22.2
22.1
22.0
22.1 | 23.1
22.4
22.2
22.1
22.3 | | MONTH | 25.6 | 18.5 | 22.9 | 27.2 | 24.4 | 25.9 | 27.4 | 24.8 | 25.8 | 26.1 | 22.0 | 24.6 | OXYGEN DISSOLVED FROM THE DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---|--|--|------------------------------------|---------------------------------|---------------------------------|---|---|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | OCTOBER | | NC | VEMBER | | D | ECEMBER | | | JANUARY | 7 | | 1
2
3
4
5 | 10.3
10.5
11.8
11.7
11.3 | 8.2
8.7
9.3
9.1
9.2 | 9.2
9.7
10.1
10.3
10.2 | 9.6
9.3
9.0
8.9
8.8 | 8.8
8.6
8.2
7.4
7.6 | 9.3
9.0
8.4
8.5
8.5 | 9.4
9.5
9.8 | 9.1
9.0
9.3 | 9.3
9.3
9.5 | 10.9
11.2
11.5
12.0
12.1 | 10.4
10.8
10.8
11.2
11.6 | 10.6
11.0
11.1
11.6
11.8 | | 6
7
8
9
10 | 10.1
11.5
11.4
11.0
11.0 | 6.6
9.8
9.3
8.8
9.0 | 9.2
10.5
10.6
10.1
10.1 | 9.6
9.0
9.3
8.9
9.6 | 7.8
8.0
7.5
8.4
8.5 | 8.9
8.7
8.8
8.7
9.0 | 9.6
9.2
9.1
8.9
8.8 | 9.0
8.8
8.4
8.3
8.5 | 9.3
8.9
8.8
8.6
8.7 | 12.1
12.0
12.4
12.6
12.6 | 11.5
11.4
11.6
12.1
12.2 | 11.8
11.7
12.1
12.4
12.4 | | 11
12
13
14
15 | 10.5
9.8
9.5
9.4
9.7 | 9.0
8.1
8.2
8.2
8.5 | 9.9
9.2
9.0
8.9
9.1 | 9.4
9.2
9.4
9.3
9.1 | 7.5
7.3
8.6
8.6
8.4 | 8.9
8.8
9.0
9.0 | 8.6
8.5
8.4
8.8 | 8.2
8.2
8.2
8.3
8.5 | 8.5
8.3
8.3
8.5
8.7 | 12.8
12.9
13.1
13.3
13.0 | 12.1
12.2
12.6
12.6
12.5 | 12.3
12.6
12.9
12.9
12.8 | | 16
17
18
19
20 | 9.8
9.6
10.9
10.9
10.8 | 8.7
8.7
8.6
9.4
9.8 | 9.4
9.2
9.9
10.5
10.3 | 9.2
9.4
9.8
9.8
9.4 | 8.6
7.4
6.7
7.5
6.2 | 8.9
8.8
9.1
8.9
8.9 | 8.7
8.7
8.7
8.8
8.9 | 8.4
8.5
8.3
8.3 | 8.5
8.6
8.4
8.5
8.6 | 13.6
13.4
13.7
13.4
13.6 | 12.4
12.8
12.7
12.6
12.6 | 12.9
13.1
13.1
13.2
13.1 | | 21
22
23
24
25 | 10.6
10.7
11.1
10.3
9.7 | 9.3
9.5
10.2
8.9
8.6 | 9.8
10.0
10.6
9.6
9.2 | 10.0
10.3
10.2
9.5
9.0 | 6.2
9.3
9.3
6.9 | 9.3
9.9
9.8
9.1
8.7 | 9.1
10.1
10.6
9.4
9.4 | 8.9
8.9
9.2
9.0
9.0 | 9.0
9.1
9.6
9.3
9.2 | 13.5
13.5
14.7
14.7
14.9 | 12.8
12.9
12.8
14.3 | 13.2
13.2
13.2
14.5 | | 26
27
28
29
30
31 | 9.6
9.6
10.2
9.9
9.5
9.5 | 8.8
7.8
7.5
6.5
7.8
8.1 | 9.2
9.1
9.3
9.1
9.0
8.9 | 9.2
9.3

 | 8.2
8.6

 | 8.7
9.0

 | 9.8
10.2
10.1
10.1
10.2
10.6 | 9.4
9.6
9.7
9.7
9.8
10.2 | 9.6
9.9
9.9
9.9
10.0
10.4 |

9.7
9.8
9.8 |

9.6
9.6
9.6 | 9.6
9.8
9.7 | | MONTH | 11.8 | 6.5 | 9.7 | 10.3 | 6.2 | 8.9 | 10.6 | 8.2 | 9.1 | 14.9 | 9.6 | 12.2 | 79 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued OXYGEN DISSOLVED FROM THE DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|---|---|---|---|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 10.2
10.3
10.2
10.5
10.6 | 9.8
10.1
10.1
10.1
10.5 | 10
10.2
10.2
10.3
10.6 | 12.9
12.7
12.8
13.1
13.7 | 12.2
12.4
12.3
12.4
13.0 | 12.5
12.5
12.5
12.7
13.4 | 12.5 | 12.1
12.2
11.3 | 12.5
12.2
12.3
12.3
11.1 | 10.8
9.3
9.1
9.1
9.1 | 9.0
8.8
8.8
8.6
8.4 | 9.8
9.1
8.9
8.8
8.8 | | 6
7
8
9
10 | 10.7
10.8
10.8
10.9 | 10.5
10.6
10.6
10.6
10.8 | 10.6
10.7
10.7
10.8
10.9 | 14.0
14.2
14.1
14.1
13.4 | 13.4
13.6
13.7
13.3
13.0 | 13.7
13.8
13.9
13.5
13.2 | 12.1
11.8
10.9
9.7
11.1 | 11.1
10.7
9.5
9.5
9.6 | 11.8
11.4
10
9.6
9.9 | 8.7
9.0
11.6
9.6
10.9 | 8.3
8.0
8.8
9.0
9.1 | 8.5
8.5
10
9.3
9.9 | | 12
13
14 | 11.2
11.3
11.5
11.5 | 11.0
11.1
11.2
11.4
11.4 | 11.1
11.2
11.3
11.5
11.5 | 14.0
14.1
13.7
13.9
13.6 | 13.2
13.4
13.0
13.1
12.8 | 13.6
13.8
13.4
13.6
13.3 | 10.3
10.2
10.2
10.1
10.5 | 10.0
9.9
9.9
9.7
9.7 | 10.1
10.1
10.0
9.9
10.1 | 10.2
10.0
9.8
11.9
11.7 | 9.5
9.5
9.3
9.5
9.7 | 9.8
9.7
9.5
11.4
10.7 | | 17
18
19 | 11.9
11.7
11.9
12.0
12.0 | 11.3
11.5
11.6
11.7 | 11.5
11.6
11.8
11.9
11.9 | 12.9
13.6
13.5
12.8
11.9 | 12.2
11.9
12.8
11.6
11.6 | 12.5
12.6
13.1
12.2
11.8 | 11.1
11.6
12.2
11.8
11.4 | 10.1
10.7
10.8
11.2
10.9 | 10.6
11.0
11.4
11.4 | 11.8
11.3
11.8
12.0
9.6 | 10.8
9.2
9.1
9.6
9.1 | 11.4
10.2
10.7
11.1
9.4 | | 21
22
23
24
25 | 12.6
12.1
12.2
12.4
12.6 | 11.7
11.9
11.9
11.9 | 12.0
12.0
12.1
12.1
12.4 | 12.0
12.3
12.2
12.5
12.8 | 11.8
12.0
11.8
11.9
12.3 | | 11.5
10.7
11.7
11.3
11.0 | | | | | | | 2.7 | 12.6
12.5
12.8
 | 11.9
11.9
12.2
 | 12.1
12.2
12.5
 | 13.2
13.1
13.0
13.0
13.0 | 12.7
12.6
12.8
12.3
12.7
12.6 | 12.9
13.0
12.9
12.8
12.9
12.8 | 10.9
10.7
10.6
10.9
11.4 | 10.3
10.2
9.7
9.6
10.3 | 10.6
10.4
10.2
10.2 | 10.7
10.5
9.8
10.4
9.9
10.5 | 9.5
9.4
8.9
8.4
8.6
8.6 | 10.2
9.9
9.4
9.4
9.1
9.4 | | MONTH | 12.8 | 9.8 | 11.3 | 14.2 | | 12.9 | 13.4 | 9.5 | 10.8 | 12.0 | 8.0 | 9.8 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | | 9.8 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1
2
3
4
5
6
7
8 | 9.8
9.2
9.2
8.6
8.5 | JUNE 8.5 7.7 7.8 7.3 6.1 | | | JULY 5.3 4.3 3.4 4.6 4.9 | 5.9
5.3
5.1
5.2
5.7 | | AUGUST 4.9 5.8 5.6 5.2 5.2 | 5.9
6.3
6.5
6.0
5.8
5.5
6.2
6.2 | 7.3
6.8
6.4
6.0
6.6
6.9
7.1
6.6
6.1
5.9 | 5.9
5.8
5.2
4.8
4.5
4.8
4.9
5.0
4.2 | 6.5
6.4
6.0
5.6
5.4
5.7
5.7
5.7
5.7 | | 1
2
3
4
5
6
7
8
9 | 9.8
9.2
9.2
8.6
8.5
7.8
7.9
8.7
8.3
7.7 | JUNE 8.5 7.7 7.8 7.3 6.1 7.0 6.6 7.5 7.2 7.1 | 9.2
8.8
8.5
8.1
7.9
7.5
7.4
8.0
7.7 | 6.6
6.2
6.0
5.8
6.3 | JULY 5.3 4.3 3.4 4.6 4.9 5.0 5.7 5.6 4.0 5.1 | 5.9
5.3
5.1
5.2
5.7
5.9
6.0
5.8 | 6.6
7.0
7.4
6.8
6.4
6.0
6.3
7.3
7.2
7.4 | 4.9
5.8
5.6
5.2
5.2
5.1
5.4
5.6
5.5 | 5.9
6.3
6.5
6.0
5.8
5.5
6.2
6.2 | 7.3
6.8
6.4
6.0
6.6 | 5.9
5.8
5.2
4.8
4.5
4.8
4.9
5.0
4.2 | 6.5
6.4
6.0
5.6
5.4
5.7
5.7
5.7
5.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 9.8
9.2
9.2
8.6
8.5
7.8
7.9
8.7
8.3
7.7
7.1
6.6
6.7
6.2 | JUNE 8.5 7.7 7.8 7.3 6.1 7.0 6.6 7.5 7.2 7.1 5.9 5.2 4.8 5.3 | 9.2
8.8
8.5
8.1
7.9
7.5
7.4
8.0
7.7
7.4
6.7
6.1
6.5
8 | 6.6
6.2
6.0
5.8
6.3
6.5
7.0
6.4
6.3
6.9
7.3 | JULY 5.3 4.3 3.4 4.6 4.9 5.0 5.7 6.0 5.1 5.4 6.1 6.9 |
5.9
5.3
5.1
5.2
5.7
5.9
6.3
5.9
6.0
5.8
6.2
6.7 | 6.6
7.0
7.4
6.8
6.4
6.0
6.3
7.3
7.2
7.4
6.9
6.2
5.9
6.1 | AUGUST 4.9 5.8 5.6 5.2 5.2 5.1 5.4 5.6 5.5 5.5 5.1 4.7 4.6 4.8 | 5.9
6.5
6.0
5.8
5.5
6.2
6.2
6.5
6.3
5.5
5.5
5.5 | 7.3
6.8
6.4
6.0
6.6
6.9
7.1
6.6
6.1
5.9
5.5
6.7
7.2
7.6 | 5.9
5.8
5.2
4.8
4.5
4.8
4.9
5.0
4.2
4.1
3.9
4.5
5.5 | 6.5
6.4
6.0
5.4
5.7
5.7
5.3
4.9
4.8
5.8
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 9.8
9.2
9.2
8.6
8.5
7.8
7.7
8.3
7.7
7.1
6.6
6.2
6.6
7.1
7.5
7.7 | JUNE 8.5 7.7 7.8 7.3 6.1 7.0 6.6 7.5 7.2 7.1 5.9 5.2 4.8 5.3 5.4 5.8 5.0 5.5 6.1 | 9.2
8.85
8.1
7.9
7.5
7.4
8.0
7.7
7.4
6.7
6.1
6.5
6.5
6.6
9 | 6.6
6.2
6.0
5.8
6.3
6.5
7.0
6.4
6.3
6.9
7.3
8.0
8.2
7.4
7.2 | JULY 5.3 4.3 3.4 4.6 4.9 5.0 5.7 5.6 4.0 5.1 5.4 6.1 6.9 6.9 6.9 6.2 6.3 5.2 | 5.9
5.1
5.2
5.7
5.9
6.3
5.8
6.2
7.1
7.5
7.6
6.9
6.6 | 6.6
7.0
7.4
6.8
6.4
6.0
6.3
7.2
7.4
6.9
6.2
5.9
6.1
6.3 | AUGUST 4.9 5.8 5.6 5.2 5.2 5.1 5.4 5.5 5.5 5.1 4.7 4.6 4.8 4.9 5.4 5.6 5.9 6.5 | 5.9
6.5
6.0
5.8
5.5
6.2
6.2
6.5
5.5
5.5
5.5
6.4
6.5
6.4
6.5 | 7.3
6.8
6.4
6.0
6.6
6.9
7.1
6.6
6.1
5.9
5.5
6.7
7.2
7.6
7.3
6.1
6.5
7.8 | 5.9
5.8
5.2
4.8
4.5
4.8
4.9
5.0
4.2
4.1
3.9
4.5
5.5
5.1
6.1 | 6.5
6.4
6.0
5.6
5.4
5.7
5.9
5.7
5.3
4.9
4.8
6.8
6.6
5.7
5.9
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 9.8
9.2
9.2
8.6
8.5
7.8
7.7
7.1
6.6
7.6
6.6
7.5
7.7
6.8
7.9
6.8 | JUNE 8.5 7.7 7.8 7.3 6.1 7.0 6.6 7.5 7.2 7.1 5.9 5.8 5.3 5.4 5.8 5.5 6.1 5.5 5.4 6.0 6.1 | 9.2
8.85
8.1
7.9
7.5
7.4
8.7
7.4
6.7
7.7
6.1
6.5
6.5
6.6
6.9
6.3
6.3
6.3
6.3 | 6.6
6.2
6.0
5.8
6.3
6.5
7.0
6.4
6.3
6.9
7.3
8.0
8.2
7.4
7.2
7.2 | JULY 5.3 4.3 4.6 4.9 5.0 5.7 5.6 4.0 5.1 5.4 6.1 6.9 6.9 6.9 6.9 6.2 6.3 5.2 6.1 6.0 5.7 5.7 4.8 | 5.9
5.12
5.7
5.9
6.3
5.8
5.8
6.2
7.1
7.5
7.6
6.6
6.6
6.2
5.5 | 6.6
7.0
7.4
6.8
6.4
6.0
6.3
7.2
7.4
6.9
6.2
5.9
6.1
6.3
6.6
7.2
6.8
7.0
7.1 | AUGUST 4.9 5.8 5.6 5.2 5.2 5.1 5.4 5.5 5.5 5.1 4.7 4.8 4.9 5.4 5.6 6.2 6.3 5.9 6.1 | 5.9
6.5
6.0
5.8
5.5
6.2
6.5
6.3
5.5
5.5
5.5
6.4
6.6
6.8
6.7
6.10 | 7.3
6.8
6.4
6.0
6.6
6.9
7.1
6.6
6.1
5.9
5.5
6.7
7.2
7.6
7.3
6.1
6.5
7.8
7.8
7.8
7.8 | 5.9
5.8
5.2
4.8
4.5
4.8
4.9
5.0
4.2
4.1
3.9
4.5
5.5
5.1
6.1
5.4
5.6
5.4
5.6 | 6.5
6.4
6.6
5.4
5.7
5.9
5.3
4.9
4.8
5.8
6.6
5.7
5.9
6.5
6.5
7.2
7.2
7.3 | ## 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM (TAILWATER), TN--Continued TURBIDITY, in (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |---|--|--|---|---|---|--|---|---|--|--|---|---| | | OCTO | BER | NOVEN | /BER | DECEM | IBER | JANU | JARY | FEBRU | JARY | MAF | RCH | | 1
2
3
4
5 | 8
6
6
4
7 | 3
2
2
2
3 | 6
7
6
6
7 | 4
4
4
2
4 | 6
5
17
20
15 | 4
4
4
6
6 | 8
7
7
8
6 | 6
6
4
3
4 | 33
29
24
22
18 | 23
22
20
18
14 | 9
8
8
9
8 | 6
7
7
7
6 | | 6
7
8
9
10 | 7
6
5
5
5 | 3
3
2
2
3 | 8
8
7
10
12 | 4
4
3
6
6 | 26
23
17
6
6 | 7
8
5
5
4 | 5
7
5
6
5 | 4
4
4
3
4 | 15
13
12
14
11 | 13
11
10
9 | 8
8
7
9 | 6
6
7
6 | | 11
12
13
14
15 | 6
6
8
8 | 3
3
4
4 | 11
9

 | 6
6

 | 7
7
7
7
8 | 5
5
5
6 | 5
6
6
8
6 | 4
4
4
4 | 11
11
9
9 | 8
8
8
7
7 | 8
9
8
8
9 | 6
6
6
6 | | 16
17
18
19
20 | 9
7
9
8
6 | 4
4
3
4
4 |

5
4 |

2
1 | 11
9
9
9 | 6
7
6
6 | 6
6
8
8 | 4
4
4
5
4 | 9
10
10
11
11 | 8
7
7
7 | 8
19
51
120
110 | 6
6
17
51
45 | | 21
22
23
24
25 | 9
6
7
6
8 | 4
4
5
5
4 | 4
6
4
12
5 | 2
2
3
2
2 | 8
7
7
9
8 | 6
5
6
5
5 | 6
6
12
42
110 | 4
4
4
7
22 | 11
10
9
9 | 7
7
7
7 | 68
81
83
58
38 | 42
52
58
38
31 | | 26
27
28
29
30
31 | 8
8
8
6
6 | 5
3
4
2
3
3 | 4
5
5
6
6 | 2
2
2
2
4 | 8
8
8
7
7 | 5
6
6
6
6 | 110

43
41
42 | 41

39
32
32 | 10
10
8
 | 7
7
7

 | 32
32
26
19
19
23 | 26
21
19
16
16 | | MONTH | 9 | 2 | 12 | 1 | 26 | 4 | 110 | 3 | 33 | 7 | 120 | 6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | | DAY | MAX
APR | | MAX
MA | | MAX
JUN | | MAX
JUI | | MAX
AUGU | | MAX
SEPTE | | | DAY 1 2 3 4 5 | | | | | | | | | | | | | | 1
2
3
4 | 33
40

43 | 20
26

39 | 10
9
11
11 | 5
6
8 | JUN
10
8
8
7 | 6
4
3
2 | JUI
7
6
7
7 | 2
2
1
4 | AUGU
18
13
14
12 | 8
10
9 | SEPTH
10
9
10
13 | EMBER
3
3
5
4 | | 1
2
3
4
5
6
7
8
9 | 33
40

43
45
40
41
29
24 | 20
26

39
36
33
26
22
20 | 10
9
11
11
13
15
16
22
17 | 5
6
8
8
9
12
12
12
12 | JUN
10
8
8
7
9
6
9
7
10 | 6
4
3
2
1
2
3
5
4 | JUI
7
6
7
7
8
13
8
8 | 2
2
1
4
4
4
5
4
3 | 18
13
14
12
14
14
15
15 | 8 10 9 9 9 10 10 10 10 | SEPTH 10 9 10 13 10 10 9 10 9 | 3
3
5
4
3
4
5
5
5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 33
40

43
45
40
41
29
24
35
20
27
25
29 | 20
26

39
36
33
26
22
20
18
18
17
18 | 10
9
11
11
13
15
16
22
17
17
17
18
20
25 | 5
6
8
8
9
12
12
12
13
13
13 | JUN
10
8
8
7
9
6
9
7
10
12
12
11
13
14 | 1E 6 4 3 2 1 2 3 5 4 5 5 4 4 8 | JUI
7
6
7
7
8
8
8
8
8
9
7
7
4
7 | 2
2
1
4
4
4
5
4
3
4
2
1
2 | 18 13 14 12 14 15 15 15 19 14 16 12 8 | 8 10 9 9 9 9 10 10 10 11 8 9 9 6 | SEPTH 10 9 10 13 10 10 10 9 10 9 13 12 14 15 14 | 3 3 5 4 3 4 5 5 5 6 6 6 7 7 6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 33
40

43
45
40
41
29
24
35
20
27
25
29
27
22
20
16
18 | 20
26

39
36
33
26
22
20
18
18
17
18
16
15 | 10
9
11
11
11
13
15
16
22
17
17
17
17
20
25
28
23
19
21
20 | 5
6
8
8
9
12
12
12
13
13
15
15
16
19
16 | 10
8
8
7
9
6
9
7
10
12
12
11
13
14

6
10
8 | 1E 6 4 3 2 1 2 3 5 4 5 5 4 5 5 4 4 8 1 2 4 | JUI
7
6
7
7
8
13
8
8
8
9
7
7
4
7
7
7
6
8
8
13 | 2 2 1 4 4 5 4 3 4 2 1 2 3 4 2 2 6 6 2 | 18 13 14 12 14 15 15 15 19 14 16 12 8 5 | 8 10 9 9 9 10 10 10 11 8 9 6 5 5 5 5 5 5 5 | SEPTH 10 9 10 13 10 10 9 10 9 13 12 14 15 14 12 10 8 8 10 | MBER 3 3 5 4 4 5 5 5 5 6 6 6 7 7 6 8 8 5 4 4 4 2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 33
40

43
45
40
41
29
24
35
20
27
25
29
27
22
20
16
18
15 | 20 26 39 36 33 26 22 20 18 18 17 18 16 15 12 12 12 12 12 12 12 12 12 12 12 12 12 |
10
9
11
11
11
13
15
16
22
17
17
17
17
20
25
28
23
19
21
20
28
28
18
18
14 | 5
6
8
8
9
12
12
12
13
13
13
15
16
19
16
15
13
13
13 | 10
8
8
7
9
6
9
7
10
12
12
11
13
14

6
10
8
8
8 | 1E 6 4 3 2 1 2 3 5 4 4 5 5 4 4 4 4 4 4 | JUI 7 6 7 7 8 8 13 8 8 9 7 7 4 4 7 7 7 6 8 13 5 4 14 11 1 | 2 2 1 4 4 4 5 4 3 4 2 1 2 3 4 4 2 2 6 6 2 2 8 8 7 | 18 13 14 12 14 15 15 15 19 14 16 12 8 5 10 11 17 6 7 8 8 9 | 8 10 9 9 9 10 10 10 11 8 9 6 5 5 5 5 4 4 5 5 5 | SEPTH 10 9 10 13 10 10 9 10 9 13 12 14 15 14 12 10 8 8 10 8 16 54 33 7 | MBER 3 3 5 4 4 3 4 5 5 5 5 6 6 6 7 7 6 8 8 4 4 4 2 4 4 2 2 8 8 2 2 2 | THIS PAGE IS INTENTIONALLY BLANK ### 03426385 MANSKER CREEK ABOVE GOODLETTSVILLE, TN LOCATION.--Lat 36°20'20", long 86°43'04", Davidson County, Hydrologic Unit 05130202, on left bank at downstream end of bridge on U.S. Highway 31W, at mouth of Slater Creek, 400 ft below Lumsley Fork, and 1.2 mi north of Goodlettsville. DRAINAGE AREA.--27.7 mi², includes Slater Creek. PERIOD OF RECORD. -- August 1993 to current year. GAGE. -- Data collection platform. Datum of gage is 434.99 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Periodic obsevations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 27 | 0645 | 2,180 | 8.36 | Mar 17 | 1930 | 4,110 | 12.23 | | Nov 29 | 1030 | 2,490 | 8.99 | Mar 20 | 0700 | 2,100 | 8.20 | | Nov 29 | 2130 | 1,590 | 7.18 | Apr 17 | 1815 | 1,820 | 7.66 | | Dec 13 | 0215 | 1,350 | 6.66 | Apr 24 | 1245 | 2,330 | 8.67 | | Jan 24 | 0445 | *4,480 | *12.96 | | | | | Minimum daily discharge, 0.25 ft^3/s , Sept. 4. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|---|---|--|--|--|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.65
0.66
0.71
0.73
2.5 | 5.2
3.9
3.9
3.8
3.8 | 83
46
33
25
21 | 15
13
13
12
11 | 146
92
69
54
44 | 17
18
18
16
15 | 172
102
68
51
42 | 314
134
88
92
74 | 12
10
8.4
7.3
7.5 | 2.5
2.3
7.8
4.2
3.0 | 3.4
3.0
2.7
2.6
2.6 | 0.40
0.34
0.30
0.25
0.27 | | | 6
7
8
9
10 | 3.4
1.6
1.2
0.97
0.88 | 3.5
3.5
3.5
3.7
3.8 | 19
19
39
38
31 | 12
11
11
10
11 | 40
41
39
37
36 | 15
15
14
41
53 | 36
32
30
28
24 | 56
44
36
33
28 | 53
30
18
13 | 2.4
2.0
2.1
3.5
9.6 | 2.6
2.8
2.2
2.3
2.4 | 0.27
0.36
0.34
0.31
0.29 | | | 11
12
13
14
15 | 1.1
11
14
119
31 | 3.6
3.2
3.3
3.3 | 25
53
410
175
95 | 15
14
13
13 | 33
30
28
25
24 | 42
44
44
40
37 | 25
94
142
168
89 | 24
20
201
97
51 | 8.6
7.4
6.7
6.1
5.6 | 5.9
12
26
11
7.2 | 2.2
2.2
2.4
2.7
4.4 | 0.30
0.43
0.57
0.75
3.5 | | | 16
17
18
19
20 | 16
11
8.5
7.0
5.9 | 3.4
3.4
3.7
4.3 | 63
111
101
67
47 | 11
11
14
45
49 | 23
21
19
18
25 | 34
898
426
298
716 | 59
192
165
85
60 | 37
67
100
48
34 | 5.3
5.1
4.6
4.1
3.8 | 5.6
4.8
4.7
4.5
3.9 | 8.6
6.8
6.3
6.1 | 3.0
1.4
1.8
1.1 | | | 21
22
23
24
25 | 5.3
5.0
4.8
8.0 | 3.5
3.1
3.1
11
8.9 | 37
32
56
47
39 | 42
42
195
1160
193 | 22
20
19
18
17 | 215
118
80
60
47 | 45
36
30
466
319 | 27
22
18
16
13 | 3.4
3.1
3.0
3.1
4.4 | 3.6
4.6
5.5
5.5
4.4 | 4.1
2.8
2.4
1.9 | 9.0
2.1
1.1
0.67
0.67 | | | 26
27
28
29
30
31 | 8.5
6.9
6.2
5.9
5.5
5.3 | 6.4
370
78
1060
290 | 33
29
25
22
19
17 | 104
74
58
47
66
64 | 22
19
18
 | 231
124
81
61
49
316 | 115
74
89
55
46 | 20
16
13
31
25
16 | 3.7
3.1
3.7
3.2
2.7 | 3.8
3.8
4.5
3.8
4.1
4.2 | 1.6
1.2
0.65
0.53
0.43
0.42 | 252
223
48
25
16 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 312.20
10.07
119
0.65
0.36
0.42 | 1907.5
63.58
1060
3.1
2.30
2.56 | 1857
59.90
410
17
2.16
2.49 | 2360
76.13
1160
10
2.75
3.17 | 999
35.68
146
17
1.29
1.34 | 4183
134.9
898
14
4.87
5.62 | 2939
97.97
466
24
3.54
3.95 | 1795
57.90
314
13
2.09
2.41 | 259.9
8.663
53
2.7
0.31
0.35 | 172.8
5.574
26
2.0
0.20
0.23 | 98.03
3.162
12
0.42
0.11
0.13 | 604.52
20.15
252
0.25
0.73
0.81 | | ## 03426385 MANSKER CREEK ABOVE GOODLETTSVILLE, TN--Continued | STATISTICS OF | F MONTHLY MEAN | DATA FOR | WATER YE | CARS 1993 - | 2002. | BY WATER | YEAR (| MY) | |---------------|----------------|----------|----------|-------------|-------|----------|--------|-----| | MEAN
MAX | 9.525
21.7 | 32.58
81.9 | 49.98
123 | 72.03
157 | 75.50
169 | 100.8
251 | 67.87
116 | 47.46
97.3 | 36.09
127 | 7.852
12.7 | 4.882
14.0 | | .442 | |-------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|---------------|-------|------| | | | | | | | | | | | | | | | | (WY) | 1996 | 1997 | 1997 | 1999 | 1994 | 1997 | 1998 | 1998 | 1998 | 1998 | 1994 | | 1996 | | MIN | 1.40 | 2.94 | 10.1 | 15.4 | 35.7 | 39.4 | 23.2 | 12.7 | 5.31 | 2.58 | 1.17 | | 0.38 | | (WY) | 2001 | 1999 | 2000 | 2000 | 2002 | 2000 | 1995 | 2001 | 2000 | 1995 | 1993 | - | 1999 | | SUMMARY | STATIST | ics | FOR | 2001 CALEN | DAR YEAR | Ι | FOR 2002 WA | TER YEAR | | WATER YEARS | 5 1993 | - 20 | 02 | | ANNUAL | TOTAL | | | 12203.76 | | | 17487.95 | | | | | | | | ANNUAL | MEAN | | | 33.43 | | | 47.91 | | | 42.75 | | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 63.9 | | 199 | 97 | | LOWEST | ANNUAL M | EAN | | | | | | | | 20.9 | | 200 | 00 | | HIGHEST | DAILY M | EAN | | 1060 | Nov 29 | | 1160 | Jan 24 | | 1890 | Mar | 2 199 | 97 | | LOWEST | DAILY ME | AN | | 0.57 | Sep 28 | | 0.25 | Sep 4 | | 0.02 | Sep | 9 19 | 99 | | | | Y MINIMUM | | 0.62 | | | 0.30 | | | 0.04 | Sep | 3 19 | | | | PEAK FL | | | | | | 4480 | Jan 24 | | 12500 | Mar | 2 19 | | | | I PEAK ST | | | | | | 12.96 | | | 13.31 | Mar | 2 19 | | | ANNUAL | RUNOFF (| CFSM) | | 1.21 | | | 1.73 | | | 1.54 | | | | | | RUNOFF (| | | 16.39 | | | 23.49 | | | 20.97 | | | | | | ENT EXCE | | | 62 | | | 100 | | | 87 | | | | | 50 PERC | ENT EXCE | EDS | | 11 | | | 14 | | | 13 | | | | | 90 PERC | ENT EXCE | EDS | | 1.8 | | | 1.9 | | | 1.7 | | | | ### 03426470 DRY CREEK NEAR EDENWOLD, TN $\label{location.--Lat 36°17'05", long 86°42'24", Davidson County, Hydrologic Unit 05130202, on right wingwall on downstream side of bridge on Gallatin Pike, 0.6 mi southwest of Edenwold, 0.6 mi northeast of Amqui, and at mile 1.2.$ DRAINAGE AREA.--7.64 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--Data collection platform. Elevation of gage is 430 ft above NGVD of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,700 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1000 | 2,050 | 8.33 | May 1 | 0100 | 2,190 | 8.42 | | Jan 24 | 0415 | 3,830 | 9.30 | Jul 12 | 1515 | 2,590 | 8.67 | | Mar 17 | 1900 | *4.530 | *9.59 | | | | | Minimum discharge, 0.11 ft³/s, Oct. 3, 4. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------
--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 0.16
0.14
0.13
0.13
2.3 | 0.69
0.67
0.62
0.58
0.56 | 19
9.8
6.7
4.7
3.5 | 3.1
2.9
2.6
2.5
2.4 | 38
19
16
14
12 | 4.5
4.4
4.4
4.2
4.0 | 38
21
15
12 | 204
31
22
30
20 | 1.9
1.7
1.6
1.5 | 1.1
0.99
17
4.4
2.3 | 1.2
0.93
0.78
0.67
0.58 | 0.49
0.42
0.45
0.44
0.44 | | | | 6
7
8
9
10 | 2.0
0.93
0.70
0.56
0.50 | 0.49
0.54
0.47
0.43
0.59 | 3.6
4.6
13
11
7.5 | 2.7
2.5
2.3
2.3
2.4 | 11
15
16
14
12 | 3.8
3.8
3.5
7.1
6.5 | 8.8
7.6
6.9
6.7
5.8 | 15
11
9.3
8.7
7.0 | 66
9.8
4.9
3.4
2.7 | 1.6
1.3
3.7
7.1 | 0.54
0.46
0.41
0.38
0.39 | 0.41
0.42
0.38
0.32
0.31 | | | | 11
12
13
14
15 | 0.54
7.0
9.2
75
7.9 | 0.45
0.46
0.50
0.52
0.51 | 5.3
13
230
57
21 | 3.7
3.2
3.0
2.8
2.7 | 10
9.6
8.5
7.6
7.0 | 5.7
9.1
10
8.5
8.5 | 6.0
11
38
27
15 | 5.9
4.9
74
19
11 | 2.3
2.0
2.2
1.9
1.7 | 13
189
35
11
4.6 | 0.35
0.33
0.33
1.1
1.1 | 0.28
0.23
0.24
0.37
5.0 | | | | 16
17
18
19
20 | 5.8
2.3
1.3
1.1
0.94 | 0.51
0.49
0.53
0.65
0.68 | 13
20
18
12
8.4 | 2.5
2.4
4.0
21 | 6.5
6.0
5.6
5.1
7.5 | 15
578
179
79
209 | 11
39
29
16
12 | 8.2
8.8
8.3
6.2
5.0 | 1.6
1.5
1.4
1.3 | 3.9
2.0
1.7
1.4
1.1 | 15
2.6
1.2
0.90
2.4 | 2.2
1.1
0.97
0.87
4.9 | | | | 21
22
23
24
25 | 0.84
0.74
0.78
2.1
3.3 | 0.65
0.63
0.67
1.3 | 6.9
5.5
11
8.5
7.3 | 9.9
10
63
432
55 | 6.5
5.7
5.2
4.8
4.5 | 53
27
19
14
12 | 10
8.4
7.2
150
46 | 4.5
4.0
3.5
3.2
3.0 | 1.0
0.93
0.93
0.95
1.9 | 0.96
1.1
3.0
2.7
1.6 | 1.0
56
5.5
1.9
1.3 | 4.8
1.8
1.2
0.98
0.96 | | | | 26
27
28
29
30
31 | 1.8
1.3
1.0
0.92
0.79 | 1.0
56
15
481
87 | 6.2
5.3
4.5
3.8
3.4
3.1 | 27
19
15
13
15 | 6.4
5.4
4.9
 | 45
20
15
12
12 | 21
15
36
15
13 | 3.4
3.0
2.7
2.4
2.3
2.0 | 1.1
2.5
2.3
1.4
1.2 | 1.1
0.92
0.94
1.0
3.0 | 1.0
0.83
0.76
0.68
0.59 | 261
168
21
10
6.2 | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 132.91
4.287
75
0.13
0.56
0.65 | 655.49
21.85
481
0.43
2.86
3.19 | 546.6
17.63
230
3.1
2.31
2.66 | 758.9
24.48
432
2.3
3.20
3.70 | | | | 543.3
17.53
204
2.0
2.29
2.65 | 126.21
4.207
66
0.93
0.55
0.61 | 398.41
12.85
189
0.92
1.68
1.94 | 101.77
3.283
56
0.33
0.43
0.50 | 496.18
16.54
261
0.23
2.16
2.42 | | | ### 03426470 DRY CREEK NEAR EDENWOLD, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY) | MEAN 2.257 11.61
MAX 5.15 30.8
(WY) 1997 1997
MIN 0.17 0.68
(WY) 2001 1999 | 16.29 21.41
34.2 49.9
1997 1999
4.46 6.56
2000 2000 | 17.98
38.1
2001
10.1
2002 | 26.17
57.0
1997
7.85
2001 | 18.07
48.5
1998
5.78
2001 | 9.921
20.8
1998
2.51
2001 | 17.40
47.3
1998
1.16
2000 | 3.940
12.9
2002
0.33
2000 | 1.451
3.28
2002
0.20
2000 | 3.400
16.5
2002
0.12
1999 | |---|---|---------------------------------------|---------------------------------------|--|---|---------------------------------------|---|---------------------------------------|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALENI | DAR YEAR | FO | R 2002 WA | TER YEAR | | WATER YEARS | S 1997 - | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 3602.19
9.865
481
0.13
0.16
1.29
17.54
14
1.8
0.41 | Nov 29
Oct 3 | | 6207.97
17.01
578
0.13
0.30
4530
9.59
a0.11
2.23
30.23
27
3.8
0.53 | Mar 17
Oct 3
Sep 8
Mar 17
Mar 17
Oct 3 | | 12.45
17.6
5.12
679
0.02
0.04
6360
10.21
0.02
1.63
22.14
21
2.8
0.24 | Sep 8
Aug 20
Jun 5 | 5 1998
5 1998 | # a Also occurred Oct. 4. #### 03427500 EAST FORK STONES RIVER NEAR LASCASSAS, TN LOCATION.--Lat 35°55'06", long 86°20'02", Rutherford County, Hydrologic Unit 05130203, on left bank 50 (revised) ft upstream from highway bridge, 2.5 mi southwest of Lascassas, 3.7 mi downstream from Bradley Creek, 6.0 mi northeast of the courthouse in Murfreesboro, and at mile 15.4. DRAINAGE AREA.--262 mi². PERIOD OF RECORD.--October 1950 to November 1958, May 1963 to September 1991, October 1991 to September 2000, crest-stage partial record station. October 2000 to current year. Prior to February 1951 monthly discharge only, published in WSP 1726. REVISED RECORDS.--WSP 1910: Drainage Area. WDR-TN-75-1: 1955(M), 1963(M), 1970(M), 1973 (M)(P). GAGE.--Water-stage encoder and satellite telemeter at station. Datum of gage is 507.88 ft, Sandy Hook datum (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1973, water-stage recorder 100 ft downstream at same datum. REMARKS.--No estimated daily discharges. Records good. Frequent diurnal fluctuation at low flow caused by small mills above station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1902, 39.48 ft, Mar. 13, 1975. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $7,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 2330 | *21,800 | *31.89 | Mar 31 | 1630 | 12,100 | 23.15 | | Mar 17 | 1830 | 20,700 | 31.19 | May 13 | 1700 | 8,980 | 19.60 | Minimum discharge, 6.7 ft³/s, Sept. 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---|--|--|---|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
29
26
24
24 | 36
34
32
31
29 | 579
295
185
131
100 | 90
80
73
67
62 | 514
582
434
370
307 | 122
117
123
118
107 | 3990
1460
850
587
437 | 1110
553
1210
1680
1030 | 55
50
45
41
38 | 21
18
18
29
35 | 57
38
28
23
20 | 46
36
28
24
21 | | 6
7
8
9
10 | 95
92
62
46
38 | 28
27
26
25
24 | 82
82
1190
1120
581 | 65
95
110
98
92 | 282
539
670
528
424 | 101
98
95
95
105 | 346
288
249
226
195 | 578
380
275
214
179 | 52
46
42
38
34 | 26
19
17
16
349 | 18
16
14
13
12 | 18
16
15
13
11 | | 11
12
13
14
15 | 33
35
38
1500
725 | 23
23
22
22
21 | 901
572
604
1690
954 | 99
123
119
107
96 | 362
307
267
230
205 | 101
121
313
288
240 | 168
153
141
132
123 | 170
142
3650
2200
789 | 31
29
29
28
28 | 319
129
186
406
154 | 72
28
18
14 | 9.9
9.4
7.9
7.1
7.4 | | 16
17
18
19
20 | 297
163
108
82
65 | 21
21
21
20
22 | 525
365
509
392
280 | 84
77
86
2150
1810 | 189
170
149
134
163 | 375
12900
10100
2910
2090 | 112
103
96
90
85 | 460
314
390
303
216 | 26
25
24
23
21 | 89
62
49
45
42 | 15
15
23
24
23 | 8.5
13
21
197
82 | | 21
22
23
24
25 |
54
46
41
40
263 | 21
21
23
30
112 | 207
164
790
863
478 | 818
501
10800
16700
7860 | 250
201
172
155
141 | 1440
872
642
498
393 | 80
77
71
72
114 | 169
140
121
106
94 | 20
19
18
18 | 36
33
36
45
42 | 25
20
17
19
823 | 1340
314
175
101
68 | | 26
27
28
29
30
31 | 106
74
57
47
43
38 | 82
109
202
350
1550 | 319
240
189
153
124
104 | 2040
1060
729
551
425
339 | 142
146
131
 | 668
710
492
398
1940
7460 | 90
74
89
243
137 | 85
83
82
70
64
58 | 18
20
21
20
21 | 40
45
33
31
41
109 | 577
160
153
222
111
65 | 1200
3940
983
408
229 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4323
139.5
1500
24
0.53
0.61 | 3008
100.3
1550
20
0.38
0.43 | 14768
476.4
1690
82
1.82
2.10 | 47406
1529
16700
62
5.84
6.73 | 8164
291.6
670
131
1.11
1.16 | 46032
1485
12900
95
5.67
6.54 | 10878
362.6
3990
71
1.38
1.54 | 16915
545.6
3650
58
2.08
2.40 | 898
29.93
55
18
0.11
0.13 | 2520
81.29
406
16
0.31
0.36 | 2677
86.35
823
12
0.33
0.38 | 9349.2
311.6
3940
7.1
1.19
1.33 | ### 03427500 EAST FORK STONES RIVER NEAR LASCASSAS, TN--Continued | STATISTICS | OF | V. THTMOM | MEDM | מידעת | FOR | VEVBC | 1951 | _ | 2002 | RV | TATA TYPE | VEVD | (TATV) | |------------|----|-----------|------|-------|-----|-------|------|---|------|----|-----------|------|--------| | MEAN
MAX | 150.4
1211 | 385.4
1466 | 747.1
2027 | 827.8
2184 | 864.0
2136 | 940.6
3201 | 621.5
1605 | 453.6
2214 | 174.5
1261 | 122.1
898 | 83.80
448 | 154.2
1078 | |-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------| | (WY) | 1976 | 1987 | 1991 | 1974 | 1956 | 1975 | 1973 | 1984 | 1989 | 1989 | 1966 | 1986 | | MIN | 7.13 | 9.56 | 19.6 | 55.4 | 205 | 205 | 69.5 | 34.6 | 9.62 | 16.8 | 13.3 | 10.9 | | (WY) | 1954 | 1954 | 1966 | 1981 | 1968 | 1966 | 1986 | 1988 | 1988 | 1988 | 1957 | 1968 | | SUMMARY | STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | : | FOR 2002 WA | TER YEAR | | WATER YEARS | 3 1951 - | 2002 | | ANNUAL | тотат | | | 110402 | | | 166938.2 | | | | | | | ANNUAL | | | | 302.5 | | | 457.4 | | | 456.5 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 921 | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | 141 | | 1981 | | HIGHEST | DAILY M | EAN | | 8420 | Feb 17 | | 16700 | Jan 24 | | 34900 | Mar 13 | 1975 | | LOWEST | DAILY ME | AN | | 11 | Aug 30 | | 7.1 | Sep 14 | | 0.40 | Aug 31 | 1953 | | ANNUAL | SEVEN-DA | MINIMUM Y | | 13 | Aug 25 | | 8.7 | Sep 10 | | 2.9 | Sep 22 | 1954 | | MAXIMUM | PEAK FL | WO | | | | | 21800 | Jan 23 | | 41200 | Mar 13 | 1975 | | MAXIMUM | PEAK ST | AGE | | | | | 31.89 | Jan 23 | | 39.48 | Mar 13 | 1975 | | INSTANT | ANEOUS L | OW FLOW | | | | | 6.7 | Sep 14 | | 0.20 | Oct 23 | 1953 | | ANNUAL | RUNOFF (| CFSM) | | 1.1 | 5 | | 1.75 | | | 1.74 | | | | ANNUAL | RUNOFF (| INCHES) | | 15.6 | 8 | | 23.70 | | | 23.67 | | | | 10 PERC | ENT EXCE | EDS | | 633 | | | 834 | | | 962 | | | | 50 PERC | ENT EXCE | EDS | | 78 | | | 98 | | | 118 | | | | OO DEDC | DATE DISCOUR | EDC | | 21 | | | 20 | | | 1 (| | | #### 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN LOCATION.--Lat 35°54'10", long 86°25'48", Rutherford County, Hydrologic Unit 05130203, on left bank at Murfreesboro sewage treatment plant outfall, 3,000 ft downstream from Sinking Creek, 4.5 mi northwest of the courthouse in Murfreesboro, and at mile 10.7. DRAINAGE AREA.--177 mi², includes 17 mi² without surface drainage. WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1972 to January 1982, January 1986 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 514.95 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Flow is affected by Murfreesboro sewage treatment plant outflow. An annual average of 11.6 $\rm ft^3/s$, with a maximum of 15.5 $\rm ft^3/s$ is discharged to the West Fork Stones River 25 ft above the station. Prior to July 1987 an annual average of 7.7 $\rm ft^3/s$ was discharged. Natural flow of stream affected by transbasin diversion of water from East Fork Stones River basin into the West Fork Stones River basin. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,700 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|------------------|------------------|--------------|-----------------------------------|---------------------| | Jan 24
Jan 24 | 0230
2030 | *19,400 | *21.09
18.31 | Mar 18
Mar 31 | 1400
2100 | 6,450 | 13.89
16.12 | | Jan 24 | ∠030 | 12,600 | 18.31 | Mar 31 | | 9,010 | 10.12 | | Mar 17 | 2100 | 18,100 | 20.60 | Sep 27 | 1130 | 3,890 | 10.23 | Minimum discharge, $8.0 \text{ ft}^3/\text{s}$, Sept. 12. | | | | _ | | | | | | | | | | |----------------------------------|----------------------------------|--------------------------------|--|---|-----------------------|--|-----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------| | | | DISCHA | ARGE, CUBI | C FEET PE | | WATER YI
Y MEAN VA | EAR OCTOBEI
ALUES | R 2001 TO |) SEPTEMBE | R 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 52 | 49 | 458 | 124 | 470 | 105 | 2450 | 165 | 48 | 38 | 32 | 25 | | 2 | 46 | 47 | 309 | 113 | 448 | 99 | 907 | 192 | 43 | 28 | 27 | 23 | | 3 | 43 | 48 | 247 | 105 | 358 | 98 | 585 | 480 | 41 | 26 | 24 | 22 | | 4 | 40 | 45 | 207 | 96 | 317 | 92 | 447 | 984 | 38 | 23 | 21 | 21 | | 5 | 42 | 41 | 169 | 89 | 277 | 86 | 362 | 537 | 37 | 22 | 18 | 21 | | 6 | 164 | 39 | 144 | 100 | 270 | 81 | 303 | 344 | 95 | 20 | 21 | 18 | | 7 | 91 | 37 | 149 | 112 | 365 | 76 | 266 | 269 | 56 | 19 | 19 | 17 | | 8 | 79 | 37 | 284 | 121 | 403 | 73 | 237 | 212 | 46 | 21 | 18 | 17 | | 9 | 66 | 36 | 499 | 112 | 335 | 82 | 221 | 159 | 40 | 19 | 17 | 16 | | 10 | 57 | 36 | 373 | 106 | 299 | 78 | 197 | 149 | 37 | 23 | 17 | 16 | | 11 | 53 | 35 | 482 | 118 | 283 | 77 | 184 | 142 | 35 | 32 | 19 | 15 | | 12 | 82 | 35 | 384 | 132 | 253 | 112 | 167 | 121 | 33 | 25 | 18 | 15 | | 13 | 76 | 34 | 428 | 126 | 231 | 275 | 144 | 1430 | 35 | 64 | 17 | 15 | | 14 | 681 | 32 | 991 | 116 | 210 | 239 | 127 | 882 | 38 | 108 | 16 | 14 | | 15 | 443 | 38 | 617 | 106 | 189 | 196 | 120 | 409 | 31 | 49 | 19 | 14 | | 16 | 269 | 32 | 410 | 97 | 175 | 206 | 109 | 291 | 29 | 44 | 20 | 27 | | 17 | 211 | 30 | 353 | 91 | 158 | 8270 | 99 | 251 | 29 | 38 | 20 | 23 | | 18 | 160 | 29 | 473 | 113 | 144 | 5750 | 92 | 265 | 28 | 35 | 19 | 26 | | 19 | 131 | 29 | 340 | 1040 | 132 | 1710 | 81 | 233 | 24 | 48 | 18 | 28 | | 20 | 109 | 32 | 275 | 1000 | 175 | 1220 | 75 | 181 | 23 | 36 | 18 | 26 | | 21 | 93 | 31 | 234 | 500 | 222 | 937 | 69 | 148 | 21 | 33 | 19 | 263 | | 22 | 83 | 27 | 206 | 368 | 182 | 623 | 70 | 126 | 23 | 50 | 19 | 121 | | 23 | 72 | 27 | 500 | 6600 | 157 | 495 | 61 | 108 | 19 | 46 | 17 | 70 | | 24 | 72 | 69 | 549 | 12800 | 140 | 416 | 63 | 92 | 21 | 42 | 21 | 55 | | 25 | 113 | 91 | 342 | 6130 | 129 | 366 | 61 | 80 | 24 | 36 | 21 | 47 | | 26
27
28
29
30
31 | 74
68
62
58
54
51 | 55
119
130
237
946 | 275
237
212
184
157
138 | 1410
833
600
494
420
361 | 139
124
114
 | 530
527
378
354
1720
4840 | 55
53
121
77
59 | 73
69
62
56
67
55 | 21
21
22
19
56 | 36
34
41
38
44
34 | 82
66
58
41
33
30 | 459
2240
584
312
223 | | TOTAL | 3695 | 2473 | 10626 | 34533 | 6699 | 30111 | 7862 | 8632 | 1033 | 1152 | 805 | 4773 | | MEAN | 119.2 | 82.43 | 342.8 | 1114 | 239.2 | 971.3 | 262.1 | 278.5 | 34.43 | 37.16 | 25.97 | 159.1 | | MAX | 681 | 946 | 991 | 12800 | 470 | 8270 | 2450 | 1430 | 95 | 108 | 82 | 2240 | | MIN | 40 | 27 | 138 | 89 | 114 | 73 | 53 | 55 | 19 | 19 | 16 | 14 | # 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued | STATISTICS OF | MONTHLY MEAN | J DATA FOI | RTATER | YEARS | 1972 - | 2002. | BY WATER | YEAR | (V/V) | |---------------|--------------|------------|--------|-------|--------|-------|----------|------|-------| | MEAN | 138.9 | 263.2 | 476.2 | 591.4 | 513.5 | 683.0 | 336.7 | 209.0 | 155.9 | 96.05 | 71.19 | 135.1 | |---------|-----------|-------|-------|-----------|-----------|-------|-----------|-----------|-------|-----------|-----------|-------| | MAX | 894 | 1035 | 1259 | 1453 | 1156 | 1773 | 954 | 818 | 765 | 658 | 348 | 880 | | (WY) | 1976 | 1987 | 1991 | 1974 | 1991 | 1975 | 1994 | 1973 | 1989 | 1989 | 1996 | 1979 | | MIN | 7.60 | 10.4 | 31.6 | 25.4 | 133 | 216 | 58.4 | 23.8 | 11.0 | 13.9 | 12.2 | 11.3 | | (WY) | 1981 | 1981 | 1981 | 1981 | 1978 | 1981 | 1986 | 1981 | 1988 | 1988 | 1976 | 1980 | | | | | | | | | | | | | | | | SUMMAR! | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | a | WATER YEA | RS 1972 - | 2002 | | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | aWATER YEARS | 1972 - 2002 | |--------------------------|----------------|----------|--------------|---------|--------------|-------------| | ANNUAL TOTAL | 89140 | | 112394 | | | | | ANNUAL MEAN | 244.2
 | 307.9 | | 309.6 | | | HIGHEST ANNUAL MEAN | | | | | 517 | 1973 | | LOWEST ANNUAL MEAN | | | | | 76.0 | 1981 | | HIGHEST DAILY MEAN | 6340 | Feb 17 | 12800 | Jan 24 | 21200 | Mar 13 1975 | | LOWEST DAILY MEAN | 27 | Nov 22 | 14 | Sep 14 | 4.7 | Oct 13 1980 | | ANNUAL SEVEN-DAY MINIMUM | 29 | Nov 17 | 15 | Sep 9 | 5.3 | Nov 8 1980 | | MAXIMUM PEAK FLOW | | | 19400 | Jan 24 | 31000 | Mar 13 1975 | | MAXIMUM PEAK STAGE | | | 21.09 | Jan 24 | 23.80 | Mar 13 1975 | | INSTANTANEOUS LOW FLOW | | | 8.0 | Sep 12 | 2.9 | Jul 7 1988 | | 10 PERCENT EXCEEDS | 494 | | 494 | | 638 | | | 50 PERCENT EXCEEDS | 87 | | 86 | | 109 | | | 90 PERCENT EXCEEDS | 37 | | 21 | | 16 | | | | | | | | | | # a See REMARKS #### 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued #### WATER-OUALITY RECORDS LOCATION.--At bridge on Blanton Drive, 900 ft upstream from Sinking Creek, 0.7 mi upstream from discharge station. PERIOD OF RECORD. -- February 1986 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: February 1986 to current year. pH: February 1986 to current year. WATER TEMPERATURE: February 1986 to current year. DISSOLVED OXYGEN: February 1986 to current year. ${\tt INSTRUMENTATION.--Water-quality\ monitor.}$ REMARKS.--Periods of missing record were due to instrument malfunctions. Records for water temperature and specific conductance are good, $\ensuremath{\text{pH}}$ and dissolved oxygen records are fair. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- TREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 529 microsiemens, Jan. 24, 2000; minimum, 63 microsiemens, Dec. 25, 1987. pH: Maximum, 9.0 units, Mar. 24, 1986; minimum, 5.8 units, June 18, 1992. WATER TEMPERATURE: Maximum, 33.3°C, July 31, 1999; minimum, 0.2°C, Feb. 3, 4, 5, 6, 1996. DISSOLVED OXYGEN: Maximum, 19.0 mg/L, Apr. 10, 2002; minimum, 1.6 mg/L, Sept. 12, 1990. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 465 microsiemens, Oct. 24; minimum, 102 microsiemens, Mar. 17. pH: Maximum, 8.7 units, Apr. 7, 10; minimum, 7.4 units, many days. WATER TEMPERATURE: Maximum, 31.8, Aug. 5; minimum, 1.4°C, Jan. 4. DISSOLVED OXYGEN: Maximum, 19.0 mg/L, Apr. 10; minimum, 3.0 mg/L, Aug. 22. #### SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 381
390
393
395
395 | 368
370
377
380
338 | 375
383
387
389
386 | 455
454
453
451
451 | 430
433
436
435
436 | 444
444
445
444
445 | 377
411
431
443
451 | 354
377
411
431
443 | 361
395
422
437
446 | 454
456
457
457 | 440
440
445
443
442 | 447
448
451
450
449 | | 6
7
8
9
10 | 361
356
398
418
426 | 300
338
339
398
409 | 328
349
366
411
419 | 449
448
448
447 | 436
439
441
442
441 | 444
445
445
444
444 | 454
457
452
425
429 | 451
448
405
411
421 | 452
452
423
420
426 | 452
453
451
450
449 | 443
431
430
434
429 | 446
443
440
442
439 | | 11
12
13
14
15 | 427
424
424
387
364 | 412
418
371
321
341 | 421
422
416
360
348 | 444
442
438
435
436 | 441
438
434
432
429 | 443
440
436
434
433 | 421
427
426
423
375 | 417
420
420
372
351 | 419
424
422
407
361 | 441
436
440
438
439 | 415
410
405
409
407 | 429
425
425
424
424 | | 16
17
18
19
20 | 394
421
438
448
455 | 350
394
421
438
448 | 373
408
428
442
452 | 435
434
433
432
431 | 428
431
429
429
429 | 431
433
431
430
430 | 409
423
428
419
427 | 375
409
418
415
419 | 393
418
425
417
422 | 436
429
423
416
322 | 407
411
407
243
241 | 422
420
415
359
277 | | 21
22
23
24
25 | 461
463
464
465
446 | 451
451
446
356
415 | 456
458
457
451
430 | 431
430
429
429
407 | 427
428
426
406
344 | 430
429
427
422
359 | 437
445
445
400
383 | 427
437
400
329
336 | 431
440
424
347
360 | 384
404
402
184
263 | 322
384
109
108
144 | 357
397
250
142
195 | | 26
27
28
29
30
31 | 444
448
457
457
457
455 | 419
424
419
440
432
431 | 432
435
450
451
446
444 | 381
387
404
402
387 | 369
344
385
366
355 | 376
366
397
389
368 | 415
431
440
444
447
450 | 383
415
431
436
437
439 | 401
422
434
440
443
445 | 320
349
365
375
380
383 | 263
320
349
365
375
380 | 295
336
357
370
378
381 | | MONTH | 465 | 300 | 412 | 455 | 344 | 425 | 457 | 329 | 417 | 457 | 108 | 385 | 91 # 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | S | PECIFIC | CONDUCTANCE | s, in us | /CM @ 23 | C, WAIER | YEAR OCTO | DER ZUUI | . IO SEFIE | HIBER 2002 | 2 | | |---|--|---|---|---|---|---|--|--|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 383
373
367
386
396 | 365
366
361
367
386 | 373
371
363
377
390 | 413
416
415
416
404 | 393
401
403
395
389 | 402
410
408
407
398 | 312
356
372
378
380 | 161
312
356
367
366 | 253
337
364
372
374 | 343
356
334
342
346 | 182
327
303
293
292 | 320
340
320
314
313 | | 6
7
8
9
10 | 403
407
406
403
406 | 396
399
394
391
399 | 398
401
400
397
402 | 400
399
396
394
400 | 381
380
378
387
388 | 393
391
389
391
393 | 380
379
378
378
378 | 361
352
359
358
325 | 374
370
371
372
359 | 388
411
424
420
421 | 346
388
410
414
410 | 370
400
413
417
416 | | 11
12
13
14
15 | 410
419
416
418
420 | 395
395
393
392
393 | 404
409
408
409
409 | 394
393
398
406
408 | 387
385
384
391
394 | 391
390
394
398
402 | 373
374
376
384
387 | 334
333
333
352
344 | 358
358
360
370
367 | 417
421
419
315
369 | 403
406
202
205
315 | 410
415
304
265
346 | | 16
17
18
19
20 | 420
420
420
419
411 | 383
375
371
375
369 | 406
403
400
400
393 | 410
410
234
321
341 | 407
102
136
234
319 | 409
201
199
288
330 | 382
376
372
373
376 | 344
354
357
362
369 |
363
363
364
368
371 | 396
395
396
396
395 | 369
389
391
386
385 | 380
393
393
392
392 | | 21
22
23
24
25 | 406
409
409
410
408 | 378
389
373
366
366 | 395
401
395
392
390 | 344
374
384
387
390 | 336
344
373
382
383 | 339
360
378
385
388 | 382
382
370
371
372 | 369
364
365
362
368 | 374
367
368
367
370 | 397
398
398
397
393 | 378
366
361
364
371 | 390
385
382
382
382 | | 26
27
28
29
30
31 | 407
406
417
 | 390
392
391
 | 397
400
405
 | 389
368
371
383
384
281 | 356
355
356
350
219
147 | 373
360
363
374
276
218 | 372
378
376
326
339 | 368
372
302
306
316 | 370
375
349
320
326 | 390
390
388
385
376
378 | 380
306
367
365
341
353 | 385
380
380
377
363
370 | | MONTH | 420 | 361 | 396 | 416 | 102 | 361 | 387 | 161 | 359 | 424 | 182 | 371 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBER | | | | MAX
374
378
373
369
362 | | MEAN 369 371 367 363 358 | 335
326
319
319
313 | | MEAN 330 321 316 317 306 | | | MEAN 338 336 333 329 328 | 349
354
350
347
341 | | | | DAY 1 2 3 4 | 374
378
373
369 | JUNE 362 362 360 356 | 369
371
367
363 | 335
326
319
319 | JULY 326 314 313 313 | 330
321
316
317 | 343
341
336
333 | 333
332
330
327 | 338
336
333
329 | 349
354
350
347 | 337
349
347
339 | 345
351
348
342 | | DAY 1 2 3 4 5 6 7 8 9 | 374
378
373
369
362
355
335
341
357 | JUNE 362 360 356 352 295 295 335 341 354 353 353 | 369
371
367
363
358
336
323
337
353
357 | 335
326
319
319
313
301
297
298
301 | JULY 326 314 313 313 301 291 285 268 289 301 323 348 | 330
321
316
317
306
295
292
288
293
311 | 343
341
336
333
333
335
340
345
346 | 333
332
330
327
325
327
328
332
334
339 | 338
336
333
329
328
330
335
339
341
342 | 349
354
350
347
341
338
336
335
333 | 337
349
347
339
334
330
330
327
328
328
328 | 345
351
348
342
336
333
333
331
330 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 374
378
373
369
362
355
335
341
357
360
358
358
356
356 | JUNE 362 360 356 352 295 295 335 341 354 353 345 348 | 369
371
367
363
358
323
337
353
357
356
356
351
354 | 335
326
319
319
313
301
297
298
301
323
348
355
356
346 | JULY 326 314 313 313 301 291 285 268 289 301 323 348 346 238 | 330
321
316
317
306
295
292
288
293
311
333
353
351
270 | 343
341
336
333
333
335
340
345
346
346
346
348
348 | 333
332
330
327
325
327
325
327
328
332
334
339
338
332
338
337 | 338
336
333
329
328
330
335
339
341
342
341
342
341
342
341 | 349
354
350
347
341
338
336
335
333
333
333
329
328
331 | 337
349
347
339
334
330
330
327
328
328
328
328 | 345
351
348
342
336
333
331
330
331
328
326
328 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 374
378
373
369
362
355
335
341
357
360
358
358
356
362
360
354
353
398 | JUNE 362 360 356 352 295 295 335 341 354 353 345 348 355 352 352 348 346 | 369
371
367
363
358
336
323
337
353
357
356
356
351
354
359
356
353
353
353
353 | 335
326
319
319
313
301
297
298
301
323
348
355
356
346
304
325
350
355
356
356
366 | JULY 326 314 313 313 301 291 285 268 289 301 323 348 346 238 277 304 325 342 350 | 330
321
316
317
306
295
292
288
293
311
333
353
351
270
295
319
341
351
358 | 343
341
336
333
333
335
340
345
346
346
348
348
343
345
351
356
358
359 | 333
332
330
327
325
327
325
327
328
332
334
339
338
332
338
337
291
341
351
351
352 | 338
336
333
329
328
330
335
339
341
342
341
342
341
338
345
353
355
355
356 | 349
354
350
347
341
338
336
335
333
333
333
329
328
331
332
342
360
362
358 | SEPTEMBER 337 349 347 339 334 330 330 327 328 328 328 328 328 328 328 329 324 326 301 | 345
351
348
342
336
333
331
330
330
331
328
327
322
354
358
357 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 374
378
373
369
362
355
335
341
357
360
358
358
356
362
360
354
353
351
350
347
347
347
347
347
347
357
360 | JUNE 362 360 356 352 295 295 335 341 354 353 345 348 355 352 348 347 345 339 336 347 345 339 336 344 349 349 346 331 | 369
371
367
363
358
336
323
337
353
357
356
356
351
354
359
356
353
357
349
347
343
340
340
340
340
347
351
351
351
351
351 | 335
326
319
319
313
301
297
298
301
323
348
355
356
346
304
325
350
355
366
353
333
337
332
362
363
363
363 | JULY 326 314 313 301 291 285 268 289 301 323 348 346 238 277 304 325 342 350 325 345 257 349 341 344 348 348 | 330
321
316
317
306
295
292
288
293
311
333
351
270
295
319
341
351
358
341
327
290
306
352
358
348
345
352
357
350 | 343
341
336
333
333
335
340
345
346
346
348
343
345
351
356
358
359
359
359
359
359
359
359
359
359
359 | 333
332
330
327
325
327
325
327
328
332
334
339
338
332
338
337
291
341
351
351
351
351
351
352
354
350
360
370
370
370
370
370
370
370
370
370
37 | 338
336
333
329
328
330
335
339
341
342
341
342
343
341
338
345
353
356
357
354
352
347
347
352
357
351
352
353
353
353
355
355
356
357 | 349
354
350
347
341
338
336
335
333
333
333
332
342
360
362
362
367
313
328
358
354
367
367
313
281
288 | SEPTEMBER 337 349 347 339 334 330 330 327 328 328 328 328 326 321 273 293 342 350 354 221 278 313 281 270 273 254 198 231 346 396 | 345
351
348
342
336
333
331
330
330
331
328
328
327
328
327
354
357
336
327
338
294
275
283
286
232
296
376
376 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 374
378
373
369
362
355
335
341
357
360
358
356
356
362
360
354
353
398
351
350
347
347
347
344
351
355
355
355 | JUNE 362 360 356 352 295 295 335 341 354 353 345 348 355 352 348 346 347 345 339 336 344 342 349 346 | 369
371
367
363
358
336
323
337
353
357
356
356
351
354
359
356
353
351
373
349
347
343
349
340
349
340
340
346
347
351
351 | 335
326
319
319
313
301
297
298
301
323
348
355
356
346
304
325
355
356
353
353
353
353
353
353
353
35 | JULY 326 314 313 313 301 291 285 289 301 323 348 277 304 325 342 350 325 323 145 257 332 349 341 341 344 348 | 330
321
316
317
306
295
292
288
293
311
333
353
351
270
295
341
358
341
327
290
306
352
358
348
345
352
357 | 343
341
336
333
333
335
340
345
346
346
348
348
343
345
359
359
359
359
359
357
355
352
350
354
368
368
368
368
368
368
368
368
368
368 | 333
332
330
327
325
327
325
327
328
334
339
338
337
291
341
351
351
352
354
351
352
354
351
352
354 | 338
336
333
329
328
330
335
341
342
341
342
341
338
345
355
356
357
354
352
347
344
352
350
351
351
358
360 | 349
354
350
347
341
338
336
335
333
333
333
332
342
360
362
358
354
367
367
313
281
288
357
357
357
346
396 | SEPTEMBER 337 349 347 339 334 330 330 330 327 328 328 328 328 328 328 328 328 328 328 | 345
351
348
342
336
333
331
330
330
331
328
327
322
354
357
336
327
322
354
327
328
327
328
327
328
327
328
327 | 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | 10 SEFIEMBE | | | | |---|---
--|--|--|---|---|---|--|---|---|---|---| | DAY | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | MAX | MIN | MAX | MIN | | | OCTO | | NOVEM | | | | | | FEBRU | | MAR | | | 1
2
3
4
5 | 8.0
7.8
8.0
7.9
7.9 | 7.6
7.5
7.5
7.7
7.7 | 8.2
8.1
7.9
7.9 | 8.0
7.8
7.8
7.8
7.8 | 7.6
7.7
7.8
7.9
8.0 | 7.6
7.7
7.7
7.8 | 8.2
8.2
8.2
8.2
8.2 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.2
8.2 | 7.8
7.9
7.9
7.9
8.0 | 8.3
8.2
8.2
8.2
8.1 | 8.0
7.9
7.8
7.9
7.9 | | 6
7
8
9
10 | 7.7
7.9
8.0
8.1
8.1 | 7.5
7.4
7.6
7.7 | 7.9
7.9
7.8
7.8
7.8 | 7.8
7.7
7.7
7.7
7.7 | 8.0
7.8
7.8
7.8
7.8 | 7.8
7.8
7.6
7.6
7.8 | 8.1
8.2
8.3
8.3
8.2 | 8.0
7.9
8.0
8.0
7.8 | 8.1
8.1
8.2
8.3
8.2 | 8.0
8.0
8.0
8.0 | 8.2
8.0
8.0
7.9 | 7.8
7.8
7.7
7.6
7.6 | | 11
12
13
14
15 | 8.1
7.9
7.8
7.7
7.6 | 7.7
7.6
7.5
7.4
7.6 | 7.8
7.8
7.8
7.7
7.9 | 7.8
7.7
7.7
7.7
7.7 | 7.8
7.9
7.8
7.8 | 7.8
7.8
7.8
7.8
7.7 | 8.2
8.2
8.2
8.3
8.3 | 7.8
7.8
7.8
7.8
7.9 | 8.4
8.5
8.6
8.6 | 8.0
8.1
8.1
8.1
8.1 | 8.0
7.8
7.8
8.1
8.2 | 7.7
7.5
7.5
7.7
7.8 | | 16
17
18
19
20 | 7.7
7.9
8.0
8.0 | 7.6
7.7
7.8
7.8
7.8 | 7.9
7.9
7.9
7.8
7.8 | 7.9
7.8
7.7
7.7 | 7.9
7.9
8.0
8.1
8.2 | 7.8
7.9
7.9
8.0
8.0 | 8.3
8.2
8.3
7.9
7.7 | 7.9
7.9
7.9
7.6
7.6 | 8.6
8.6
8.6
8.6 | 8.0
8.0
8.1
8.0
8.1 | 8.0
7.9
7.6
7.7
7.8 | 7.8
7.5
7.5
7.5
7.7 | | 21
22
23
24
25 | 8.1
8.1
8.1
8.0
7.9 | 7.8
7.8
7.8
7.8
7.6 | 7.8
7.9
7.8
7.7
7.6 | 7.8
7.8
7.7
7.5
7.4 | 8.2
8.2
8.1
7.9
8.0 | 8.1
8.1
7.9
7.8 | 7.8
8.0
7.8
7.5 | 7.7
7.8
7.5
7.4
7.4 | 8.6
8.4
8.5
8.5 | 8.0
8.0
8.0
8.0 | 7.9
8.0
8.1
8.2
8.3 | 7.8
7.9
7.9
8.0
8.0 | | 26
27
28
29
30
31 | 8.0
8.1
8.1
8.1
8.3 | 7.6
7.7
7.8
7.8
7.8
8.0 | 7.7
7.6
7.5
7.5
7.6 | 7.4
7.4
7.4
7.4
7.4 | 8.1
8.2
8.2
8.3
8.3 | 7.9
8.0
8.0
8.0
8.1 | 7.6
7.7
7.8
7.8
7.9
8.0 | 7.5
7.6
7.7
7.8
7.8 | 8.2
8.3
8.3
 | 8.0
7.9
8.0
 | 8.2
8.3
8.5
8.6
8.2
8.1 | 8.0
8.1
8.1
8.1
7.9
7.8 | | | | | | | 0 2 | 7.6 | 8.3 | 7.4 | 0.6 | | 8.6 | 7.5 | | MONTH | 8.3 | 7.4 | 8.2 | 7.4 | 8.3 | 7.6 | 0.3 | 7.4 | 8.6 | 7.8 | 0.0 | , | | | | | | | | | | | | | | | | MONTH | MAX | 7.4
MIN | 8.2
MAX | MIN | 8.3
MAX
JUN | MIN | MAX | MIN | MAX | MIN | MAX
SEPTE | MIN | | DAY 1 2 3 4 | MAX
APP
8.0
8.1
8.2
8.4 | MIN
RIL
7.8
7.9
8.0
8.0 | MAX 7.8 7.8 7.9 7.9 | MIN 7.7 7.7 7.8 7.8 | MAX
JUN
8.0
8.0
8.0
7.9 | MIN 7.6 7.7 7.7 7.6 | MAX
JUL
8.0
7.8
7.8
7.9 | MIN 7.6 7.6 7.6 7.6 7.6 | MAX
AUGU
8.2
8.3
8.2
8.1 | MIN 7.8 7.8 7.8 7.7 | MAX
SEPTE
8.0
8.0
8.1
8.0 | MIN MBER 7.8 7.8 7.8 7.8 | | DAY 1 2 3 | MAX
API
8.0
8.1
8.2 | MIN 7.8 7.9 8.0 8.0 8.0 | MAX
M2
7.8
7.8
7.9 | MIN 7.7 7.7 7.8 | MAX
JUN
8.0
8.0
8.0 | MIN 7.6 7.7 7.7 7.6 7.6 7.6 | MAX
JUL
8.0
7.8
7.8 | MIN
7.6
7.6
7.6 | MAX
AUGU
8.2
8.3
8.2 | MIN 7.8 7.8 7.8 7.8 | MAX
SEPTE
8.0
8.0
8.1 | MIN
MBER
7.8
7.8
7.8 | | DAY 1 2 3 4 5 6 7 8 9 | MAX APP 8.0 8.1 8.2 8.4 8.5 8.6 8.7 8.6 8.7 8.6 8.7 8.4 8.4 | MIN 7.8 7.9 8.0 8.0 8.0 8.0 8.0 7.9 | MAX 7.8 7.8 7.9 7.9 7.9 8.0 8.1 8.2 8.2 | MIN 7.7 7.7 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 8.0 | MAX JUN 8.0 8.0 7.9 7.9 7.7 7.8 7.8 7.9 7.9 7.9 | MIN 7.6 7.7 7.7 7.6 7.6 7.5 7.4 7.5 7.6 7.6 7.6 7.6 7.6 | MAX JUL 8.0 7.8 7.8 7.9 8.0 8.0 8.2 8.1 8.0 7.8 7.8 | MIN 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | MAX AUGU 8.2 8.3 8.2 8.1 8.1 8.1 8.7 8.0 8.0 7.9 | MIN 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.6 7.7 | MAX
SEPTEI
8.0
8.0
8.1
8.0
8.0
8.0
8.0 | MIN MBER 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX APP 8.0 8.1 8.2 8.4 8.5 8.6 8.7 8.6 8.7 8.4 8.4 8.4 8.4 | MIN RIL 7.8 7.9 8.0 8.0 8.0 8.1 8.0 8.0 7.9 7.9 | MAX 7.8 7.8 7.9 7.9 7.9 8.0 8.1 8.2 8.2 8.1 8.2 8.1 7.8 | MIN 7.7 7.7 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 8.0 7.6 7.6 | MAX JUN 8.0 8.0 8.0 7.9 7.9 7.7 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 | MIN TE 7.6 7.7 7.6 7.6 7.5 7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | MAX JUL 8.0 7.8 7.9 8.0 8.0 8.2 8.1 8.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 8.0 | MIN .Y 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | MAX AUGU 8.2 8.3 8.2 8.1 8.1 8.1 8.1 8.0 7.9 8.0 7.9 7.9 | MIN 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 | MAX SEPTE 8.0 8.0 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 | MIN MBER 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7. | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX APP 8.0 8.1 8.2 8.4 8.5 8.6 8.7 8.6 8.7 8.4 8.4 8.4 8.4 8.2 8.2 8.2 | MIN RIL 7.8 7.9 8.0 8.0 8.0 8.1 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.7 | MAX 7.8 7.9 7.9 7.9 7.9 8.0 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.3 | MIN 7.7 7.7 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 7.6 7.6 7.8 7.9 8.0 8.0 8.0 8.0 8.0 | MAX JUN 8.0 8.0 8.0 7.9 7.9 7.7 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | MIN T. 6 7. 6 7. 7 7. 6 | MAX JUL 8.0 7.8 7.9 8.0 8.0 8.2 8.1 8.0 7.8 7.8 7.8 7.8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 | MIN .Y 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | MAX AUGU 8.2 8.3 8.2 8.1 8.1 8.1 8.1 8.0 8.0 7.9 8.0 8.0 7.9 7.7 7.8 7.9 7.8 | MIN 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.6 7.6 | MAX SEPTE 8.0 8.0 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.7 8.0 8.7 8.7 8.7 8.7 | MIN MBER 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7. | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX API 8.0 8.1 8.2 8.4 8.5 8.6 8.7 8.4 8.4 8.4 8.4 8.7 8.9 7.9 7.9 7.9 7.9 | MIN RIL 7.8 7.9 8.0 8.0 8.0 8.1 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.6 7.6 7.6 7.7 7.7 | MAX 7.8 7.9 7.9 7.9 7.9 8.0 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.3 8.4 8.5 8.5 8.4 8.5 | MIN 7.7 7.7 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 7.6 7.6 7.8 7.9 8.0 8.1 8.1 8.1 8.1 7.9 7.9 | MAX JUN 8.0 8.0 8.0 7.9 7.9 7.7 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.9 | MIN T. 6 7. 6 7. 7 7. 6 | MAX JUL 8.0 7.8 7.9 8.0 8.0 8.2 8.1 8.0 7.8 7.8 7.8 7.8 8.1 8.1 8.1 8.2 8.3 8.4 8.3 8.2 7.9 8.2 | MIN 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | MAX AUGU 8.2 8.3 8.2 8.1 8.1 8.1 8.1 8.0 8.0 7.9 8.0 8.0 7.9 7.7 7.7 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | MIN 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.6 7.7 7.6 7.7 7.6 7.6 | MAX SEPTE 8.0 8.0 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | MIN MBER 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7. | CUMBERLAND RIVER BASIN 93 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | NAME MAN | | | WATER TE | MPERATURI | s, in (DEC | REES C), | WATER | YEAR OCTOB | ER 2001 ' | IO SEPTEM | BER 2002 | | |
--|----------------------|------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--|--|----------------------------------|------------------------------| | 1 | DAY | MAX | MIN | MEAN | | Fig. | | | OCTOBER | | 1 | OVEMBER | | | | | | | | | 11 | 2
3
4 | 19.5
20.0
20.1 | 16.8
17.6
18.1 | 18.3
18.9
19.2 | 16.2
16.9
15.9 | 13.8
15.5
13.8 | 14.9
16.1
14.9 | 13.6
13.4
13.3
13.6
13.9 | 12.8
12.0
11.4
11.7
11.9 | 13.1
12.5
12.2
12.5
12.8 | 4.3
3.7
3.2
3.4
4.1 | 2.6
2.3
2.5
1.4
2.0 | 3.1
2.9
2.4 | | 11 | 7
8
9 | 17.7
17.6
17.6 | 17.3
15.4
15.0
15.0
16.1 | 18.6
16.6
16.3
16.3 | 14.0
13.2
13.5
14.0
13.0 | 12.1
11.5
11.5
12.8
11.1 | 12.4
12.6
13.4 | 14.7
15.0
15.4
14.7
12.8 | 12.3
14.0
14.7
12.8
12.0 | 13.5
14.5
15.0
13.8
12.2 | 4.4
5.2
5.2
6.4
8.3 | 4.1
4.2
3.3
3.9
5.9 | 4.6
4.3
5.1 | | 16 | 12
13
14 | 19.2
20.2
20.0 | 18.0
18.6
19.0
18.6
17.3 | | | 11.4
11.0
10.9
11.1 | 11.8
11.8
11.9 | 12.2
13.3
14.3
14.6
14.2 | 11.9
12.1
13.3
14.2
13.6 | 12.0
12.6
13.9
14.4
13.9 | 8.8
8.6
8.2
8.4
7.9 | 7.6
6.4
6.1
6.6
6.2 | 7.6
7.3
7.5 | | 24 20.0 18.4 19.1 14.5 12.8 13.7 8.4 6.8 7.7 12.2 9.9 18.4 9.1 13.5 12.2 13.0 25 19.3 17.2 18.1 14.5 12.8 13.7 8.4 6.8 7.7 12.2 9.6 10.3 26 10.3 26 17.4 15.2 11.0 13.8 15.5 14.4 15.5 0.6 6.8 5.6 6.3 10.4 9.6 10.1 27 15.2 11.0 13.8 15.5 14.4 15.5 0.6 6.8 5.6 6.3 10.4 9.6 10.1 12.7 12.2 15.9 14.4 15.5 0.6 6.6 5.4 5.9 11.1 9.9 10.6 28 13.3 10.9 12.1 15.8 15.5 14.4 15.5 15.4 7.5 12.8 15.5 14.4 15.5 15.5 14.4 15.5 15.5 14.4 15.5 15.5 | 17
18
19 | 16.1
15.7
15.5 | 15.4
14.1
12.9
13.0
13.3 | | | 10.5
11.1
11.9
12.4
10.5 | 12.1
12.7
12.9 | 14.0
14.5
14.1
12.7
11.1 | 13.4
13.9
12.7
11.1
9.2 | 13.7
14.2
13.5
12.0
10.3 | 7.4
7.8
7.9
7.6
8.0 | 5.8
7.1
6.4
5.9
6.0 | 7.5
7.2
6.8 | | MONTH 20.5 10.8 16.6 16.9 8.6 12.9 15.4 3.8 11.0 16.4 1.4 7.8 | 22
23
24 | 17.6
19.3
20.0 | 14.2
15.5
17.0
18.4
17.2 | 15.5
16.5
18.0
19.1
18.1 | 10.5
10.0
11.5
14.2
14.5 | 8.8
8.6
9.9
11.5
12.8 | 12.9 | 10.1
9.9
10.5
9.9
8.4 | 8.6
8.1
9.2
8.4
6.8 | 9.2
8.9
9.8
9.1
7.7 | 9.7
9.6
12.2
13.5
12.2 | 8.0
8.4
9.6
12.2
9.6 | 13.0 | | DAY MAX MIN MEAN MIN MEAN MAX | 27
28
29
30 | 15.2
13.3
13.4
13.3 | 15.2
13.0
11.2
10.8
10.9 | 16.1
13.8
12.2
12.1
12.1
12.4 | 14.4
15.5
15.9
16.1
15.8 | 11.9
14.4
14.9
15.8
13.6 | 15.0
15.4
15.9
14.7 | 5.8 | 4.4 | 6.3
5.9
6.1
6.3
5.1
4.3 | 10.4
11.1
12.5
14.3
16.0
16.4 | 9.9
11.0
12.5
14.3 | 10.6
11.7
13.5
15.1 | | Territory March April April May | MONTH | 20.5 | 10.8 | 16.6 | 16.9 | 8.6 | 12.9 | 15.4 | 3.8 | 11.0 | 16.4 | 1.4 | 7.8 | | 1 16.1 13.1 14.9 8.9 5.4 7.2 13.9 11.8 12.8 20.2 18.9 19.5 2 13.1 10.9 11.8 9.3 8.1 8.7 16.0 13.6 14.9 20.1 18.6 19.6 3 10.9 9.7 10.3 9.3 7.0 8.3 15.7 13.9 15.0 18.6 16.6 17.7 4 9.8 8.3 9.2 8.1 5.2 6.7 14.9 12.6 13.7 16.6 15.7 16.0 5 8.3 7.5 7.9 9.3 5.9 7.5 14.7 12.1 13.3 17.7 15.6 16.5 6 7.5 7.3 7.4 10.7 7.2 8.9 15.1 12.2 13.5 18.4 17.2 17.7 7 7.8 7.4 7.5 12.4 9.6 10.8 15.5 12.4 13.8 21.1 17.9 19.3 8 8.8 7.1 7.8 14.6 16.5 | DAY | MAX | MIN | MEAN | | 6 7.5 7.3 7.4 10.7 7.2 8.9 15.1 12.2 13.5 18.4 17.2 17.7 7 7.8 7.4 7.5 12.4 9.6 10.8 15.5 12.4 13.8 21.1 17.9 19.3 8 8.8 7.1 7.8 14.2 10.6 12.3 16.1 14.1 15.0 22.6 19.4 20.8 9 10.0 7.6 8.7 13.6 11.8 13.2 16.6 15.4 15.8 22.2 20.7 21.4 10 10.6 9.4 9.9 13.1 9.9 11.4 19.0 14.6 16.5 21.6 19.4 20.3 11 11.0 9.2 10 12.7 9.6 11.2 19.0 16.0 17.3 22.0 18.4 20.1 12 11.0 8.7 9.4 12.3 11.4 11.9 11.7 19.5 17.0 18.1 | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 11 11.0 9.2 10 12.7 9.6 11.2 19.0 16.0 17.3 22.0 18.4 20.1 12 11.0 8.7 9.6 12.0 11.6 11.7 19.5 17.0 18.1 23.6 20.1 21.8 13 10.6 8.7 9.4 12.3 11.4 11.9 20.1 17.9 18.9 22.9 18.1 20.4 14 10.4 7.9 8.9 14.1 10.8 12.3 20.0 18.1 19.0 18.1 16.2 14.1 15.8 12.3 14.1 11.9 20.1 17.9 18.9 22.9 18.1 20.4 18.1 16.6 17.4 15.0 10.4 8.3 9.3 15.8 12.3 14.1 22.6 18.0 20.2 18.8 16.4 17.6 16 11.4 9.0 10.0 15.2 14.5 14.9 24.0 19.6 21.8 17.1 11.4 8.6 9.9 14.5 11.7 13.0 24.0 <td>2
3
4</td> <td>13.1
10.9
9.8</td> <td>10.9</td> <td>14.9
11.8
10.3
9.2
7.9</td> <td>8.9
9.3
9.3
8.1
9.3</td> <td>8.1
7.0
5.2</td> <td>7.2
8.7
8.3
6.7
7.5</td> <td>16.0
15.7
14.9</td> <td>13.6
13.9
12.6</td> <td>12.8
14.9
15.0
13.7
13.3</td> <td>20.2
20.1
18.6
16.6
17.7</td> <td>18.6
16.6
15.7</td> <td>19.6
17.7
16.0</td> | 2
3
4 | 13.1
10.9
9.8 | 10.9 | 14.9
11.8
10.3
9.2
7.9 | 8.9
9.3
9.3
8.1
9.3 | 8.1
7.0
5.2 | 7.2
8.7
8.3
6.7
7.5 | 16.0
15.7
14.9 | 13.6
13.9
12.6 | 12.8
14.9
15.0
13.7
13.3 | 20.2
20.1
18.6
16.6
17.7 | 18.6
16.6
15.7 | 19.6
17.7
16.0 | | 13 10.0 8.7 9.4 12.3 11.4 11.9 20.1 17.9 18.9 22.9 18.1 16.6 17.4 15 10.4 8.3 9.3 15.8 12.3 14.1 22.6 18.0 20.2 18.8 16.4 17.4 16 11.4 9.0 10.0 15.2 14.5 14.9 24.0 19.6 21.8 17 17 11.4 8.6 9.9 14.5 11.7 13.0 24.9 21.1 22.9 20.4 18.7 19.4 18 11.3 7.8 9.5 14.4 13.7 14.0 25.5 21.9 23.6 19.3 16.7 18.0 19 10.8 8.7 9.8 14.6 13.9 14.2 25.1 23.0 24.1 18.4 15.4 16.7 20 13.5 11.0 12.0 14.6 12.9 13.8 26.1 23.3 24.6 18.2 15.5 16.7 21 13.5 11.0 | 7
8
9 | 7.8
8.8
10.0 | 7.3
7.4
7.1
7.6
9.4 | 7.4
7.5
7.8
8.7
9.9 | 10.7
12.4
14.2
13.6
13.1 | 10.6
11.8 | 12.3
13.2 | 15.1
15.5
16.1
16.6
19.0 | 12.2
12.4
14.1
15.4
14.6 | 13.5
13.8
15.0
15.8
16.5 | 18.4
21.1
22.6
22.2
21.6 | 17.9
19.4
20.7 | 19.3
20.8
21.4 | | 17 11.4 8.6 9.9 14.5 11.7 13.0 24.9 21.1 22.9 20.4 18.7 19.4 18 11.3 7.8 9.5 14.4 13.7 14.0 25.5 21.9 23.6 19.3 16.7 18.0 19 10.8 8.7 9.8 14.6 13.9 14.2 25.1 23.0 24.1 18.4 15.4 16.7 20 13.0 10.2 11.5 14.7 14.1 14.5 25.1 23.0 24.1 18.4 15.6 16.8 21 13.5 11.0 12.0 14.6 12.9 13.8 26.1 23.3 24.6 18.2 15.5 16.8 21 13.5 11.0 12.0 14.6 12.9 13.8 26.1 23.3 24.6 18.2 15.5 16.8 21 13.5 11.0 12.0 14.6 12.9 13.8 26.1 23.3 24.6 18.2 15.5 16.8 21 13.5 9.8 10.9 11.7< | 12
13
14 | 10.6 | 7.9 | 8.9 | 14.1 | 10.8 | 12.3 | 20.1 | 18.1 | 19.0 | 18.1 | 20.1
18.1
16.6 | 21.8
20.4
17.4 | | 22 11.5 9.8 10.9 12.9 10.9 11.7 24.9 22.0 23.5 19.5 14.9 17.0 23 11.4 8.5 9.8 12.5 9.9 11.2 22.0 19.2 20.3 20.5 16.0 18.2 24 11.8 7.8 9.7 13.6 10.7 12.2 20.2 19.0 19.5 21.4 17.8 19.5 25 12.6 8.7 10.7 15.4 12.5 13.9 21.1 18.2 19.6 22.6 19.2 20.8 26 11.9 8.8 10.2 15.0 13.4 14.5 19.2 16.6 17.1 23.0 20.8 21.8 27 8.8 6.5 7.4 13.4 12.0 12.6 18.5 16.0 17.0 24.2 20.9 22.5 28 8.3 4.8 6.5 14.2 11.1 12.6 21.4 18.4 19.7 24.9 21.9 23.3 29 16.1 | 17
18
19 | 11.4
11.3
10.8 | 8.6
7.8
8.7 | 9.9
9.5
9.8 | 14.5
14.4
14.6 | 11.7
13.7
13.9 | 13.0
14.0
14.2 | 24.9
25.5
25.1 | 21.1
21.9
23.0 | 22.9
23.6
24.1 | 20.4
19.3
18.4 | 18.7
16.7
15.4 | 19.4
18.0
16.7 | | 27 8.8 6.5 7.4 13.4 12.0 12.6 18.5 16.0 17.0 24.2 20.9 22.5 28 8.3 4.8 6.5 14.2 11.1 12.6 21.4 18.4 19.7 24.9 21.9 23.3 29 16.1 13.3 14.7
21.5 18.1 19.9 25.8 22.7 24.2 30 15.8 13.2 14.8 20.9 18.5 19.8 25.9 23.2 24.4 31 13.2 11.7 12.2 26.9 22.9 24.9 | 22
23
24 | 11.5
11.4
11.8 | 9.8
8.5
7.8 | 10.9
9.8
9.7 | 12.9
12.5
13.6 | 10.9
9.9
10.7 | 11.7
11.2
12.2 | 24.9
22.0
20.2 | 22.0
19.2
19.0 | 23.5
20.3
19.5 | 19.5
20.5
21.4 | 14.9
16.0
17.8 | 17.0
18.2
19.5 | | | 27
28
29
30 | 8.8
8.3
 | 6.5
4.8
 | 7.4
6.5
 | 13.4
14.2
16.1
15.8 | 12.0
11.1
13.3
13.2 | 12.6
12.6
14.7
14.8 | 18.5
21.4
21.5
20.9 | 16.0
18.4
18.1
18.5 | 17.0
19.7
19.9
19.8 | 24.2
24.9
25.8
25.9 | 20.9
21.9
22.7
23.2 | 22.5
23.3
24.2
24.4 | | | | | | | | | | | | | | | | 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|---|---|---|---|---|---|---|--|--|---|--| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 27.8
28.9
29.5
30.0
29.2 | 24.2
25.1
26.1
26.8
26.6 | 26.0
27.0
27.8
28.4
28.1 | 29.7
29.2
28.2
29.7
30.8 | 26.5
27.6
26.6
25.8
27.2 | 28.2
28.4
27.2
27.6
28.9 | 30.1
30.3
31.3
31.5
31.8 | 27.5
27.6
28.3
28.6
28.6 | 28.8
29.0
29.7
29.9
30.0 | 28.0
28.6
29.2
30.0
29.1 | 26.4
26.8 | 26.9
27.2
27.7
28.2
27.7 | | | 28.2
27.0
27.0
28.1
28.3 | 24.7
23.4
23.9
24.6
25.0 | 26.4
25.0
25.6
26.3
26.7 | 31.7
31.1
31.0
29.5
29.6 | 28.2
27.0
27.4
27.7
27.2 | 29.7
28.9
29.0
28.5
28.1 | 30.9
29.5
28.8
28.8
27.2 | 28.4
25.8
24.6
24.8
25.3 | 29.6
27.5
26.6
26.7
26.3 | 28.6
28.5
28.1
27.7
27.9 | 25.1
25.3
25.2
25.2
24.7 | 26.7
26.7
26.5
26.4
26.2 | | 11
12
13
14
15 | 27.5
28.3
28.1
27.3
25.9 | 25.4
25.5
26.4
25.4
23.3 | 26.6
26.9
27.3
26.2
24.7 | 27.4
27.4
26.4
27.1
28.1 | 26.3
25.9
25.2
24.5
25.1 | 26.8
26.4
25.8
25.7
26.6 | 28.3
29.6
29.2
29.6
27.6 | 26.3 | 26.6
27.3
27.3
27.7
26.9 | 28.0
26.9
26.3
27.2
27.4 | 24.5 | 26.0
24.9
24.8
25.7
25.9 | | 17 | 24.5
25.4
26.9
28.0
28.6 | 22.6
21.5
23.1
24.3
25.2 | 23.4
23.3
24.8
26.0
26.7 | 28.4
29.1
28.6
28.6
28.6 | 25.9
26.5
27.0
26.4
26.2 | 27.2
27.8
27.9
27.5
27.5 | 27.1
28.2
29.2
29.0
30.0 | 25.9
25.5
26.1
26.2
26.7 | 26.5
26.6
27.5
27.5
27.9 | 26.1
26.4
26.2
26.4
27.2 | 24.5
25.4
24.9
24.9
24.0 | 25.3
25.8
25.5
25.6
25.8 | | 21
22
23
24
25 | 29.0
29.4
28.6
29.5
27.6 | 25.6
25.7
26.1
26.1
26.4 | 27.1
27.4
27.2
27.6
27.1 | 28.9
28.8
27.6
28.6
29.0 | 27.1
26.3
25.7
26.0
26.8 | 28.1
27.6
26.8
27.2
27.9 | 30.2
31.4
30.8
29.7
29.3 | 26.3
27.4
27.4
27.2
27.2 | 28.1
29.0
28.8
28.3
28.0 | 25.1
24.4
23.4
22.0
21.1 | 23.9
23.2
21.0
20.1
20.2 | 24.5
23.9
22.3
21.0
20.5 | | 26
27
28
29
30
31 | 29.2
28.6
29.3
29.6
29.7 | 25.7
26.4
25.9
26.5
26.6 | 27.3
27.3
27.4
27.9
28.0 | 29.2
28.8
29.7
29.2
28.6
29.3 | 27.2
27.4
27.1
27.7
27.2
26.6 | 28.2
28.3
28.4
28.6
27.9
28.0 | 27.5
27.7
27.3
27.0
27.2
27.7 | 26.3
25.0
25.0
24.8
25.1
25.5 | 26.9
26.2
26.1
25.9
26.2
26.7 | 20.6
20.7
21.1
21.8
22.1 | 19.5
19.5
19.7
19.7
20.4 | 20.2
20.3
20.3
20.5
21.2 | | MONTH | 30.0 | 21.5 | 26.6 | 31.7 | 24.5 | | 31.8 | | | 30.0 | | 24.7 | | | | | | | | | | | | | | | | | | OXYGE | N DISSOL | .VED, in (| MG/L), WA | ATER YEAR | R OCTOBER 2 | 2001 TO : | SEPTEMBEI | R 2002 | | | | DAY | MAX | OXYGE
MIN | EN DISSOI
MEAN | LVED, in (| MG/L), WA | ATER YEAF
MEAN | R OCTOBER 2 | 2001 TO : | SEPTEMBEI
MEAN | R 2002
MAX | MIN | MEAN | | DAY | | MIN
OCTOBER | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | DAY 1 2 3 4 5 | | MIN | MEAN | MAX 13.3 | MIN
NOVEMBER
8.5
7.5 | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4 | 11.5
11.1
10.1
10.5 | MIN OCTOBER 7.4 7.2 7.0 7.5 7.5 7.4 7.5 7.8 8.0 | MEAN 9.2 9.0 8.0 9.4 8.8 | 13.3
11.7
10.2
10.1 | MIN
NOVEMBER
8.5
7.5
6.7
6.8
6.7 | MEAN 10.9 9.8 8.6 8.5 | MAX
10.3
11.1
11.1
11.6 | MIN DECEMBER 7.6 9.7 9.9 9.1 | 9.5
10.4
10.5
10.3 | MAX
16.6
17.0
16.8
17.4 | JANUARY 13.2 13.4 13.5 14.0 13.8 13.0 12.3 12.8 12.6 | 14.5
14.9
14.8
15.3 | | 1
2
3
4
5
6
7
8 | 11.5
11.1
10.1
10.5
10.0
9.4
11.8
12.7
12.9 | MIN OCTOBER 7.4 7.2 7.0 7.5 7.5 7.4 7.5 7.8 8.0 7.7 | 9.2
9.0
8.0
9.4
8.8
8.1
9.0
9.6
10.1 | 13.3
11.7
10.2
10.1 | MIN
NOVEMBER
8.5
7.5
6.7
6.8
6.7 | MEAN
10.9
9.8
8.6
8.5
8.6 | 10.3
11.1
11.1
11.6 | MIN 7.6 9.7 9.9 9.1 | 9.5
10.4
10.5
10.3 | 16.6
17.0
16.8
17.4
17.7
14.9
17.3
18.1 | JANUARY 13.2 13.4 13.5 14.0 13.8 13.0 12.3 12.8 12.6 | 14.5
14.9
14.8
15.3
15.4
13.9
14.3
14.8 | | 1
2
3
4
5
6
7
8
9
10 | 11.5
11.1
10.1
10.5
10.0
9.4
11.8
12.9
12.8
10.9
9.1
9.6
8.5 | MIN OCTOBER 7.4 7.2 7.0 7.5 7.5 7.4 7.5 7.8 8.0 7.7 5.9 3.4 4.6 4.4 | 9.2
9.0
8.0
9.4
8.8
8.1
9.6
10.1
10 | MAX 13.3 11.7 10.2 10.1 10.1 10.1 10.2 10.2 10.2 10.2 | MIN NOVEMBER 8.5 7.5 6.7 6.8 6.7 7.5 7.9 8.1 8.0 8.4 8.3 8.4 9.2 9.2 | MEAN 10.9 9.8 8.6 8.5 8.6 8.9 9.1 9.4 8.9 9.3 9.4 9.5 10.2 10.1 | MAX 10.3 11.1 11.1 11.6 10.8 11.0 10.9 10.0 10.0 | MIN DECEMBER 7.6 9.7 9.9 9.1 10.2 10.4 9.9 8.6 3.7 | 9.5
10.4
10.5
10.3

10.4
10.7
10.5
9.6
8.0 | MAX 16.6 17.0 16.8 17.4 17.7 14.9 17.3 18.1 18.4 17.3 18.7 17.9 18.3 16.4 | JANUARY 13.2 13.4 13.5 14.0 13.8 13.0 12.3 12.6 12.0 10.8 10.8 11.1 11.0 | 14.5
14.9
14.8
15.3
15.4
13.9
14.8
14.8
13.9
13.8
13.4
13.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.5
11.1
10.1
10.5
10.0
9.4
11.8
12.9
12.8
10.9
9.6
8.5
9.0
9.5
10.7
11.4
11.8 | MIN OCTOBER 7.4 7.2 7.0 7.5 7.5 7.4 7.5 7.8 8.0 7.7 5.9 3.4 4.6 4.4 8.3 8.5 8.9 9.4 | 9.2
9.0
8.0
9.4
8.8
8.1
9.0
9.6
10.1
10
9.0
6.4
7.3
8.6
8.9
9.6
10.1 | MAX 13.3 11.7 10.2 10.1 10.1 10.2 10.2 9.9 10.1 10.4 10.6 10.8 11.0 10.9 10.6 10.3 9.9 9 | MIN NOVEMBER 8.5 7.5 6.7 6.8 6.7 7.5 9.8 1.1 8.0 8.4 8.3 8.4 9.2 9.2 9.3 9.7 9.5 9.2 8.8 | MEAN 10.9 9.8 8.6 8.5 8.6 8.9 9.1 9.4 8.9 9.3 9.4 9.5 10.2 10.1 10.3 10.3 10.1 9.8 9.3 | 10.3
11.1
11.1
11.6

10.8
11.0
10.9
10.0
10.1
10.4
10.5
9.9
10.8
11.2 | MIN DECEMBER 7.6 9.7 9.9 9.1 10.2 10.4 9.9 8.6 3.7 10.0 9.9 9.5 9.6 10.2 | 9.5
10.4
10.5
10.3

10.4
10.7
10.5
9.6
8.0
10.1
10.2
9.7
10.2 | 16.6
17.0
16.8
17.4
17.7
14.9
17.3
18.1
18.4
17.3
18.7
17.9
18.3
16.4
17.8 | JANUARY 13.2 13.4 13.5 14.0 13.8 13.0 12.3 12.8 12.6 12.0 10.8 10.8 11.1 11.0 11.0 11.5 11.4 11.4 | 14.5
14.9
14.8
15.3
15.4
13.9
14.3
14.8
13.9
13.4
13.7
13.2
13.6 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 11.5
11.1
10.1
10.5
10.0
9.4
11.8
12.9
12.8
10.9
9.6
8.5
9.0
9.5
10.7
11.8
12.3
12.8
12.8
12.8
13.0
12.2 | MIN OCTOBER 7.4 7.2 7.0 7.5 7.5 7.4 7.5 7.8 8.0 7.7 5.9 3.4 4.6 4.4 8.3 8.5 8.9 9.4 9.3 9.0 8.6 8.1 7.3 | 9.2
9.0
8.0
9.4
8.8
8.1
9.0
9.6
10.1
10
9.0
6.9
6.4
7.3
8.6
8.9
9.1
10.2
10.3 | MAX 13.3 11.7 10.2 10.1 10.1 10.2 10.2 9.9 10.1 10.4 10.6 10.8 11.0 10.9 10.6 10.3 9.9 10.1 11.1 11.6 11.1 | MIN NOVEMBER 8.5 7.5 6.7 6.8 6.7 7.5 7.9 8.1 8.0 8.4 9.2
9.3 9.7 9.5 9.2 8.8 8.3 9.7 10.5 9.4 7.4 | MEAN 10.9 9.8 8.6 8.5 8.6 8.9 9.1 9.4 8.9 9.3 9.4 9.5 10.2 10.1 10.3 10.3 10.1 9.8 9.3 9.1 | MAX 10.3 11.1 11.1 11.6 10.8 11.0 10.9 10.0 10.1 10.4 10.5 9.9 10.8 11.2 12.2 12.8 13.1 11.9 11.6 | MIN DECEMBER 7.6 9.7 9.9 9.1 10.2 10.4 9.9 8.6 3.7 10.0 9.9 9.5 10.2 10.5 11.2 11.3 11.0 11.3 | 9.5 10.4 10.5 10.3 10.4 10.7 10.5 9.6 8.0 10.1 10.2 11.8 11.9 11.3 11.4 | MAX 16.6 17.0 16.8 17.4 17.7 14.9 17.3 18.1 18.4 17.3 18.7 17.9 18.3 16.4 17.8 18.0 17.1 17.6 12.5 12.4 | JANUARY 13.2 13.4 13.5 14.0 13.8 13.0 12.3 12.8 12.6 12.0 10.8 11.1 11.0 11.0 11.5 11.4 11.4 11.2 11.6 | 14.5
14.9
14.8
15.3
15.4
13.9
14.8
13.9
13.8
13.4
13.7
13.2
13.6
14.1
13.8
13.8
13.8
13.9 | MONTH 16.0 3.4 9.5 13.3 6.1 9.3 16.0 3.7 11.1 18.7 9.4 12.9 95 03428200 WEST FORK STONES RIVER AT MURFREESBORO, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | OZIGE | V DIDDOL | IVED, III (| ыд/ш/, w | IIIII IIII | COLODER | 2001 10 | | 2002 | | | |---|--|--|--|--|--|--|---|---|---|--|--|--| | DAY | MAX | MIN | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | 9.4
10.5 | 9.9
11.3 | 17.4
14.7
16.0 | 12.0
11.1 | 14.2
12.6 | 11.6 | 10.5
9.9 | 11.0
10.7 | 8.6
8.2
9.1
8.5 | 7.5
7.4 | 8.0
7.8 | | 3
4 | 11.9
13.8 | 11.2
11.4 | 11.5
12.4 | 16.0
16.6
16.5 | 10.4
11.7 | 12.8
13.8 | 12.4
14.1 | | 10.8
11.8
12.5 | 9.1
8.5 | 8.0
7.4 | 8.6
8.1 | | 5 | 14.2 | 12.1 | | 16.5 | 11.9 | 13.8 | 15.6 | | | | | | | 6
7 | 13.4
13.5 | 12.2
12.2 | 12.7
12.7
13.3
13.1 | 16.2
15.1
14.9 | 11.4
10.7 | 13.4
12.5 | 17.3
18.1 | 10.4 | 13.0
13.4 | | | | | 8
9 | 14.9
15.3 | 12.4
11.8 | | | | 11.9 | 16.0
15.9 | 9.4 | 12.5
12.0 | 9.5 | 7.4 | 8.2 | | 10 | 14.2 | 11.5 | 12.3 | 14.7 | 7.4 | 11.0 | 19.0 | | | 9.3 | 7.4 | 8.2 | | 11
12 | 17.6
17.5 | $\frac{11.4}{11.7}$ | 13.6
14.0
12.0 | 14.7
11.2
11.5 | 9.6
8.8
7.8 | 11.8
10.1 | 16.8
16.2 | 8.9
8.4 | 12.4
12.0
11.0
10.5
10.8 | 10.9
11.5 | 7.7 | 9.0
9.1 | | 13
14 | 14.8 | 10.8 | 12.0 | 11.5
13.0 | 9.6 | 10.1
11.0 | 14.6
14.0 | 8.0
8.0 | 11.0
10.5 | 15.4
15.4 | 7.3
9.2 | 8.4
9.9 | | 15 | | | | 13.0 | 8.9 | 10.5 | | | 10.8 | 10.8 | 9.4 | 10 | | 16
17 | | | | 10.3
10.4 | 8.3
8.7 | 9.1
9.7
9.7
10.2 | 13.6
12.8
11.6
9.2
9.1 | 7.1
6.3 | 10
8.9
8.2
7.0
6.5 | 10.8
10.9 | 9.3
8.6 | 10.2
9.5 | | 18
19 | | | | 10.1
10.3 | 9.1
10.0 | 9.7 | 11.6 | 6.0
5.5 | 8.2 | 11.0
13.2 | | 9.6
11.0 | | 20 | 16.0 | 9.9 | 12.5 | 10.3 | 10.0 | 10.1 | | | | | | 11.3 | | 21
22 | 16.0
15.4 | 9.6
9.7
10.2 | 12.1
11.8 | 10.8
12.1 | 10.3
10.5 | 10.5 | 9.4
9.0
10.0
8.6
11.1 | 5.2
4.0
3.9
6.2
6.8 | 6.8
6.4
7.6
7.3
8.7 | 14.4
16.0 | 9.6
9.8 | 11.6
12.1 | | 23
24 | 17.4
17.6 | 10.2
10.6 | 13.0 | 10.8
12.1
12.7
13.0
13.6 | 11.0 | 11.3
11.7
11.6 | 10.0 | 3.9 | 7.6 | 16.1 | 9.3 | 12.0
11.5 | | 25 | 17.0 | | 13.0 | 13.6 | 9.9 | 11.4 | 11.1 | 6.8 | 8.7 | 14.0 | 8.8
8.3 | 10.7 | | 26 | 14.0 | 9.7
10.3 | 11.4
12.9 | 10.6
12.7
14.4 | 9.7 | 10.2 | | | 9.1 | 12.4 | 7.6
7.4 | 9.6 | | 27
28 | 17.4 | 11.9 | $\frac{12.9}{14.1}$ | 14.4 | 10.6
10.1 | 11.3
11.9 | 10.2 | 8.4
7.5
6.9 | 9.7
8.9 | 12.5 | 6.8 | 9.2 | | 29
30 | | | | 14.4
10.6 | 9.3
9.0 | 11.3
9.8 | 10.4
11.2
10.2
10.3
9.2 | 6.9
6.4 | 8.2
7.7 | 12.6
11.0 | 6.8
6.3 | 9.2
8.1 | | 31 | | | | 11.0 | 10.6 | 10.8 | | | | 11.0 | | 8.0 | | MONTH | 17.6 | 9.4 | 12.5 | 17.4 | 7.4 | 11.3 | 19.0 | 3.9 | 10.0 | 16.1 | 5.8 | 9.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 10.6 | JUNE | | 8.5 | JULY
3.2 | | | AUGUST | 8.1 | | SEPTEMBE | IR
 | | 1
2
3 | 10.6
9.9
9.2 | JUNE
5.5
5.0
4.7 | 7.6
7.2
6.8 | 8.5
 | JULY 3.2 | 5.6

 | 10.6
10.8
10.3 | AUGUST
5.5
5.7
6.2 | 8.1
8.3
8.1 | | SEPTEMBE | ER | | 1
2 | 10.6 | JUNE | 7.6
7.2
6.8
6.3
5.5 | 8.5 | JULY
3.2 | | | AUGUST
5.5
5.7
6.2 | 8.1
8.3 | | SEPTEMBE | IR
 | | 1
2
3
4
5 | 10.6
9.9
9.2
8.3
7.1 | JUNE 5.5 5.0 4.7 4.5 4.0 | 7.6
7.2
6.8
6.3
5.5 | 8.5

8.4
8.9 | JULY 3.2 5.2 4.8 | 5.6

6.8
6.9 | 10.6
10.8
10.3
9.7
9.3 | 5.5
5.7
6.2
5.1
5.1 | 8.1
8.3
8.1
7.3
7.1 |

9.0
8.3 | SEPTEMBE

6.0
5.8 |

7.3
6.9 | | 1
2
3
4
5 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5 | JUNE 5.5 5.0 4.7 4.5 4.0 | 7.6
7.2
6.8
6.3
5.5 | 8.5

8.4
8.9
9.0
9.7
9.8 | JULY 3.2 5.2 4.8 | 5.6

6.8
6.9 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7 | 5.5
5.7
6.2
5.1
5.1 | 8.1
8.3
8.1
7.3
7.1 |

9.0
8.3 | SEPTEMBE

6.0
5.8 | 7.3
6.9
6.6
6.9 | | 1
2
3
4
5 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5 | JUNE 5.5 5.0 4.7 4.5 4.0 | 7.6
7.2
6.8
6.3
5.5 | 8.5
 | JULY 3.2 5.2 4.8 | 5.6

6.8
6.9 | 10.6
10.8
10.3 | 5.5
5.7
6.2
5.1
5.1 | 8.1
8.3
8.1
7.3
7.1 |

9.0
8.3 | SEPTEMBE

6.0
5.8 |

7.3
6.9 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
5.6
6.0
5.3 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9 | JULY 3.2 5.2 4.8 3.5 5.3 5.5 5.1 5.1 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6 | 5.5
5.7
6.2
5.1
5.1
4.6
4.6
4.3
3.5 | 8.1
8.3
8.1
7.3
7.1
6.5
6.5
5.5
6.0 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 |

7.3
6.9
6.6
6.9
7.3
7.2
7.4 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
6.0
5.3 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6 | JULY 3.2 5.2 4.8 3.5 5.3 5.5 5.1 5.1 4.9 6.0 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0 |

9.0
8.3 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
8.6
6.9
8.5
8.3
7.4 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
5.6
6.0
5.3
6.1
6.2
5.4 |
8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3 | JULY 3.2 5.2 4.8 3.5 5.3 5.1 5.1 4.9 6.0 5.6 6.0 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
7.4 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0 | 9.0
8.3
8.6
9.0
8.7
9.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 |

7.3
6.9
6.6
6.9
7.3
7.2
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9
8.5
8.3
7.4
6.8 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 | 7.6
7.2
6.8
6.3
5.5
5.4
5.6
6.0
5.3
6.1
6.2
5.4
5.4
5.7 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5 | JULY 3.2 5.2 4.8 3.5 5.3 5.5 5.1 5.1 4.9 6.0 5.6 6.0 5.7 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8
7.4 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 | 8.1
8.3
7.3
7.1
6.5
6.5
5.5
6.0
6.6
7.4
6.2
6.2
5.6 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
9.5
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9
8.5
8.3
7.3
7.4
6.8 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
5.6
6.0
5.3
6.1
6.2
5.4
5.7 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5 | JULY 3.2 5.2 4.8 3.5 5.3 5.51 5.1 4.9 6.0 5.6 6.0 5.7 5.9 6.1 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
7.4
7.9
8.2
8.6 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8
7.4 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6 | 9.0
8.3
8.3
8.6
9.0
9.2
9.4
8.8
8.4
7.6
7.6 | SEPTEMBE 6.0 5.8 5.3 5.7 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.0
8.2 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
5.0
5.3
6.1
5.4
5.7
5.3
6.5
6.6 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5 | JULY 3.2 5.2 4.8 3.5 5.3 5.1 5.1 4.9 6.0 5.7 5.9 6.1 6.5 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8
7.4 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.0 4.2 4.2 | 8.1
8.3
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
7.6
 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7

5.9
6.2
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 10.6
9.9
9.2
8.3
7.1
6.2
7.55
7.5
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.0
8.2
8.2 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 | 7.6
7.2
6.8
6.3
5.5
5.4
5.6
6.3
5.4
5.4
5.4
5.4
5.4
5.5
5.4
6.6
6.5 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5 | JULY 3.2 5.2 4.8 3.5 5.3 5.5 5.1 4.9 6.0 5.6 6.0 5.7 5.9 6.1 6.5 6.0 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
7.6
9.1
10.0
9.3
8.8
7.4
6.6
7.2
8.2
7.5 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.3 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.0 4.2 4.2 3.9 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4
7.6
6.6
6.4
7.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.4 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7

5.9
6.2
5.7
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.0
8.2
8.2 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 5.2 5.0 5.3 | 7.6
7.2
6.8
6.3
5.5
5.4
5.6
6.0
5.3
6.1
2.2
5.4
5.5
5.7
6.4
6.5
6.5 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5 | JULY 3.2 5.2 4.8 3.5 5.3 5.5.1 5.1 4.9 6.0 5.6 6.0 5.7 5.9 6.11 6.5 6.0 6.2 7.9 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3
8.7 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
7.6
9.1
10.0
9.3
8.8
7.4
6.6
6.2
8.2
7.5
8.2 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.1 4.1 4.2 3.9 3.7 3.0 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.5
6.2
5.5
6.2
5.5
6.2 | 9.0
8.3
8.3
8.6
9.0
9.7
9.2
9.4
8.8
8.4
7.6
7.2
6.6
6.4
7.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.6 5.5 6.4 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7
5.5
5.8
6.6
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.6
9.9
8.3
7.1
6.2
7.5
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.2
8.2
8.2
8.2 | JUNE 5.5 5.0 4.7 4.5 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.6 4.2 3.1 4.5 4.5 4.7 4.6 | 7.6
7.2
6.2
6.3
5.5
5.4
6.0
5.3
6.1
2
5.4
5.7
5.3
6.5
6.5
6.5
6.6
6.5
6.6
6.3 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
6.8
7.9.3
10.5
10.8
11.4
11.2
11.2
9.3
9.8
9.3 | JULY 3.2 5.2 4.8 3.5 5.3 5.1 5.1 4.9 6.0 5.7 5.9 6.1 6.5 6.0 6.2 7.9 4.6 5.1 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3
8.7 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8
7.4
6.6
7.2
8.2
7.5
8.2 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.0 4.2 3.9 3.7 3.0 4.6 3.6 | 8.1
8.3
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.4
5.4
6.2
5.5
5.5 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4
7.6
7.6
7.2
7.7
7.8
8.2
8.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.4 4.6 5.5 6.4 5.5 6.0 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
6.2
5.7
5.5
5.8
6.6
6.9
6.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
7.8
6.9
8.5
8.3
7.3
7.4
6.8
8.1
8.0
8.2
8.2
8.2
8.5
8.6
8.5 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 5.0 5.3 4.7 4.6 4.2 | 7.6
7.2
6.8
6.3
5.5
5.2
5.4
5.6
6.3
5.7
5.3
6.4
6.6
5.7
5.3
6.4
6.6
6.3
6.3
5.7 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5
10.8
11.2
12.6
11.2
12.2
9.3
9.8
11.9 | JULY 3.2 5.2 4.8 3.5 5.3 5.51 5.1 4.9 6.0 5.6 6.0 5.7 5.9 6.1 6.5 6.5 6.0 6.2 7.9 4.6 5.1 5.3 | 5.6

6.8
6.9
6.8
7.1
7.3
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3
8.7 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
7.6
9.1
10.0
9.3
8.8
7.4
6.6
6.2
8.2
7.5
6.6
6.6
8.4
8.0
7.7 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.1 4.2 4.2 3.9 3.7 3.0 4.6 3.6 5.1 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.5
5.6
5.4
6.2
5.5
5.5
6.2
5.5
6.3 | 9.0
8.3
8.3
8.6
9.0
9.2
9.4
8.8
8.4
7.6
6.4
7.2
7.7
7.8
8.2
8.4
7.3 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.4 4.6 5.5 6.0 6.0 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7

5.9
6.2
5.5
5.8
6.6
6.9
7.2
6.2 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.0
8.2
8.2
8.2
8.5
8.0
7.6 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 5.0 5.3 4.7 4.6 4.2 4.0 4.5 | 7.6
7.2
6.3
5.5
5.2
5.4
6.0
5.3
6.1
2.2
5.4
5.7
5.5
6.4
6.5
6.5
6.6
6.3
6.3
5.5 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5
10.8
11.4
11.2
12.6
11.2
11.2
11.2
11.2 | JULY 3.2 5.2 4.8 3.5 5.3 5.5.1 5.1 4.9 6.0 5.6 5.7 5.9 6.1 6.5 6.0 6.2 7.9 4.6 5.1 4.9 5.6 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
7.4
7.9
8.2
8.6
8.9
9.3
8.7 | 10.6 10.8 10.3 9.7 9.3 8.7 8.8 9.7 7.6 9.1 10.0 9.3 8.8 7.4 6.6 7.2 8.2 7.5 8.2 7.5 8.2 7.5 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.0 4.2 3.9 3.7 3.0 4.6 3.6 5.1 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.4
6.2
5.5
5.5
6.0
6.1
6.3 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4
7.6
7.6
7.2
6.6
6.4
7.2
7.7
7.8
8.2
8.4
7.3 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.6 5.5 6.4 5.5 6.0 6.0 6.1 8.2 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7
5.7
5.7
5.7
5.8
6.6
6.9
6.7
7.2
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 10.6
9.9
8.3
7.1
6.2
7.55
8.6
6.9
8.5
8.3
7.4
6.8
8.1
8.2
8.2
8.2
8.5
8.5
8.7
7.6
8.5
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | JUNE 5.5 5.0 4.7 4.5 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.6 4.2 3.1 4.5 4.8 5.2 5.0 5.3 4.7 4.6 4.2 4.0 | 7.62
6.28
6.35
5.5
5.24
6.60
5.3
6.12
6.44
5.7
5.66
6.65
6.63
6.63
6.63
6.63
6.63
6.63 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
6.8.7
9.3
10.5
10.8
11.4
11.2
12.6
11.2
11.2
9.3
9.8
11.9
11.1 | JULY 3.2 5.2 4.8 3.5 5.35 5.1 5.1 4.9 6.0 5.7 5.9 6.15 6.5 6.0 6.2 7.9 4.61 5.3 4.9 5.63 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3
8.7
7.9
8.7
7.2
8.1
8.2
8.3
8.3
7.3 | 10.6
10.8
10.3
9.7
9.3
8.7
8.8
9.7
9.0
7.6
9.1
10.0
9.3
8.8
7.4
6.6
7.2
8.2
7.5
8.2 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.0 4.2 3.9 3.7 3.0 4.6 5.1 | 8.1
8.3
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.4
5.4
5.5
5.5
5.5 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4
7.6
7.6
7.2
7.7
7.8
8.2
8.4
7.3
8.9
9.0
9.2
9.2
9.2 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.4 4.6 5.5 6.4 5.5 6.0 6.0 6.1 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7

5.9
6.2
5.7
5.5
5.8
6.6
6.9
6.7
7.2
6.6
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 10.6
9.9
9.2
8.3
7.1
6.2
7.5
7.5
8.6
6.9
8.5
8.3
7.3
7.4
6.8
8.1
8.0
8.2
8.2
8.2
8.5
8.6
7.8
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 5.3 4.7 4.6 4.2 4.0 4.5 4.6 | 7.6.2.4.6.3.5.5.5.4.4.5.6.6.5.5.5.4.6.6.5.5.5.6.4.6.6.5.5.5.5 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5
10.8
11.2
11.2
12.6
11.2
11.2
11.2
11.2
11.2 | JULY 3.2 5.2 4.8 3.5 5.3 5.51 5.1 4.9 6.0 5.6 6.0 5.7 5.9 6.5 6.5 6.0 6.2 7.9 4.6 5.1 5.3 4.9 5.6 5.3 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
6.9
7.4
7.9
8.2
8.6
8.9
9.3
8.7
7.2
8.1
8.2
8.3
7.3 | 10.6 10.8 10.3 9.7 9.3 8.7 8.8 9.7 7.6 9.1 10.0 9.3 8.8 7.4 6.6 7.2 8.2 7.5 8.2 7.5 8.2 7.5 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.1 4.1 4.1 4.2 4.2 3.9 3.7 3.0 4.6 3.6 5.1 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.6
0
6.6
7.4
6.2
5.6
5.4
6.2
5.5
5.5
6.0
6.1
6.3 | 9.0
8.3
8.3
8.6
9.0
9.2
9.4
8.8
8.4
7.6
7.2
6.6
6.4
7.2
7.7
7.7
8.2
8.4
7.3 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.4 6 5.5 6.0 6.0 6.1 8.2 8.7 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7
5.5
5.8
6.6
6.9
7.2
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 10.6
9.9
9.2
8.3
7.1
6.2
7.55
8.6
6.9
8.5
7.4
6.8
8.1
8.0
8.2
8.2
8.2
8.5
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
7.6
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | JUNE 5.5 5.0 4.7 4.5 4.0 4.0 3.8 3.9 4.1 3.5 4.1 4.4 3.8 3.6 4.2 3.1 4.5 4.8 5.2 5.0 5.3 4.7 4.6 4.2 4.0 4.5 4.6 4.2 4.0 | 7.62
6.28
6.35
5.5
5.46
6.03
6.24
5.44
5.7
5.5
6.46
6.32
9
5.78
5.78
5.78
5.78
5.78
5.78
5.78
5.78 | 8.5

8.4
8.9
9.0
9.7
9.8
9.2
7.9
7.4
7.6
8.7
9.3
10.5
10.8
11.4
11.2
11.2
9.3
9.8
11.9
11.1 | JULY 3.2 5.2 4.8 3.53 5.51 4.9 6.0 6.5 6.0 5.7 5.9 4.6 5.3 4.9 4.6 5.3 4.9 | 5.6

6.8
6.9
6.8
7.1
7.3
6.8
6.2
6.0
6.5
7.4
7.9
8.2
8.6
9.3
8.7
7.9
7.2
8.1
8.2
8.3
7.8
7.6 | 10.6 10.8 10.3 9.7 9.3 8.7 8.8 9.0 7.6 9.1 10.0 9.3 8.8 7.4 6.6 7.2 8.2 7.5 8.2 7.5 8.2 7.5 | AUGUST 5.5 5.7 6.2 5.1 5.1 4.6 4.6 4.3 3.5 4.7 3.8 5.5 3.3 4.7 4.1 4.1 4.0 4.2 3.9 3.7 3.0 4.6 3.6 5.1 | 8.1
8.3
8.1
7.3
7.1
6.5
6.3
6.5
5.5
6.0
6.6
7.4
6.2
5.6
5.4
5.5
5.5
5.5
6.0
6.2
5.5
6.2 | 9.0
8.3
8.3
8.6
9.0
8.7
9.2
9.4
8.8
8.4
7.6
7.6
7.6
6.6
4
7.2
7.7
7.8
8.2
8.4
7.3
8.9
9.0
9.0
9.5
9.5 | SEPTEMBE 6.0 5.8 5.3 5.7 5.8 5.9 5.9 5.4 5.7 5.5 3.6 3.9 5.2 4.9 4.6 5.5 6.0 6.0 6.1 8.2 8.7 8.6 8.3 | 7.3
6.9
6.6
6.9
7.3
7.2
7.4
7.3
7.0
6.9
5.7
5.7
5.5
5.8
6.6
6.9
6.7
7.6
6.9
6.7
7.2
7.2 | ### 03430147 STONERS CREEK NEAR HERMITAGE, TN $\label{location.--Lat 36°11'40", long 86°36'28", Davidson County, Hydrologic Unit 05130203, on downstream end of pier at center of culvert under Andrew Jackson Parkway, 0.8 mi southwest of Hermitage.$ DRAINAGE AREA.--20.6 mi². PERIOD OF RECORD.--January 1992 to current year. GAGE.--Data logger. Datum of gage is 411.70 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1200 | 1,340 | 7.72 | Mar 20 | 0845 | 807 | 6.19 | | Jan 24 | 0845 | 1,320 | 7.66 | Mar 31 | 1115 | 829 | 6.26 | | Mar 17 | 2245 | *3,450 | *11.66 | May 13 | 0730 | 927 | 6.57 | Minimum daily discharge, 0.64 ft³/s, Oct. 4. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
LY MEAN V | | ER 2001 TC | SEPTEMBE | R 2002 | | | |--|--|--------------------------------------|---|---|--------------------------------------|---|--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.69
0.67
0.66
0.63 | 2.2
2.0
2.7
1.8
1.7 | 70
43
29
21
16 | 7.9
7.3
6.8
6.4
5.9 | 106
59
52
47
37 | 9.7
9.8
10
8.9
8.3 | 146
83
56
42
34 | 238
63
42
70
47 | 7.0
6.0
4.1
3.5
3.4 | 1.8
1.4
9.0
16
4.0 |
3.8
2.9
2.4
2.0
1.7 | 5.9
2.6
1.8
1.4
1.2 | | 6
7
8
9
10 | 26
4.0
2.4
1.7
1.4 | 1.6
1.5
1.5
1.3 | 14
14
138
72
46 | 7.2
6.7
5.9
5.6
6.8 | 34
55
59
48
44 | 7.9
7.4
6.9
15 | 28
23
20
18
15 | 35
31
26
29
22 | 36
8.4
5.3
4.2
3.4 | 2.6
1.9
1.5
46
67 | 1.5
1.3
1.1
0.99
0.95 | 1.1
1.0
1.1
1.3 | | 11
12
13
14
15 | 1.6
13
12
108
21 | 1.4
1.4
1.4
1.4 | 36
34
206
162
80 | 16
12
10
9.1
7.9 | 37
32
26
22
20 | 11
15
17
14
13 | 14
16
14
13 | 20
15
343
103
58 | 2.9
2.5
4.5
2.8
2.4 | 21
17
138
36
16 | 0.91
0.89
0.89
2.4
5.0 | 1.1
1.0
1.1
1.4
6.7 | | 16
17
18
19
20 | 10
6.1
4.4
5.7 | 1.3
1.3
1.3
1.3
2.0 | 53
54
45
35
29 | 7.1
7.0
12
106
59 | 18
16
14
13
23 | 37
985
687
187
367 | 10
9.2
9.2
8.1
7.1 | 40
75
97
49
35 | 2.1
2.0
1.7
1.5 | 9.3
7.1
6.2
4.9
4.1 | 48
13
4.6
3.3
3.5 | 3.1
3.2
3.6
3.9 | | 21
22
23
24
25 | 11
12
15
27
21 | 1.4
1.5
1.5
9.3
4.6 | 25
20
33
25
20 | 41
33
320
637
189 | 16
13
12
11
9.9 | 148
86
62
47
37 | 6.4
9.0
6.4
136
64 | 27
21
18
15
12 | 1.2
1.1
1.3
1.4
24 | 3.4
3.1
68
27
16 | 2.5
2.0
1.7
1.5
7.0 | 20
4.8
3.0
2.3
2.1 | | 26
27
28
29
30
31 | 5.3
3.4
3.9
2.4
2.3
2.2 | 3.1
11
11
523
223 | 17
15
13
11
9.6
8.8 | 96
63
47
38
46
41 | 17
12
10
 | 152
71
50
40
37
388 | 31
22
18
13
13 | 11
9.6
8.4
7.3
11 | 3.2
3.2
5.3
3.0
2.2 | 11
5.3
5.3
4.5
7.1
6.4 | 2.8
1.8
1.5
1.3
8.3
9.6 | 133
219
44
22
14 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 348.45
11.24
108
0.63
0.55
0.63 | 821.3
27.38
523
1.3
1.33 | 1394.4
44.98
206
8.8
2.18
2.52 | 1863.6
60.12
637
5.6
2.92
3.37 | 862.9
30.82
106
9.9
1.50 | 3548.9
114.5
985
6.9
5.56
6.41 | 895.4
29.85
146
6.4
1.45
1.62 | 1591.3
51.33
343
7.3
2.49
2.87 | 151.0
5.033
36
1.1
0.24
0.27 | 567.9
18.32
138
1.4
0.89
1.03 | 141.13
4.553
48
0.89
0.22
0.25 | 521.1
17.37
219
1.0
0.84
0.94 | ### 03430147 STONERS CREEK NEAR HERMITAGE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 2002, BY WATER YEAR (WY) | | | | | | | | - | | | | | | |---|--|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---|---------------------------------------|---| | MAX
(WY)
MIN | 43.3
1996
0.42 | 2.41
53.1
1996
1.12
1999 | 36.90
75.6
1997
11.4
2000 | 52.30
108
1999
21.8
2000 | 49.47
119
1994
27.5
1995 | 71.09
149
1997
31.1
1998 | 37.09
112
1994
10.7
1992 | 29.22
83.6
1995
5.24
1992 | 25.41
101
1998
3.24
2000 | 12.44
62.0
1992
1.37
2000 | 4.184
13.3
1994
0.79
1993 | 5.699
17.4
2002
0.28
1998 | | SUMMARY S | STATISTICS | ; | FOR | 2001 CALENI | DAR YEAR | | FOR 2002 W | TER YEAR | | WATER YEARS | 1992 | - 2002 | | LOWEST AN HIGHEST D LOWEST DA ANNUAL SE MAXIMUM P MAXIMUM P INSTANTAN | EAN ANNUAL MEA INUAL MEAN DAILY MEAN AILY MEAN EVEN-DAY M PEAK FLOW PEAK STAGE JEOUS LOW | I
IINIMUM
C
FLOW | | 0.42 | | | 0.63
1.0
3450
11.66 | Mar 17
8 Oct 4
Aug 7
Mar 17
5 Mar 17 | | 29.64
44.2
15.3
1260
0.04
0.05
a4220
12.60
0.09 | Jul
Sep
Sep
Jul
Jul | 1994
2000
3 1992
5 1999
2 1999
3 1992
3 1992
14 2000 | | ANNUAL RU
10 PERCEN
50 PERCEN | NOFF (CFS
NOFF (INC
T EXCEEDS
T EXCEEDS
T EXCEEDS | HES) | | 1.15
15.55
44
7.2
0.98 | | | 1.69
22.95
69
11
1.4 | | | 1.44
19.55
59
10
0.89 | | | a $\,$ From rating curve extended above 500 $\,$ ft $^3/s$ on basis of contracted-opening measurement of peak flow. #### 03430550 MILL CREEK NEAR NOLENSVILLE, TN LOCATION.--Lat 36°00'33", long 86°42'06", Davidson County, Hydrologic Unit 05130202, near left bank on downstream side of bridge on US Highway 31A, 800 ft upstream from Holt Creek, 0.6 mi upstream from Owl Creek, 4.6 mi northwest of Nolensville, and at mile 19.6. DRAINAGE AREA.--40.5 mi². PERIOD OF RECORD. -- March 1992 to current year. REVISED RECORD. -- WRD TN-94-1: 1992 (M). GAGE.--Data logger. Datum of gage is 527.74 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,400 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1215 | 4,070 | 11.40 | Mar 17 | 0645 | 5,050 | 12.36 | | Nov 29 | 2215 | 2,570 | 9.67 | Mar 17 | 2130 | 2,480 | 9.55 | | Jan 24 | 0830 | *5,780 | *13.02 | May 13 | 0930 | 3,040 | 10.25 | Minimum daily discharge, $0.11 \text{ ft}^3/\text{s}$, Sept. 9. | | | DISCHA | RGE, CUB | IC FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO |) SEPTEMBE | R 2002 | | | |--|---|--|--|--|---|---|--|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.89
0.93
0.83
0.82
1.4 | 2.8
2.8
2.7
2.8
3.0 | 116
59
40
27
18 | 11
10
9.9
9.4
9.3 | 97
70
61
53
45 | 20
20
19
17
16 | 292
169
110
79
62 | 96
39
43
96
61 | 6.7
5.2
4.4
3.9
7.9 | 11
5.9
7.6
6.8
5.6 | 5.4
4.6
3.4
3.2
3.0 | 0.79
0.61
0.65
0.66
0.59 | | 6
7
8
9
10 | 2.7
2.1
2.0
2.2
2.0 | 2.6
2.7
2.5
2.2
2.2 | 15
18
635
209
107 | 11
10
9.4
10 | 46
64
67
58
56 | 15
14
14
21
22 | 50
42
37
33
29 | 42
33
26
24
25 | 6.8
6.0
5.2
4.1
3.8 | 4.5
3.4
3.2
8.7 | 2.9
2.8
2.5
2.4
2.5 | 1.2
0.35
0.14
0.11
0.22 | | 11
12
13
14
15 | 2.2
5.5
5.0
75
19 | 2.2
2.2
2.3
2.9
3.3 | 73
58
218
293
140 | 14
14
13
12 | 49
43
35
31
29 | 20
34
49
41
35 | 27
26
24
22
20 | 26
20
627
194
97 | 2.9
2.7
2.9
2.7
2.3 | 24
51
21
10
7.1 | 2.5
1.2
0.60
0.72
1.3 | 0.29
0.25
0.21
0.42
1.7 | | 16
17
18
19
20 | 10
7.8
6.1
4.9
4.5 | 3.6
3.7
4.2
5.8 | 88
89
66
49
35 | 11
11
15
206
119 | 28
24
22
20
36 | 90
1920
910
308
543 | 18
17
15
14
13 | 64
55
53
38
31 | 2.0
2.0
1.7
1.4 | 5.6
4.8
4.4
4.8
5.1 | 15
5.1
2.8
2.1
1.7 | 2.6
2.6
8.3
4.4 | | 21
22
23
24
25 | 4.2
3.7
4.5
18 | 6.4
7.3
8.0
9.5
8.5 | 28
23
34
29
23 | 73
54
935
1950
399 | 30
26
24
22
20 | 258
159
113
84
66 | 12
11
10
30
22 | 26
22
19
16
13 | 0.83
0.62
0.50
0.50 | 6.2
7.8
6.8
7.1
6.3 | 1.5
1.3
1.1
0.97
0.99 | 6.0
2.4
1.2
0.66
0.81 | | 26
27
28
29
30
31 | 9.1
6.3
5.0
4.3
3.9
3.4 | 6.5
10
19
1180
403 | 20
18
16
14
12 | 207
131
94
72
61
51 | 27
24
22
 | 211
120
85
67
85
849 | 15
14
14
12
11 | 13
11
10
9.7
9.0
8.8 | 1.4
1.5
1.6
1.1
35 | 5.4
5.3
4.6
3.9
4.8
5.8 | 0.82
0.75
0.66
0.55
0.50 | 134
250
54
33
21 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 235.27
7.589
75
0.82
0.19
0.22 | 1718.3
57.28
1180
2.2
1.41
1.58 | 2581
83.26
635
11
2.05
2.37 | 4554.0
146.9
1950
9.3
3.62
4.18 | 1129
40.32
97
20
0.99
1.04 | 6225
200.8
1920
14
4.95
5.71 | 1250
41.67
292
10
1.03
1.15 |
1847.5
59.60
627
8.8
1.47
1.70 | 119.85
3.995
35
0.50
0.10
0.11 | 325.5
10.50
67
3.2
0.26
0.30 | 75.49
2.435
15
0.50
0.06
0.07 | 542.16
18.07
250
0.11
0.45
0.50 | ### 03430550 MILL CREEK NEAR NOLENSVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 2002, BY WATER YEAR (WY) | MEAN | 21.50 | 43.10 | 79.36 | 122.3 | 118.3 | 178.1 | 75.81 | 68.60 | 45.37 | 17.84 | 8.264 | 6.884 | |-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | MAX | 146 | 122 | 159 | 225 | 263 | 372 | 209 | 190 | 210 | 58.8 | 35.0 | 18.1 | | (WY)
MIN | 1996
0.39 | 1996
1.67 | 1997
28.4 | 1999
39.2 | 1994
40.3 | 1997
81.9 | 1994
20.3 | 1995
8.40 | 1998
4.00 | 1992
2.35 | 1995
1.03 | 2002
0.85 | | (WY) | 2001 | 1999 | 2000 | 2000 | 2002 | 1998 | 1992 | 1992 | 2002 | 2000 | 2000 | 2000 | | (** 1) | 2001 | 1999 | 2000 | 2000 | 2002 | 1990 | 1992 | 1992 | 2002 | 2000 | 2000 | 2000 | | SUMMARY | STATIST | ICS | FOR | 2001 CALENI | DAR YEAR | | FOR 2002 WA | TER YEAR | | WATER YEARS | 1992 | - 2002 | | ANNUAL | TOTAL | | | 19283.30 | | | 20603.07 | | | | | | | ANNUAL | MEAN | | | 52.83 | | | 56.45 | | | 66.30 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 104 | | 1994 | | | ANNUAL M | | | | | | | | | 41.3 | | 1993 | | | DAILY M | | | 2420 | Feb 16 | | 1950 | Jan 24 | | 4070 | | 7 1994 | | | DAILY ME | | | 0.50 | Aug 23 | | 0.11 | | | 0.08 | | 3 1993 | | | | MUMINIMUM | | 0.85 | Aug 18 | | 0.22 | | | 0.10 | | 9 1993 | | | I PEAK FL | | | | | | 5780 | Jan 24 | | 13000 | | 5 1995 | | | I PEAK ST | | | | | | 13.02 | Jan 24 | | 17.88 | May 2 | | | | ANEOUS L | | | | | | | | | 0.14 | Oct 30 | 1999 | | | RUNOFF (| | | 1.30 | | | 1.39 | | | 1.64 | | | | | RUNOFF (| | | 17.70 | | | 18.91 | | | 22.23 | | | | | CENT EXCE | | | 108 | | | 96 | | | 126 | | | | | CENT EXCE | | | 10 | | | 11 | | | 18 | | | | 90 PERC | TOTAL TIMES | EDS. | | 1 6 | | | 1 1 | | | 1 2 | | | #### 03431060 MILL CREEK AT THOMPSON LANE NEAR WOODBINE, TN LOCATION.--Lat 36°07'04", long 86°43'08", Davidson County, Hydrologic Unit 05130202, at bridge on Thompson Lane, 1.4 miles west of Arlington Church, 1.5 miles upstream from U.S. Highway 41 and 70S, and 1.6 miles downstream from Sevenmile Creek, and at mile 6.3. DRAINAGE AREA. -- 93.4 mi². PERIOD OF RECORD.--Crest-stage gage July 1964 to September 1996. October 1996 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 432.55 ft above NGVD of 1929. July 1964 to September 1996, crest-stage gage at same site and datum. REMARKS.--No estimated daily discharges. Records good, except Oct. 31 to Nov. 24, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1630 | 4,740 | 9.99 | Mar 17 | 0900 | 5,650 | 10.80 | | Jan 24 | 1215 | 6,930 | 11.82 | Mar 17 | 2115 | *7,170 | *12.00 | Minimum daily discharge, 1.5 ft³/s, Oct. 3, 4. | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE | R 2001 TC | SEPTEMBE | R 2002 | | | |--|---|--|---|---|--|--|--|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.8
1.6
1.5
1.5 | 17
15
14
8.9
5.4 | 263
139
93
70
56 | 30
30
29
27
26 | 247
167
152
136
115 | 53
52
51
47
44 | 777
415
265
193
154 | 376
134
122
218
153 | 28
25
22
21
85 | 110
32
26
44
23 | 16
18
19
18 | 5.9
6.2
6.8
6.3
7.7 | | 6
7
8
9
10 | 57
10
6.3
5.0
7.7 | 6.0
6.3
6.3
5.8
7.5 | 49
51
1090
400
198 | 29
29
27
26
27 | 115
157
162
138
136 | 43
42
41
76
62 | 129
115
100
91
81 | 111
89
72
67
71 | 42
29
24
20
19 | 18
16
21
71
50 | 15
14
12
11
9.9 | 12
19
6.3
7.3
8.2 | | 11
12
13
14
15 | 11
49
38
322
68 | 6.6
5.7
5.8
6.3
6.2 | 143
122
397
579
267 | 50
35
32
30
28 | 123
109
95
85
78 | 53
74
94
81
72 | 74
81
69
61
57 | 66
54
1110
389
193 | 19
17
19
17
17 | 83
553
186
75
51 | 9.9
10
11
22
31 | 8.1
7.9
7.9
9.9 | | 16
17
18
19
20 | 40
31
25
21
18 | 6.1
6.8
5.8
5.9
8.3 | 165
164
135
106
83 | 28
28
41
391
212 | 73
67
61
58
109 | 263
3880
2590
875
1640 | 53
49
44
41
38 | 134
175
151
104
86 | 16
15
15
14
13 | 40
31
35
40
24 | 180
35
20
15
14 | 29
13
26
19
67 | | 21
22
23
24
25 | 14
14
14
54
100 | 6.1
5.8
6.0
92 | 69
60
85
70
59 | 135
104
1800
3680
1110 | 83
68
62
58
54 | 733
407
278
209
163 | 36
44
33
281
111 | 72
61
54
48
43 | 12
12
12
12
12
56 | 20
21
23
23
19 | 12
9.9
8.8
8.3
7.2 | 57
22
14
12
13 | | 26
27
28
29
30
31 | 36
26
22
20
17
16 | 49
94
89
2360
1270 | 53
49
44
40
35
32 | 493
303
218
173
156
131 | 83
65
57
 | 546
275
196
160
176
1980 | 67
56
75
54
44 | 43
39
37
36
35
29 | 20
19
27
17
132 | 17
16
15
15
20
25 | 8.3
7.6
6.5
6.6
6.4
6.8 | 632
871
142
66
43 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1087.4
35.08
322
1.5
0.38
0.43 | 4197.6
139.9
2360
5.4
1.50
1.67 | 5166
166.6
1090
32
1.78
2.06 | 9458
305.1
3680
26
3.27
3.77 | 2913
104.0
247
54
1.11
1.16 | 15256
492.1
3880
41
5.27
6.08 | 3688
122.9
777
33
1.32
1.47 | 4372
141.0
1110
29
1.51
1.74 | 796
26.53
132
12
0.28
0.32 | 1743
56.23
553
15
0.60
0.69 | 585.2
18.88
180
6.4
0.20
0.23 | 2187.5
72.92
871
5.9
0.78
0.87 | # 03431060 MILL CREEK AT THOMPSON LANE NEAR WOODBINE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY) | MEAN 23.86 89.44
MAX 59.2 167
(WY) 1997 1997
MIN 1.89 13.4
(WY) 2001 1999 | 172.3 271.0
349 521
1997 1999
71.5 103
2000 2000 | 259.4
577
2001
104
2002 | 345.1
771
1997
162
2001 | 145.7
298
2000
52.9
1997 | 151.2
336
2000
59.8
2001 | 173.4
586
1998
22.5
2000 | 35.46
56.2
2002
8.14
2000 | 16.29
25.3
1997
6.99
2000 | 26.14
72.9
2002
4.09
2000 | |--|---|-------------------------------------|-------------------------------------|---|---|--------------------------------------|---|---------------------------------------|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FO | OR 2002 WAS | TER YEAR | | WATER YEARS | 1997 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 42682.7
116.9
4890
1.5
1.7
1.25
17.00
205
34
3.8 | | | 51449.7
141.0
3880
a1.5
6.1
7170
12.00
1.51
20.49
253
43
7.7 | Mar 17
Oct 3
Nov 12
Mar 17
Mar 17 | | 141.9
207
106
6420
0.75
0.95
26200
20.63
0.20
1.52
20.64
267
44 | Sep 21 | 2000
1979
1979 | # a Also occurred Oct. 4. #### 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN #### WATER-OUALITY RECORDS LOCATION.--Lat 36°09'46", long 86°43'31", Davidson County, Hydrologic Unit 05130202, on right bank 0.8 mi downstream from Mill Creek, upstream of Omohundro Filtration Plant, and at mile 193.7. DRAINAGE AREA. -- 12,819 mi². PERIOD OF RECORD. -- October 1996 to September 1999, October 2000 to current year. PERIOD OF DAILY
RECORD .-- SPECIFIC CONDUCTANCE: October 1996 to September 1999, October 2000 to current year. pH: October 1996 to September 1999, October 2000 to current year. WATER TEMPERATURE: October 1996 to September 1999, October 2000 to current year. DISSOLVED OXYGEN: October 1996 to September 1999, October 2000 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1996. REMARKS.--Flow regulated by Old Hickory Dam and other reservoirs above station. Dissolved oxygen and specific conductance record poor May 28 to Sept. 30, equipment problems. Records for water temperature, specific conductance, pH and dissolved oxygen are poor for the year because of flucutation in instrument readings. No max/min for year because of problems with instrumentation. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 282 microsiemens, Jan. 8, 2002; minimum, 166 microsiemens, June 4, 1998. pH: Maximum, 9.1 units, Feb. 11, 12, 13, 2001; minimum, 6.9 units, July 30, 1997. WATER TEMPERATURE: Maximum, 27.3°C, July 31, 1997; minimum, 3.0°C, Jan. 5, 2001. DISSOLVED OXYGEN: Maximum, 14.9 mg/L, Jan. 18, 2002; minimum, 3.7 mg/L, Nov. 4, 2001. EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: See REMARKS. pH: See REMARKS. WATER TEMPERATURE: See REMARKS. DISSOLVED OXYGEN: See REMARKS. SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 213
256
233
233
230 | 207
211
208
208
206 | 210
222
217
215
214 | 234
236
243
227
229 | 221
222
222
224
226 | 228
231
233
225
227 | 252
243
243
247
247 | 239
239
240
241
242 | 243
241
242
244
245 | 272
272
272
271
271 | 262
259
261
260
261 | 266
264
266
265
265 | | 6
7
8
9
10 | 217
219
238
238
226 | 208
209
211
213
210 | 214
215
217
222
216 | 243
240
242
241
238 | 228
228
227
225
220 | 236
235
234
234
232 | 248
248
249
255
246 | 233
233
233
233
229 | 242
245
243
245
233 | 261
260
282
267
259 | 258
256
257
253
248 | 260
259
265
258
252 | | 11
12
13
14
15 | 242
235
236
220
238 | 211
212

213 | 220
218
218

223 | 232
226
236
240
235 | 221
221
220
221
221 | 224
222
230
229
227 | 246
247
250
251
250 | 230
235
241
242
236 | 238
242
245
247
241 | 264
245
240
234
243 | 239
238
231
228
227 | 248
240
235
231
232 | | 16
17
18
19
20 | 235
241
249
244
237 | 212
223
226
219
217 | 222
232
239
232
226 | 235
234
229
225
246 | 218
214
214
216
220 | 225
223
218
219
231 | 249
252
262
262
260 | 235
236
247
251
247 | 241
245
252
258
254 | 233
231
233
223
249 | 222
219
220
215
213 | 227
225
224
219
225 | | 21
22
23
24
25 | 239
245
239
243
232 | 214
215
221
212
210 | 224
224
230
226
223 | 245
243
239
 | 222
224
 | 233
234
237
 | 261
264
263
265
266 | 251
254
248
251
250 | 257
261
256
258
259 | 252
245
237
239
253 | 213
217
216
216
239 | 222
227
230
223
249 | | 26
27
28
29
30
31 | 235
234
227
228
240
237 | 215
215
214
212
217
227 | 223
226
221
217
230
232 | 238
232
240
240
244 | 221
221
220
221
224 | 225
230
229
235 | 258
263
265
268
274
276 | 248
251
254
258
261
264 | 252
256
259
263
267
269 | 251
253
252
252
245
242 | 231
242
243
244
239
227 | 239
249
247
247
241
236 | | MONTH | 256 | 206 | 222 | 246 | 214 | 229 | 276 | 229 | 250 | 282 | 213 | 243 | 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|---|--|--|---|--|---|---|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 234
230
224
223
218 | 225
223
218
216
206 | 228
228
221
219
215 | 216
216
219
226
251 | 213
213
215
215
223 | 214
215
217
221
229 | 210
210
212
214
214 | 208
206
206
212
207 | 209
208
208
213
210 | 251
251
242
230 | 218
227
229
221 | 232
237
239
225 | | 6
7
8
9
10 | 217
220
224
226
220 | 202
206
212
214
214 | 211
213
218
218
215 | 238
225
225
211
217 | 220
216
210
209
210 | 228
218
216
210
213 | 207
206
207
210
211 | | 202
203
205
206
207 | 244
242
235
239
231 | 219 | 223
228
224
222
223 | | 11
12
13
14
15 | 244
228
231
233
233 | 214
215
216
220
219 | 222
220
221
225
226 | 218
219
215
216
216 | 210
208
211
213
213 | 216
214
213
215
215 | 207
204
202
199
196 | 197
195
196
196
195 | 201
198
198
197
196 | 227
224
218
215
214 | 210
208
205
201
194 | 215
214
209
208
206 | | 16
17
18
19
20 | 228
229
230
237
225 | 218
220
217
219
219 | 223
224
221
227
221 | 215
238
217
220
225 | 212
208
203
213
214 | 214
218
211
216
220 | 205
206
202
206
204 | 196
196
196
197
198 | 200
200
201
201
200 | 213
217
219
202
208 | 199
198
198
181
192 | 6
209
210
191
198 | | 21
22
23
24
25 | 229
233
225
221
233 | 220
220
219
218
216 | 222
226
221
219
222 | 227
226
203
205
208 | 225
203
199
200
205 | 227
217
200
203
207 | 204
203
218
221
221 | 199
200
200
206
210 | 201
201
207
212
214 | 215
214
223
223
223 | 198
198
208
206
208 | 203
204
213
213
213 | | 26
27
28
29
30
31 | 222
229
228
 | 216
213
213
 | 219
217
220
 | 209
206
209
210
211
215 | 202
202
201
202
202
207 | 206
205
205
206
206
211 |

 |

 |

 | 224
214
216
215
213
209 | 208
197
193
184
189 | 213
208
204
197
197
194 | | MONTH | 244 | 202 | 221 | 251 | 199 | 214 | 221 | 195 | 204 | 251 | 181 | 206 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX |
MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | MEAN
ER | | DAY 1 2 3 4 5 | MAX
203
203
204
210
209 | | MEAN
197
195
199
202
202 | | | MEAN 207 208 208 208 206 207 | 205
205 | | MEAN 193 191 194 189 190 | | SEPTEMBE | | | 1
2
3
4 | 203
203
204
210 | JUNE
192
190
192
196 | 197
195
199
202
202 | 214
218
218
211 | JULY
202
204
201
200 | 207
208
208
206 | 205
205 | AUGUST
185
182 | 193
191
194
189 | 200
198
198
201 | 181
181
181

187
193
190
185 | 195
192
193
196 | | 1
2
3
4
5
6
7
8 | 203
203
204
210
209
210
207
207
210 | JUNE 192 190 192 196 199 194 197 200 201 | 197
195
199
202
202 | 214
218
218
211
211 | JULY 202 204 201 200 201 197 193 193 201 | 207
208
208
206
207
201
200
199
205 | 205
205
213
196
199
206
198
194 | AUGUST 185 182 182 181 182 183 189 182 180 | 193
191
194
189
190
190
197
190
187 | 200
198
198
201
238
213
214
195
192 | 181
181
187
193
190
185
188
181 | 195
192
193
196
208
201
198
192
189 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 203
203
204
210
209
210
207
207
210
212
234
218
217
218 | JUNE 192 190 192 196 192 194 197 200 201 198 203 207 209 210 | 197
195
199
202
202
203
204
206
203
217
212
214
210 | 214
218
218
211
211
206
211
206
211
216
213
218
225
223 | JULY 202 204 201 200 201 197 193 201 201 201 206 201 205 203 | 207
208
208
206
207
201
200
199
205
209
210
208
216
213 | 205
205
213
196
199
206
198
194
196
190
193
192
194 | AUGUST 185 182 182 181 182 183 189 189 189 189 179 179 182 180 179 | 193
191
194
189
190
197
197
187
189
184
188 | 200
198
198
201
238
213
214
195
192
195
195
192
199 | 181
181
187
193
190
185
188
181
180
183
181
186
186 | 195
192
193
196
208
201
198
192
189
191
188
191
188
191 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 203
203
204
210
209
210
207
210
212
234
218
217
218
219
223
221
218
219 | JUNE 192 190 192 196 192 194 197 200 201 198 203 207 209 210 210 212 210 206 197 | 197
195
199
202
202
203
204
206
203
217
212
214
210
214
216
214
212
205 | 214
218
211
211
206
211
206
211
216
213
218
225
223
233
225
227
209
207 | JULY 202 204 201 200 201 197 193 201 201 206 201 205 203 212 208 198 1992 188 | 207
208
208
206
207
201
200
199
205
209
210
208
216
213
216
207
202
202
201 | 205
205
213
196
199
206
198
194
196
190
193
192
194
191 | AUGUST 185 182 182 181 182 183 189 180 179 179 182 180 181 183 186 183 186 183 187 | 193
191
194
189
190
197
190
187
189
184
188
188
188
186 | 200
198
198
201
238
213
214
195
192
195
195
199
199
196
195
202
198
201 | SEPTEMBE 181 181 187 193 190 185 188 181 180 183 181 186 180 183 180 187 188 181 | 195
192
193
196
208
201
198
192
189
191
191
188
191
192
192
192 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 203
203
204
210
209
210
207
210
212
234
218
217
218
219
223
221
218
219
223
221
218
219
218
219
218
219
219
210
210
210
210
210
210
210
210
210
210 | JUNE 192 190 192 196 192 194 197 200 201 198 203 207 210 210 210 210 206 197 201 209 201 209 201 209 199 199 199 199 198 202 200 | 197 195 199 202 202 203 204 204 206 203 217 212 214 210 214 216 214 210 214 205 208 214 207 206 204 207 206 207 207 205 | 214
218
211
211
206
211
216
213
218
225
223
233
233
225
225
227
207
209
204
206
197
202
206
219
198
199 | JULY 202 204 201 200 201 197 193 193 201 201 205 203 212 208 198 192 198 192 193 194 188 190 193 193 189 189 189 189 189 189 | 207
208
208
206
207
201
200
199
205
209
210
208
216
213
216
207
202
201
198
197
198
197
198
199
205
201
201
201
201
201
201
201
201
201
201 | 205
205
213
196
199
206
198
194
196
190
193
192
194
191
192
195
198
198
202
203
203
201
201
203 | AUGUST 185 182 182 181 182 183 189 182 180 179 179 182 180 181 183 186 183 187 180 183 188 187 190 185 194 | 193
191
194
189
190
197
190
187
189
184
188
188
188
191
191
193
192
192
195
196
199
200 | 200
198
198
201
238
213
214
195
195
195
199
199
199
199
202
198
201
196
202
204
200
237
207 | 181 181 187 193 190 185 188 181 180 183 181 186 183 181 186 185 190 188 195 193 186 193 209 208 224 | 195
192
193
196
208
201
198
192
189
191
191
188
191
192
192
192
193
194
197
194
197
195
211
200 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 203 203 204 210 209 210 207 210 212 234 218 219 223 2218 | JUNE 192 190 192 196 192 196 197 200 201 198 203 207 209 210 210 210 210 206 197 201 209 201 209 201 209 201 209 201 209 201 209 201 209 201 209 201 209 201 209 201 209 201 200 199 199 | 197 195 199 202 202 203 204 206 203 217 2112 214 216 214 216 214 212 205 208 214 207 206 204 207 | 214
218
211
211
206
211
216
213
218
211
216
213
225
223
233
233
225
227
209
207
209
204
206
197
202
206 | JULY 202 204 201 200 201 197 193 193 201 206 201 205 203 212 208 198 192 188 192 193 194 188 190 193 193 189 189 189 185 | 207
208
208
206
207
201
200
205
209
210
208
216
213
216
217
202
201
198
197
198
197
198
197
198
197
198
199
205
201
201
201
201
201
201
201
201
201
201 | 205
205
213
196
199
199
206
198
194
196
190
193
192
194
191
192
195
198
198
199
202
203
205
203
203
201
201 | 185 182 183 189 189 180 179 179 182 180 181 182 180 189 189 189 180 181 183 186 183 187 180 183 188 187 190 194 185 190 188 | 193
191
194
189
190
197
190
187
189
184
188
188
191
193
192
195
196
199
200 | 200
198
198
201
238
213
214
195
192
195
192
199
196
195
202
198
201
196
202
204
207
207
214
221
230
237 | SEPTEMBE 181 181 187 193 190 185 188 181 180 183 181 186 180 183 181 186 180 187 188 185 186 185 190 187 188 185 186 185 190 187 188 185 186 185 190 187 188 185 186 185 190 187 188 185 190 187 188 185 190 188 195 193 186 | 195
192
193
196
208
201
198
192
189
191
191
188
191
192
192
192
193
193
193
194
197
199
191
200 | 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |---|---|--|--|--|---|---|---|---|--|--|---|---| | | OCTO | OBER | NOVE | /BER | DECEN | MBER | JANU | JARY | FEBRU | JARY | MAR | CH | |
1
2
3
4
5 | 8.4
8.0
8.0
8.5
8.7 | 8.0
7.8
7.5
7.5
7.8 | 8.9
8.7
8.7
8.7 | 8.2
8.4
8.4
8.3
8.3 | 7.9
7.9
7.9
7.9
8.0 | 7.8
7.8
7.8
7.8
7.8 | 8.0
8.0
8.1
8.1 | 7.9
7.9
7.9
8.0
8.0 | 7.8
7.9
7.9
7.8
7.8 | 7.6
7.8
7.8
7.6
7.7 | 8.3
8.2
8.3
8.3 | 8.0
8.0
8.0
7.9
8.0 | | 6
7
8
9
10 | 8.6
8.1
8.5
8.5 | 7.8
7.7
7.8
7.7
8.0 | 8.7
8.6
8.6
8.7
8.5 | 8.2
8.1
8.3
8.2
8.2 | 8.0
7.8
7.8
7.7
7.7 | 7.8
7.7
7.6
7.6
7.6 | 8.2
8.2
8.2
8.3
8.3 | 8.1
8.0
8.0
8.0 | 7.8
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8 | 8.4
8.5
8.5
8.5 | 8.0
8.0
8.0
8.2
8.0 | | 11
12
13
14
15 | 8.2
8.1
7.9
8.1
8.0 | 7 6 | 8.5
8.5
8.4
8.4 | 8.2
8.2
8.1
8.1
8.0 | 7.7
7.7
7.6
7.6
7.6 | 7.6
7.5
7.5
7.5
7.6 | 8.3
8.5
8.4
8.5
8.5 | 8.1
8.1
8.2
8.2
8.2 | 7.8
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8 | 8.6
8.6
8.7
8.8
8.7 | 7.9
7.8
8.4
8.5
8.6 | | 16
17
18
19
20 | 8.0
7.8
7.8
8.0
8.4 | 7.7
7.6
7.5
7.5 | 8.2
8.3
8.2
8.2
8.4 | 8.0
7.9
7.8
7.7
7.8 | 7.6
7.7
7.7
7.6
7.6 | 7.6
7.6
7.5
7.6
7.5 | 8.6
8.5
8.6
8.4
8.5 | 8.2
8.2
8.4
8.4 | 7.9
7.9
8.0
8.0
8.0 | 7.9
7.9
7.8
7.9
7.8 | 8.7
8.5
8.1
7.6
7.5 | 8.5
7.8
7.5
7.5
7.4 | | 21
22
23
24
25 | 8.7
8.4
8.2
8.6
8.5 | 8.0
7.9
7.9
7.9
8.0 | 8.1
8.3
8.2
8.1
8.2 | 7.8
7.7
7.7
7.8
7.6 | 7.7
7.7
7.8
7.7
7.6 | 7.6
7.6
7.6
7.5
7.5 | 8.6
8.6
8.4
8.3 | 8.4
8.4 | 8.1
8.1
8.1
8.1
8.2 | 8.0
7.9
7.9
7.9
7.9 | 7.4
7.4
7.5
7.5 | 7.3
7.4
7.4
7.4
7.4 | | 26
27
28
29
30
31 | 8.4
8.7
8.6
8.8
8.9
8.7 | 8.1
8.0
8.3
8.1
8.1
8.4 | 8.2
8.0
7.9
7.9
7.9 | 7.8
7.9
7.8
7.8
7.8 | 7.6
7.8
7.9
8.0
8.0 | 7.5
7.5
7.7
7.8
7.8
7.8 | 7.8
7.9
7.8
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7 | 8.1
8.2
 | 8.0
7.9
8.0
 | 7.5
7.5
7.5
7.6
7.5 | 7.4
7.5
7.5
7.5
7.5
7.5 | | MONTH | 8.9 | 7.5 | 8.9 | 7.6 | 8.0 | 7.5 | 8.6 | 7.7 | 8.2 | 7.6 | 8.8 | 7.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | | DAY | MAX
API | | MAX
MA | | MAX
JUI | | MAX
JUI | | MAX
AUGU | | MAX
SEPTE | | | DAY 1 2 3 4 5 | | | | | | | | | | | | | | 1
2
3
4 | 7.5
7.5
7.5
7.5
7.6 | 7.5
7.5
7.5
7.5
7.5 | M2
8.0
7.8
7.7
7.6 | 7.8
7.6
7.6
7.5 | JUN
8.2
8.0
7.9
7.9 | 7.8
7.7
7.5
7.5 | JUI
7.8
7.7
7.7
7.7 | 7.6
7.4
7.5
7.5 | AUGU
7.7
8.0
7.8
7.8 | 7.5
7.6
7.5
7.5 | SEPTE
8.0
8.0
8.1
8.1 | 7.7
7.7
7.7
7.7
7.6 | | 1
2
3
4
5
6
7
8 | 7.5
7.5
7.5
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.6
7.5
7.6
7.5
7.6 | 8.0
7.8
7.7
7.6
7.6
7.5
7.5
7.6 | 7.8
7.6
7.6
7.5
7.5
7.4
7.4
7.4
7.5 | 3UM
8.2
8.0
7.9
7.7
7.7
7.7
7.7
7.8
7.8 | 7.8
7.7
7.5
7.5
7.4
7.4
7.5
7.6 | 7.8
7.7
7.7
7.7
7.6
7.8
7.8
7.8 | 7.6
7.4
7.5
7.5
7.5
7.6
7.6
7.6
7.4 | 7.7
8.0
7.8
7.8
7.6
7.6
7.6
7.6
7.8 | 7.5
7.6
7.5
7.5
7.4
7.4
7.5
7.5 | SEPTE
8.0
8.0
8.1
8.1
7.9
7.9
7.9
7.9 | 7.7
7.7
7.7
7.6
7.6
7.5
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.6
7.5
7.6
7.6
7.6
7.6
7.5
7.5 | 8.0
7.8
7.7
7.6
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.6
7.6
7.5
7.5
7.4
7.4
7.4
7.5
7.5
7.5 | 3Un
8.2
8.0
7.9
7.7
7.7
7.7
7.8
7.8
7.8
7.8
8.0
8.0
7.8 | 7.8
7.7
7.5
7.5
7.4
7.6
7.6
7.6
7.5
7.5 | 7.8
7.7
7.7
7.7
7.6
7.8
7.8
7.7
7.7 | 7.6
7.4
7.5
7.5
7.6
7.6
7.6
7.4
7.5
7.5 | AUGU 7.7 8.0 7.8 7.8 7.6 7.6 7.6 7.7 8.0 7.7 7.7 | 7.5
7.6
7.5
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5 | SEPTE 8.0 8.0 8.1 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.9 8.1 8.2 | 7.7
7.7
7.6
7.6
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.6
7.5
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5 | 8.0
7.8
7.7
7.6
7.6
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.8
7.8
7.8
7.7 | 7.8
7.6
7.6
7.5
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.7
7.7 | 3Ut
8.2
8.0
7.9
7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.8
8.0
7.8
7.8 | 7.8
7.7
7.5
7.4
7.4
7.6
7.6
7.5
7.5
7.5
7.6 | 7.8
7.7
7.7
7.7
7.6
7.8
7.8
7.7
7.7
7.6
7.8
7.7
7.7 | 7.6
7.4
7.5
7.5
7.6
7.6
7.6
7.4
7.5
7.5
7.5
7.5
7.5
7.6
7.4
7.5 | AUGU 7.7 8.0 7.8 7.8 7.6 7.6 7.6 7.7 8.0 7.7 7.7 7.7 7.8 7.8 7.8 8.1 8.0 8.0 | 7.5
7.6
7.5
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | SEPTE 8.0 8.0 8.1 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 | 7.7
7.7
7.6
7.6
7.5
7.5
7.5
7.6
7.7
7.7
7.6
7.7
7.7
7.7
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.6
7.5
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 8.0
7.8
7.7
7.6
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.5
7.8
7.8
7.7
7.4
7.5
7.5
7.5
7.5 | 7.8
7.6
7.5
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.7
7.7
7.7
7.7
7.4
7.4
7.5
7.5 | 3Un
8.2
8.0
7.9
7.7
7.7
7.7
7.8
7.8
7.8
8.0
8.0
7.8
7.8
8.0
8.0
7.8
8.0
7.8 | 7.8
7.7
7.5
7.4
7.6
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8 7.7 7.7 7.6 7.8 7.8 7.8 7.7 7.7 7.6 7.8 7.7 7.7 7.6 7.8 7.7 7.7 7.7 7.8 7.7 7.7 7.8 8.0 7.7 7.7 7.7 7.8 8.0 7.7 7.7 | 7.64
7.55
7.66
7.67
7.55
7.66
7.44
7.5
7.56
7.64
7.5
7.56
7.64
7.5
7.56
7.65
7.65 | AUGU 7.7 8.0 7.8 7.8 7.6 7.6 7.6 7.7 7.7 8.0 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | 7.5
7.6
7.5
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | SEPTE 8.0 8.0 8.1 8.1 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 | 7.7
7.7
7.6
7.6
7.5
7.5
7.6
7.5
7.6
7.7
7.6
7.7
7.6
7.7
7.7
7.6
7.9
7.8
8.0
7.8
8.0
8.0
8.1 | 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WAIDA IDA | II LIVATORE, | III (DEG | KEES C), | | TEAR OCTOBER | | | | | | |---|--|--|---|---|--|---|--|--|--|--|---
--| | DAY | MAX | MIN | | MAX | | | MAX | | | | | MEAN | | | | OCTOBER | | | | | DI | | | | JANUARY | | | 1
2 | 20.1
20.5 | 19.5
19.3
19.1
19.1
19.4 | 19.8
19.6 | 16.5
17.2 | 14.6
15.5 | 15.7
16.3 | 13.9
13.8
13.8
14.0
14.0 | 13.6
13.5 | 13.7
13.6 | 8.0
7.3 | 7.1
6.9 | 7.5
7.1 | | 3
4 | 19.7
20.0 | 19.1
19.1 | 19.5
19.6 | 17.5
16.6 | 15.7
15.1 | 16.6
16.0 | 13.8
14.0 | 13.2
13.1 | 13.5
13.5 | 7.0
6.8 | 6.4
6.0 | 6.8
6.4 | | | | | 19.8 | 16.3 | 15.0 | 15.6 | 14.0 | 13.4 | 13.6 | 7.2 | 5.9 | 6.4 | | 6
7 | 19.9
18.9 | 18.8
18.2
18.1
18.0
18.5 | 19.4
18.5 | 16.4
16.3 | 14.8
14.7 | 15.5
15.4 | 14.0
14.1
14.1
13.5
12.9 | 13.6
13.6 | 13.7
13.9 | 6.4
6.3 | 5.9
5.6 | 6.2
5.9 | | 8
9 | 19.0 | 18.1
18.0 | 18.5
18.5 | 16.2
16.2 | 14.5
15.1 | 15.5
15.6 | 14.1
13.5 | 13.5
12.9 | 13.8 | 6.7
6.5 | 5.5
5.7 | 5.9
6.1 | | 10 | 19.6 | | | | | | | | | | | | | 11
12 | 19.0
18.8 | 18.6
18.6
18.6
18.8
18.6 | 18.8
18.7 | 15.7
15.6
15.4
15.4
15.7 | 14.5 | 15.2
15.0 | 12.8
12.9
13.2
13.1
12.9 | 12.6
12.6 | 12.7
12.8 | 7.3
7.5 | 6.4 | 6.8
6.8 | | 13
14 | 19.3 | 18.6
18.8
18.6 | 18.9 | 15.4 | 14.4 | 14.9 | 13.2 | 12.9 | 13.0 | 7.4 | 6.4 | 6.8 | | | | 18.6 | 18.7 | 15.7 | 14.5 | 15.0 | 12.9 | 12.7 | 12.8 | 7.9 | 6.8 | 7.0
7.2 | | 16 | 18.6 | 17.7 | 18.3 | 15.5 | 14.5 | 14.8 | 13.1 | 12.9 | 13.0 | 7.8 | 6.7 | 7.2 | | 18 | 1/.9 | 17.0
16.9
16.9 | 17.5 | 15.5 | $14.3 \\ 14.1$ | 14.9 | 13.4 | 12.9 | 13.2 | 7.6 | 7.2 | 7.4 | | 19
20 | 17.5
17.8 | 17.7
17.0
16.9
16.9
17.0 | 17.2
17.3 | 15.0
14.9 | 14.5
13.8 | 14.7
14.4 | 13.1
13.4
13.4
12.9
12.3 | 12.3
11.8 | 12.6
12.0 | 7.5
7.4 | 7.0
6.8 | 7.2
7.1 | | 21 | 18.2 | | | | | | | | | | | | | 22
23 | 18.1
18.4 | 17.1
17.4 | 17.5
17.9 | 14.1
14.0 | 13.0
13.0 | 13.5
13.7 | 12.0
12.1 | $\frac{11.4}{11.1}$ | 11.7
11.6 | 7.6
8.1 | 7.1
7.5 | 7.4
7.8 | | 24
25 | 19.1
18.6 | 17.0
17.1
17.4
18.0
17.6 | 17.5
17.5
17.9
18.5
18.1 | 14.4
14.6 | 13.7
13.8 | 14.1 | 12.2
12.0
12.1
11.3
10.5 | 10.5 | 11.0 | 8.9 | 7.8
7.3 | 8.4
7.6 | | | 17.6
17.0 | | 17.2 | 14.2 | 13.5 | 14.0 | 10.2 | 9.5 | 9.8 | 9.2 | 8.2 | 8.8 | | 27
28 | 17.0
16.6 | 15.6
15.3 | 16.4 | 14.5 | 14.2 | 14.4 | 9.7 | 9.2 | 9.4 | 9.1 | 8.8 | 8.9 | | 29 | 16.1 | 15.3
15.0 | 15.5 | 14.3 | 14.1 | 14.2 | 9.6 | 8.5 | 9.1 | 10.0 | 9.5 | 9.8 | | 30
31 | 16.1
16.3 | 14.9
14.9 | 17.2
16.4
15.8
15.5
15.6 | 14.2 | 13.8 | 14.1 | 10.2
9.7
9.4
9.6
9.2
8.5 | 7.4 | 8.5
7.9 | 10.4 | 10.0 | 10.2 | | MONTH | 20.5 | | 18.0 | | 13.0 | | 14.1 | | | | | 7.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | 18.1
17.8
17.6 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | 18.1
17.8
17.6
17.3 | | 1
2
3
4
5 | 11.5
10.8
10.5
10.1
9.6 | 10.8
10.5
10.1
9.6
9.2 | 11.1
10.6
10.3
9.9
9.3 | 8.6
8.6
8.5
8.8 | MARCH 7.9 8.3 7.9 7.2 7.3 | 8.3
8.4
8.3
7.8
7.8 | 11.3
11.9
12.1
11.8
11.9 | APRIL
10.9
11.2
11.8
11.5
11.4 | 11.1
11.5
11.9
11.7 | 18.4
18.0
18.0
17.4
17.8 | MAY
17.7
17.6
17.4
17.1 | 18.1
17.8
17.6
17.3
17.5 | | 1
2
3
4
5 | 11.5
10.8
10.5
10.1
9.6 | 10.8
10.5
10.1
9.6
9.2 | 11.1
10.6
10.3
9.9
9.3 | 8.6
8.6
8.5
8.8 | MARCH 7.9 8.3 7.9 7.2 7.3 | 8.3
8.4
8.3
7.8
7.8 | 11.3
11.9
12.1
11.8
11.9 | APRIL
10.9
11.2
11.8
11.5
11.4 | 11.1
11.5
11.9
11.7 | 18.4
18.0
18.0
17.4
17.8 | MAY
17.7
17.6
17.4
17.1 | 18.1
17.8
17.6
17.3
17.5 | | 1
2
3
4
5 | 11.5
10.8
10.5
10.1
9.6 | 10.8
10.5
10.1
9.6
9.2 | 11.1
10.6
10.3
9.9
9.3 | 8.6
8.6
8.5
8.8 | MARCH 7.9 8.3 7.9 7.2 7.3 | 8.3
8.4
8.3
7.8
7.8 | 11.3
11.9
12.1
11.8
11.9 | APRIL
10.9
11.2
11.8
11.5
11.4 | 11.1
11.5
11.9
11.7 | 18.4
18.0
18.0
17.4
17.8 | MAY
17.7
17.6
17.4
17.1 | 18.1
17.8
17.6
17.3
17.5 | | 1
2
3
4
5
6
7
8
9 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9 | 8.6
8.6
8.5
8.8
8.3
8.7
9.3
9.5
9.8 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5 | 18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.6
18.2 | MAY 17.7 17.6 17.4 17.1 17.4 17.4 17.6 17.9 17.6 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8 | | 1
2
3
4
5
6
7
8
9 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9 | 8.6
8.6
8.5
8.8
8.3
8.7
9.3
9.5
9.8 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5 | 18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.6
18.2 | MAY 17.7 17.6 17.4 17.1 17.4 17.4 17.6 17.9 17.6 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.6 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.9
8.8 | 8.6
8.6
8.5
8.8
8.3
9.3
9.3
9.8
10.1
10.1
10.1
10.4
10.8 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4
9.3
9.7
10 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2 | 10.9
11.2
11.8
11.5
11.4
11.6
11.7
12.0
12.3
12.2
12.6
13.2
13.7
14.1 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3 | 18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.6
18.2
18.0
18.1
17.9 | MAY 17.7 17.6 17.4 17.1 17.4 17.4 17.6 17.6 17.6 17.7 17.6 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8
17.8
17.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.2
9.2 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.6 8.4 | 11.1
10.6
10.3
9.9
9.3
8.5
8.4
8.7
8.9
9.0
8.8
8.7
8.8 | 8.6
8.6
8.5
8.8
8.3
8.7
9.3
9.5
9.8
10.1
10.1
10.1
10.4
10.8
11.2 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4
9.3
9.7
10
10.3
11.0 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2 | 10.9
11.2
11.8
11.5
11.4
11.6
11.7
12.0
12.3
12.2
12.6
13.2
13.7
14.1 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8 | 18.4
18.0
17.4
17.8
17.6
18.2
18.6
18.2
18.0
18.1
17.9
17.4 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.7 17.6 | 18.1
17.8
17.6
17.3
17.5
17.8
18.1
18.0
17.8
17.8
17.9
17.7
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.1
9.0 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.6 8.7 8.7 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9
9.0
8.8
8.7
8.8 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.1
10.1
10.4
11.2
11.3
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4
9.3
11.0 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 13.7 14.4 15.2 15.8 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8 |
18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.6
18.2
18.0
18.1
17.9
17.4
17.1 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.6 17.6 17.7 17.4 16.9 16.6 | 18.1
17.6
17.3
17.5
17.5
17.8
18.0
17.8
17.9
17.7
17.1
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
9.0
9.1
9.3
9.2
9.2
9.2
9.1
9.0 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.7 8.7 8.7 8.6 8.9 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.9
8.8
8.7
8.9 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.1
10.4
10.8
11.2
11.3
12.1
11.7
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6 | 8.3
8.4
8.3
7.8
7.8
7.8
8.2
8.7
9.3
9.4
9.3
9.7
10
10.3
11.0 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 14.1 14.4 15.2 15.8 16.1 16.4 | 11.1
11.5
11.7
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8 | 18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.3
17.3
17.3 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.7 17.6 17.6 17.7 17.4 16.9 16.6 | 18.1
17.8
17.6
17.3
17.5
17.5
17.5
17.8
18.0
17.8
17.8
17.7
17.1
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.2
9.1
9.0
9.3
9.3
9.4
9.2
9.9 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.7 8.7 8.6 8.9 9.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9
9.0
8.8
8.7
8.8 | 8.6
8.6
8.5
8.8
8.3
9.3
9.5
10.1
10.1
10.4
10.4
11.2
11.3
12.1
11.7
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4
9.3
11.0
11.1
11.0
11.5
11.7
12.1 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 13.7 14.1 14.4 15.2 15.8 16.1 16.4 16.7 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0 | 18.4
18.0
17.4
17.8
17.6
18.2
18.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.3
17.2
16.2 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.6 17.7 17.4 16.9 16.9 17.0 16.4 15.7 | 18.1
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8
17.8
17.9
17.7
17.1
16.9
17.0
17.1
16.9
15.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.7 8.7 8.6 8.9 9.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9
9.0
8.8
8.7
8.8 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.1
10.4
11.2
11.3
12.1
11.7
12.1
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.7
10.6
10.8
10.7
11.4
11.4
12.0 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.3
9.4
9.3
9.7
10
11.3
11.0
11.5
11.7
12.1 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
16.8
17.7
17.7 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 13.7 14.1 14.4 15.2 15.8 16.1 16.7 17.4 17.0 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.8
15.7
16.3
16.5
17.0
17.3 | 18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.2
16.2
16.1 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.7 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.4 15.7 15.4 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.0
17.8
17.9
17.7
16.9
17.1
16.9
17.0
17.1
16.9
15.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
9.0
9.1
9.3
9.2
9.2
9.1
9.0
9.3
9.3
9.2
9.1
9.0 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.7 8.7 8.6 8.9 9.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.9
8.7
8.8
8.7
8.9
9.0
9.0
9.5
9.6
9.5
9.7 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.4
10.8
11.2
11.3
12.1
12.1
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6 | 8.3
8.4
8.3
7.8
7.8
7.8
9.3
9.3
9.4
9.3
9.7
10
10.3
11.0
11.1
11.0
11.5
11.7
12.1 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
17.7
17.7
18.0
18.5
17.8
18.0 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 13.7 14.1 14.4 15.2 15.8 16.1 16.4 16.7 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0
17.3 | 18.4
18.0
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.3
17.3
17.3
17.3
17.3 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.4 15.7 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.0
17.8
17.8
17.7
17.1
16.9
17.0
17.1
16.9
15.9
15.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.5
10.8
10.1
9.6
9.2
8.8
8.6
9.1
9.3
9.2
9.1
9.3
9.2
9.1
9.3
9.2
9.1
9.3 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.7 8.7 8.6 8.9 9.1 9.3 9.4 9.2 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9
9.0
8.8
8.7
8.8
8.9
9.0
9.0
9.0
9.0
9.0
9.0 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.4
10.4
11.2
11.3
12.1
11.7
12.1
12.1
12.1
12.1 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6
10.8
10.7
11.4
11.4
11.4
11.1 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.3
9.4
9.3
9.7
10
10.3
11.0
11.5
11.7
12.1
12.0
11.4
11.2
11.2 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
16.8
17.7
17.7 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 13.7 14.1 14.4 15.2 15.8 16.1 16.4 17.4 17.0 16.8 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
13.5
13.9
14.8
15.7
16.3
16.5
17.0
17.3
17.7
17.9
17.3 | 18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.0
18.1
17.9
17.4
17.1
17.3
17.3
17.2
16.2
16.1
16.3
16.9
17.0
17.5 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.4 15.7 15.4 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8
17.7
17.1
16.9
17.0
17.0
17.9
15.9
15.9
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
9.0
9.1
9.3
9.2
9.2
9.1
9.0
9.1
9.0
9.1
9.2
9.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.7 8.7 8.6 8.9 9.1 9.3 9.4 9.5 9.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.8
8.7
8.8
8.7
8.9
9.0
9.0
9.5
9.6
9.5
9.7
9.8 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.4
10.8
11.2
11.3
12.1
11.7
12.1
12.1
12.1
11.7
12.1
11.7 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6
10.8
10.7
11.4
12.0
11.9
11.10
11.00
10.8 | 8.3
8.4
8.3
7.8
7.8
7.8
8.2
8.7
9.3
9.4
9.3
9.7
10
10.3
11.0
11.5
11.7
12.1
12.0
11.4
11.2
11.2 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
17.7
17.7
18.0
18.5
17.8
18.0
18.1 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 14.1 14.4 15.2 15.8 16.1 16.4 16.7 17.4 17.0 16.8 17.4 17.4 17.4 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0
17.3 |
18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.3
17.2
16.1
16.3
16.4
16.9
17.0
17.5
17.6 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.6 15.7 15.4 15.6 15.6 16.7 17.3 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.0
17.8
17.9
17.7
17.1
16.9
17.0
17.1
16.9
15.9
15.8
15.9
16.0
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.1
9.0
9.3
9.3
9.4
9.9
10.1
9.8
9.9
10.0
10.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.6 8.7 8.7 8.6 8.9 9.1 9.3 9.4 9.2 9.4 9.5 9.1 8.3 8.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.4
8.7
8.9
9.0
9.0
9.0
9.5
9.6
9.5
9.7
9.6
9.5
9.7
9.6
8.4 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.1
10.4
11.2
11.3
12.1
11.7
12.1
12.1
11.4
11.4
11.4
11.3
10.9 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6
10.8
10.7
11.4
11.4
12.0
11.0
11.0
11.0
10.8 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.0
9.3
9.4
9.3
11.0
11.5
11.7
12.0
11.4
11.2
11.2
11.2
11.2 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
17.7
17.7
17.7
18.0
18.5
17.8
18.0
18.1 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 13.7 14.4 15.2 15.8 16.1 16.4 17.4 17.0 16.8 17.4 17.4 17.0 16.8 17.4 17.4 16.8 17.4 17.3 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0
17.3
17.7
17.7
17.7 | 18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.2
16.2
16.1
16.3
16.4
16.9
17.0
17.5 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.4 15.7 15.6 16.7 17.3 17.3 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.1
18.0
17.8
17.7
17.1
16.9
17.0
17.0
17.9
15.9
15.9
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
8.6
9.0
9.1
9.3
9.2
9.2
9.1
9.0
9.3
9.3
9.3
9.4
9.9
10.1
9.8
9.9
10.1
9.8
9.9
10.1 | 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.7 8.7 8.6 8.7 8.7 8.6 9.1 9.3 9.4 9.2 9.4 9.5 9.1 8.3 8.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.8
8.7
8.8
8.9
9.0
9.0
9.5
9.6
9.5
9.7
9.8 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.4
10.8
11.2
11.3
12.1
11.7
12.1
11.7
12.1
11.3
11.3
11.3
10.9
11.6 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6
10.8
10.7
11.4
12.0
11.9
11.1
11.0
11.0
10.8 | 8.3
8.4
8.3
7.8
7.8
8.2
8.7
9.3
9.4
9.3
9.7
10
10.3
11.0
11.1
11.5
11.7
12.1
12.0
11.4
11.2
11.2
11.2
11.2 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
17.7
17.7
17.7
18.0
18.5
17.8
18.0
18.1 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 14.1 14.4 15.2 15.8 16.1 16.7 17.4 17.0 16.8 17.4 17.4 16.8 16.7 17.4 17.4 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0
17.3
17.7
17.7
17.7
17.7 | 18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.2
17.3
17.3
17.3
17.2
16.1
16.3
16.4
16.9
17.0
17.5
17.6
18.2 | MAY 17.7 17.6 17.4 17.1 17.4 17.4 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 15.4 15.6 16.1 16.7 17.3 17.4 18.0 18.1 | 18.1
17.6
17.3
17.5
17.5
17.5
17.8
18.1
18.0
17.8
17.9
17.1
16.9
17.1
16.9
15.8
15.9
16.0
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.5
10.8
10.5
10.1
9.6
9.2
8.8
9.0
9.1
9.3
9.2
9.2
9.1
9.0
9.1
9.8
9.9
10.1
9.8
9.0
10.1 | FEBRUARY 10.8 10.5 10.1 9.6 9.2 8.8 8.3 8.2 8.4 8.8 8.6 8.6 8.7 8.7 8.6 8.9 9.1 9.3 9.4 9.5 9.1 8.3 8.1 | 11.1
10.6
10.3
9.9
9.3
8.9
8.5
8.7
8.9
9.0
8.9
8.7
8.8
8.7
8.9
9.0
9.0
9.5
9.6
9.5
9.7
9.8 | 8.6
8.6
8.5
8.8
8.3
9.5
9.8
10.1
10.1
10.1
11.0.4
11.0.8
11.2
11.3
12.1
12.1
12.1
12.1
11.7
11.7
12.1
11.1
11 | 7.9
8.3
7.9
7.2
7.3
7.6
8.3
8.6
9.0
8.8
8.7
9.3
9.6
9.7
10.6
10.8
10.7
11.4
12.0
11.9
11.10
11.0
10.8 | 8.3
8.4
8.3
7.8
7.8
7.8
8.2
8.7
9.3
9.4
9.3
11.0
10.3
11.5
11.7
12.1
12.0
11.4
11.2
11.2
11.1
11.2 | 11.3
11.9
12.1
11.8
11.9
12.0
12.1
12.4
12.6
12.8
13.3
13.9
14.2
14.6
15.2
16.1
16.8
17.7
17.7
18.0
18.5
17.8
18.0
18.1 | APRIL 10.9 11.2 11.8 11.5 11.4 11.6 11.7 12.0 12.3 12.2 12.6 13.2 14.1 14.4 15.2 15.8 16.4 16.7 17.4 17.0 16.8 17.4 17.4 17.4 16.8 16.7 | 11.1
11.5
11.9
11.7
11.7
11.8
12.0
12.2
12.4
12.5
12.9
13.5
13.9
14.3
14.8
15.7
16.3
16.5
17.0
17.3
17.7
17.7
17.7 | 18.4
18.0
17.4
17.8
17.6
18.2
18.0
18.1
17.9
17.4
17.1
17.3
17.2
16.1
16.3
16.4
16.9
17.0
17.5
17.6
18.4
18.5
19.2 | MAY 17.7 17.6 17.4 17.1 17.1 17.4 17.6 17.6 17.7 17.4 16.9 16.6 16.9 17.0 16.6 15.7 17.4 15.6 15.6 16.7 17.4 18.0 18.1 | 18.1
17.8
17.6
17.3
17.5
17.5
17.8
18.0
17.8
17.9
17.7
17.1
16.9
17.0
17.1
16.9
15.9
16.0
16.8
17.1 | 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN--Continued | | | 03431091 | CUMBERLAN | D RIVER A | AT OMOHU | NDRO WA | TER PLANT AT | NASHVI | ILLE, TNC | ontinued | l | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | WATER TEN | MPERATURE, | in (DEG | REES C), | WATER | YEAR OCTOBER | 2001 7 | TO SEPTEMBE | R 2002 | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | I | AUGUST | | | SEPTEMBER | 2 | | 1
2
3
4
5 | 20.0
20.6
22.3
21.5
22.3 | 19.1
19.1
19.4
19.8
20.3 | 19.6
19.9
20.4
20.7
21.1 | 27.4
27.4
26.8
27.4
27.4 | 25.3
25.6
25.7
25.6
26.0 | 26.1
26.4
26.3
26.5
26.7 | 26.5
27.5
26.5
27.2
26.7 | 25.0
25.0
25.4
25.2
25.3 | 25.8
26.2
25.9
26.2
26.0 | 27.4
27.4
27.6
27.2
25.9 | 25.4
25.3
25.3
25.1
24.5 | 26.3
26.1
26.2
26.0
25.2 | | 6
7
8
9
10 | 22.0
21.4
23.3
23.8
23.8 | 20.2
19.9
20.8
21.7
22.3 | 21.2
20.7
22.2
22.7
23.1 | 27.4
27.9
27.5
27.3
27.6 | 26.4
25.9
26.0
25.6
25.4 | 26.9
26.8
26.8
26.5
26.2 | 26.7
26.0
26.8
28.2
27.1 | 25.0
24.1
24.9
25.5
25.5 | 25.8
25.2
26.1
26.6
26.3 | 26.2
26.4
26.0
26.2
26.4 | 23.9
24.1
24.8
24.5
24.5 | 25.2
25.4
25.5
25.4
25.3 | | 11
12
13
14
15 | 23.6
24.2
24.4
24.0
24.6 | 21.8
22.7
22.9
22.4
22.5 | 22.8
23.6
23.7
23.3
23.4 | 26.7
27.6
26.7
26.9
27.0 | 25.5
25.5
25.4
25.3
24.4 | 26.1
26.7
26.1
26.0
26.0 | 27.4
27.4
26.7
27.5
26.6 | 25.8
25.6
25.3
25.5
25.5 | 26.6
26.3
26.1
26.3
26.2 | 26.8
25.9
26.2
26.1
26.5 | 24.4
24.1
24.9
24.8
25.1 | 25.5
25.1
25.7
25.4
25.8 | | 16
17
18
19
20 | 23.4
24.8
25.6
25.6
25.9 | 22.6
22.5
23.4
23.7
23.7 | 23.0
23.7
24.6
24.7
24.9 | 27.3
26.9
26.5
26.6
26.6 | 25.1
25.6
25.0
24.9
25.2 | 26.3
26.0
25.8
25.9 | 26.5
26.5
27.2
28.0
27.1 | 25.4
25.2
25.3
25.1
25.5 | 25.9
25.9
26.1
26.1
26.2 | 26.8
25.9
25.6
26.2
26.5 | 24.7
24.4
24.1
24.4
24.7 | 25.6
25.3
24.9
25.3
25.5 | | 21
22
23
24
25 | 25.7
25.8
25.2
25.6
25.6 | 23.8
23.9
24.0
24.3
24.0 | 24.8
24.9
24.6
25.0
25.0 | 27.7
27.1
27.4
26.6
27.3 | 25.4
25.4
25.7
25.6
25.9 | 26.2
26.3
26.4
26.2
26.6 | 27.2
27.4
27.2
27.0
26.6 |
25.4
25.5
25.2
25.1
24.7 | 26.2
26.4
26.0
25.9
25.6 | 26.2
25.6
24.6
24.3
23.7 | 24.2
23.9
23.1
23.0
22.6 | 25.3
24.7
23.9
23.6
23.2 | | 26
27
28
29
30
31 | 25.9
25.8
25.8
26.5
27.6 | 23.9
24.5
24.2
24.6
25.0 | 25.0
25.1
25.1
25.5
26.1 | 27.0
26.9
26.9
27.5
26.8
26.0 | 25.9
26.0
25.6
24.8
24.8
24.6 | 26.7
26.4
26.3
26.1
25.8
25.3 | 26.2
26.7
27.0
27.2
26.9
27.5 | 24.5
24.8
25.2
25.4
25.4
25.7 | 25.3
25.6
25.9
26.1
26.1
26.5 | 23.4
22.3
22.6
22.7
22.8 | 21.4
21.3
21.0
21.0
20.9 | 22.6
22.0
21.7
21.8
21.9 | | MONTH | 27.6 | 19.1 | 23.3 | 27.9 | 24.4 | 26.3 | 28.2 | 24.1 | 26.0 | 27.6 | 20.9 | 24.7 | | | | OXYGEN | I DISSOLVE | D, in (M | G/L), WA | TER YEA | AR OCTOBER 20 | 001 TO S | SEPTEMBER 2 | 002 | | | | DAY | MAX | MIN | MEAN | | | | OCTOBER | | No | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 10.0
9.8
9.5
10.2
10.2 | 9.2
8.6
8.3
8.3 | 9.6
9.2
9.1
9.3
9.3 | 9.5
9.6
9.1
9.6
9.5 | 7.2
8.1
7.8
7.7
7.4 | 8.6
8.8
8.6
8.6 | 9.3
9.5
9.9 | 9.1
8.8
9.1 |
9.2
9.2
9.6 | 12.2
12.4
12.9
13.2
13.8 | 11.4
12.0
12.0
12.4
12.8 | 11.8
12.2
12.4
12.7
13.1 | | 6
7
8
9
10 | 10.2
9.3
10.1
10.1
10.1 | 8.6
8.2
8.5
8.2
8.5 | 9.4
8.8
9.5
9.0
9.2 | 9.7
9.5
9.7
10.2
9.6 | 6.7
7.0
7.7
7.8
7.3 | 8.1
8.3
8.8
8.9
8.4 | 10.2
10.1
9.8
10.0
10.2 | 9.6
9.4
9.3
9.6
9.7 | 9.8
9.8
9.5
9.8 | 13.4
13.8
13.7
14.1
13.8 | 12.8
12.8
12.9
12.9
13.4 | 13.1
13.3
13.2
13.5
13.5 | | 11
12
13
14
15 | 9.0
8.8
7.9
8.5
8.6 | 6.9
6.9
5.8
7.1
7.7 | 8.2
7.6
7.0
7.9
8.1 | 9.8
10.2
9.6
9.9
9.6 | 8.0
8.4
8.0
7.8
8.5 | 9.3
9.5
8.7
9.0
9.0 | 10.2
10.2
10.2
10.6
10.8 | 9.9
9.9
9.9
10.1
10.5 | 10.0
10
10.1
10.3
10.6 | 13.9
14.8
14.0
14.4
14.3 | 12.7
12.9
12.9
13.2
13.0 | 13.4
13.5
13.6
13.8
13.6 | 8.3 8.4 8.0 8.6 7.3 7.7 7.1 7.3 8.3 8.6 8.8 8.6 8.1 8.7 --- 6.7 8.9 9.1 9.2 9.1 8.8 8.6 8.8 9.2 9.1 9.7 9.7 9.2 9.1 9.2 ___ 8.9 10.8 10.8 10.6 10.6 10.4 10.1 --- ___ 10.4 11.0 11.4 11.9 12.2 10.5 10.4 10.4 10.4 10.2 9.9 9.7 --- ___ 9.9 10.0 10.2 10.8 11.1 8.8 10.7 10.6 10.5 10.3 10.1 9.9 --- --- 10.2 10.6 10.9 11.3 11.5 10.2 14.6 14.3 14.9 14.0 14.3 14.8 14.7 14.1 14.5 14.4 13.2 12.7 12.6 11.5 11.2 --- 14.9 13.0 12.7 13.5 13.7 12.9 13.7 13.5 13.4 13.3 13.2 12.5 12.0 11.4 10.4 10.1 --- 10.1 13.8 13.6 14.1 13.9 13.9 14.3 14.3 13.7 13.8 14.1 12.7 12.5 12.0 10.9 --- 13.2 9.5 9.9 10.1 9.9 10.2 9.3 10.2 10.2 9.8 10.4 10.3 9.6 9.4 9.5 --- 10.4 16 17 18 19 20 21 26 27 28 29 30 31 MONTH 9.1 8.1 7.5 8.3 10.3 10.2 10.2 10.8 10.1 9.6 10.4 10.4 11.1 9.7 8.7 11.1 7.4 6.0 5.0 5.3 6.4 7.1 6.3 7.0 6.5 7.7 8.0 7.8 8.7 9.1 7.4 7.4 5.0 8.2 7.2 6.3 7.2 8.1 8.2 8.6 8.1 8.9 9.1 9.1 8.9 9.4 10.1 8.2 8.6 107 03431091 CUMBERLAND RIVER AT OMOHUNDRO WATER PLANT AT NASHVILLE, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | OXYGE | N DISSOI | JVED, in (| rig/L), W | MILK ILAK | . OCTOBER | 2001 10 | SEL LEMDER | . 2002 | | | |---|---|--|---|---|---|---|--|---|--|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 13.3
12.9 | 12.8
12.3 | 13.1
12.6 | 10.4
10.4 | 9.9
10.1 | 10.3
10.2
10.1 | 9.5
9.1 | 8.7
8.3 | 9.0
8.6 | | 3
4 | 10.9 | | | 12.8
13.0 | 12.0
11.5 | 12.5
12.4 | 10.3
10.3 | 10.0 | 10.1
10.0 | 8.4
8.3 | 8.2
8.1 | 8.3
8.2 | | 5 | 11.1 | 10.3 | 10.7 | 13.0 | 11.9 | 12.5 | 9.8 | | 9.5 | 8.8 | 8.3 | 8.5 | | 6
7 | 11.6
11.9 | 10.6
10.9 | 11.1
11.4 | 12.9
12.6 | 11.6
11.5 | 12.4
12.1 | 9.8
10.0 | 9.4
9.7 | 9.7
9.8 | 8.6
8.4 | 7.8
7.9 | 8.3
8.1 | | 8 | 12.0 | 11.4 | 11.7 | 12.4 | 11.0 | 11.9 | 9.9 | 9.6 | 9.7 | 9.4 | 8.0 | 8.6 | | 9
10 | 12.1
12.3 | 11.4
11.5 | 11.8
11.9 | | | | 9.8
10.2 | 9.6
9.6 | 9.7
9.8 | 9.3
9.1 | 8.5
8.3 | 8.7
8.7 | | 11 | 12.6 | 11.6 | 12.1 | 12.0 | | | 10.2 | 9.8 | 9.9 | 9.3 | 8.8 | 9.1 | | 12
13 | 12.8 | | 12.4
12.6 | 13.0
12.9 | 11.5
11.2 | 12.4
12.0 | 10.0 | 9.7 | 9.8
9.8 | 9.1
9.0 | 8.6
7.8 | 8.8 | | 14
15 | 13.2
13.3 | 11.7
12.1 | 12.8
13.0 | 12.6
12.3 | 11.3
11.3 | 12.0
11.9 | 10.0
10.2 | 9.6
9.6 | 9.8
9.9 | 10.6
10.3 | 7.9
9.0 | 9.2
9.7 | | 16 | 13.3 | 12.9 | 13.2 | 11.7 | 11.0 | 11.2 | 10.2 | 9.8 | 10 | 9.9 | 9.0 | 9.5 | | 17
18 | 13.4
13.6 | 12.9
13.0 | 13.2
13.4 | 11.0
10.7 | 9.8
10.3 | 10.4
10.6 | 10.3
10.2 | 9.2
9.0 | 9.8
9.6 | 9.6
9.5 | 8.8
8.8 | 9.3
9.1 | | 19
20 | 13.8
13.7 | 13.1
13.0 | 13.5
13.5 | 10.3
9.5 | 9.3
9.2 | 9.8
9.4 | 11.0
10.6 | 9.2
9.9 | 10.3
10.3 | 10.9
10.9 | | 10.6
10.4 | | 21 | 14.2 | 13.2 | 13.6 | 9.6 | 9.3 | 9.4 | 10.4 | 9.8 | | 10.7 | 9.7 | 10.2 | | 22
23 | 13.9
13.9 | 13.2
13.2 | 13.6
13.6 | 9.6
9.6 | 9.3
9.5 | 9.5
9.6 | 10.4
9.8 | 9.2
8.9 | 9.9
9.4 | 11.2
11.8 | 9.7
10.1 | 10.6
11.0 | | 24
25 | 13.8
14.0 | 13.2
12.8 | 13.6
13.7 | 9.6
9.8 | 9.2
9.6 | 9.5
9.7 | 9.4
9.3 | 8.8
8.6 | 9.3
8.9 | 11.9
12.3 | | 11.4
12.0 | | 26 | 13.6 | 13.0 | 13.4 | 9.8 | 9.5 | 9.7 | 9.6 | 9.1 | 9.3 | 11.3 | 9.9 | 10.7 | | 27
28 | 13.4
13.6 | | 13.1
13.2 | 10.4
10.2 | 9.8 | 10.1
10.1 | 9.4 | 8.9 | 9.1
9.0 | 9.6 | 7.9 | 9.0 | | 29
30 | | | | 10.0 | 9.7 | 9.9 | 9.3 | 8.6
8.7 | 8.9
9.4 | | | | | 31 | | | | 10.0 | 9.7 | 9.8 | | | | | | | | MONTH | 14.2 | 10.3 | 12.8 | 13.3 | 9.2 | 10.9 | 11.0 | 8.5 | 9.7 | 12.3 | 7.8 | 9.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | 1 | | JUNE | | 8.3 | JULY
5.8 | 6.6 | 6.2 | AUGUST | 5.6 | | SEPTEMBE | ER | | 1
2
3 | | JUNE

 | | 8.3
7.4
6.8 | JULY
5.8
5.8
5.6 | 6.6
6.4
6.2 | 6.2
7.0
6.4 | AUGUST
4.6
5.1
4.0 | 5.6
6.1 |

6.5 | SEPTEMBE

5.0 | ER

5.2 | | 1
2 | | JUNE | | 8.3
7.4 | JULY
5.8
5.8 | 6.6
6.4 | 6.2
7.0 | AUGUST 4.6 5.1 | 5.6
6.1 | | SEPTEMBE | ER
 | | 1
2
3
4
5 |

8.9 | JUNE 7.6 |

8.3 | 8.3
7.4
6.8
6.8
7.2
7.6 | JULY 5.8 5.8 5.6 5.8 5.7 | 6.6
6.4
6.2
6.3
6.3 | 6.2
7.0
6.4
5.9
5.5 | 4.6
5.1
4.0
4.6
4.0 | 5.6
6.1
5.4
5.4
4.7 |
6.5
5.0
5.1 | SEPTEMBE

5.0
4.7
4.5 | 5.2
4.9
4.5 | | 1
2
3
4
5 | 8.9
8.1
8.3 | JUNE 7.6 7.3 7.2 |

8.3
7.8
7.7 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.6 | 5.6
6.1
5.4
5.4
4.7
4.4
4.1 |
6.5
5.0
5.1
6.0
6.1
5.6 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 | ER 5.2 4.9 4.5 4.9 5.3 5.0 | | 1
2
3
4
5 |

8.9
8.1 | JUNE 7.6 7.3 |

8.3
7.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 | 6.6
6.4
6.2
6.3
6.3
7.0 | 6.2
7.0
6.4
5.9
5.5 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.6 3.7 | 5.6
6.1
5.4
5.4
4.7 | 6.5
5.0
5.1
6.0
6.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 | ER 5.2 4.9 4.5 4.9 5.3 | | 1
2
3
4
5
6
7
8
9
10 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.8
7.7
7.9
7.8 |
8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.9 5.2 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1 | 5.6
6.1
5.4
4.7
4.4
4.1
4.9 | 6.5
5.0
5.1
6.0
6.1
5.6 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 | 5.2
4.9
4.5
4.9
5.3
5.3
5.0
4.9 | | 1
2
3
4
5
6
7
8
9 | 8.9
8.1
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.8
7.7
7.9 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.2 5.0 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.6
3.7
4.1 | 5.6
6.1
5.4
4.7
4.4
4.1
4.7
4.9
 | 6.5
5.0
5.1
6.0
6.1
5.6
5.3 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 | 5.2
4.9
4.9
5.3
5.0
4.9
5.3
5.0
4.9 | | 1
2
3
4
5
6
7
8
9
10 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.8
7.7
7.9
7.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
4
7.3
6.8 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.2 5.0 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.6
3.7
4.1 | 5.6
6.1
5.4
4.7
4.4
4.1
4.9 | 6.5
5.0
5.1
6.0
6.1
5.6
5.3 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.2
5.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.7
7.9
7.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.9 5.2 5.0 5.1 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1
5.7
6.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.9
5.9
5.6
5.9 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0 | 5.6
6.1
5.4
4.7
4.4
4.1
4.9

5.1
4.8
4.9
5.3 | 6.5
5.0
5.1
6.0
6.1
5.6
5.3

5.5
7.2 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.1 |
5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.8
7.7
9 7.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.2 5.0 5.1 5.1 5.1 5.4 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1
5.6
5.7
6.7
6.4
6.6
6.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
6.3
6.2
6.9 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.6 3.7 4.1 4.0 3.8 4.0 4.0 4.4 4.2 5.2 | 5.6
6.1
5.4
4.7
4.4
4.1
4.7
4.9

5.1
4.8
4.9
5.5
5.5 | 6.5
5.0
5.1
6.0
6.1
5.6
5.3

5.5
7.2
7.0
6.6
6.5 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 5.1 4.4 5.2 5.3 5.2 5.0 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.3
5.0
6.0
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 | 8.3
7.8
7.7
7.9
7.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.8 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.9 5.2 5.0 5.1 5.1 5.7 5.1 5.4 5.1 5.4 5.5 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.6
5.7
6.7
6.4
6.6
6.7
6.3 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
5.6
6.2
6.9
6.6 | 4.6
5.1
4.6
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0
4.0
4.4 | 5.6
6.1
5.4
4.7
4.4
4.17
4.9

5.1
4.8
5.3
5.5
5.4
9.0
6.6 |
6.5
5.0
5.1
6.0
6.1
5.6
5.3

5.5
7.2
7.2
7.0
6.6
6.5
6.6
6.5 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 5.1 4.4 5.2 5.3 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 8.9
8.1
8.3
8.3
8.3 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 | 8.3
7.8
7.7
7.9
7.8
 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.9 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.9 5.2 5.0 5.1 5.1 5.4 5.5 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1
5.7
5.7
6.4
6.6
6.7
6.2
6.3
5.8 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
6.3
6.2
6.6
6.6
6.6 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.7 4.1 4.0 3.8 4.0 4.0 4.4 4.2 5.2 4.6 4.8 4.9 | 5.6
6.1
5.4
4.7
4.4
4.1
4.7
4.9
5.1
4.8
4.9
5.3
5.5 | 6.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.2
7.0
6.6
6.5
6.6
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 5.1 4.4 5.2 5.3 5.2 5.0 4.5 5.1 5.6 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.9
8.1
8.3
8.3
8.3

6.2
6.2
6.8
6.6
7.1 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 5.4 5.3 | 8.3
7.8
7.7
7.9
7.8

5.8
6.1 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.9 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.7 5.1 5.1 5.4 5.1 5.4 5.5 5.1 5.1 5.4 5.1 5.4 5.1 5.4 5.1 5.4 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.6
5.7
6.7
6.7
6.4
6.6
6.7
6.2
6.3
5.8
5.9
6.0 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
6.3
6.4
6.2
6.9
6.6
6.3 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.6 3.7 4.1 4.0 3.8 4.0 4.0 4.4 4.2 5.2 4.6 4.8 4.9 | 5.6
6.1
5.4
4.7
4.4
4.1
4.9

5.1
8.9
5.5
5.4
5.6
6.6
5.7
5.7
5.5 |
6.5
5.0
5.1
6.0
6.1
5.6
5.3

5.5
7.2
7.0
6.6
6.5
6.6
6.5
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 5.1 5.2 5.3 5.2 5.0 4.5 5.1 5.6 5.1 5.5 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.2
5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.9
8.1
8.3
8.3
8.3

6.2
6.2
6.8
6.6
7.1
6.5 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 5.4 5.3 5.6 5.6 | 8.3
7.8
7.7
7.9
7.8

5.8
6.1
5.9
6.2
6.1
6.0 | 8.3
7.4
6.8
6.8
7.2
7.6
8.00
7.4
7.3
6.8
6.1
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.7
6.9
6.7 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.9 5.2 5.0 5.1 5.1 5.4 5.1 5.4 5.5 5.1 5.2 5.2 5.2 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.6
5.7
6.7
6.4
6.6
6.7
6.3
5.8
5.9
6.0
6.2
6.3
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
6.3
6.4
6.2
6.9
6.6
6.3 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0
4.4
4.2
5.2
4.6
4.8
4.9 | 5.6
6.14
5.4
4.7
4.4
4.17
4.9

5.18
4.8
5.5
5.5
5.6
6.6
5.7
5.7
5.5
4.8 | 5.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.2
7.0
6.6
6.5
6.6
8.1
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 5.1 5.6 5.1 5.6 5.7 7.9 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 8.9
8.1
8.3
8.3
8.3

6.2
6.2
6.6
7.1
6.5
6.5 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 5.4 5.6 5.6 5.4 | 8.3
7.8
7.7
7.9
7.8

5.8
5.8
6.1
5.9
6.2
6.1
6.0
5.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.8
6.7
6.5
6.7
6.6
6.7
6.6
6.7
6.6
6.8 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.2 5.0 5.1 5.1 5.4 5.1 5.4 5.5 5.1 5.2 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.7
6.6
6.1
5.7
5.7
6.4
6.6
6.7
6.2
6.3
5.8
5.9
6.0
6.2
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0
5.9
6.3
6.4
6.9
6.6
6.3 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.7 4.1 4.0 3.8 4.0 4.4 4.2 5.2 4.6 4.8 4.9 5.3 4.6 4.5 | 5.6
6.1
5.4
4.7
4.4
4.1
4.7
4.9
5.1
8.8
9.5
5.5
5.4
9.6
6.6
5.7
5.7
5.7
5.8
8.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 |
6.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.2
7.0
6.6
8.1
8.1
7.5
8.2
8.4
8.1
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 5.1 4.4 5.2 5.3 5.2 5.0 4.5 5.1 5.6 7.9 5.1 |
5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.3
5.0
6.1
6.3
6.1
7.7
8.1
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 8.9
8.1
8.3
8.3
8.3
8.3
8.3
6.6
7.1
6.5
6.5
6.4 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 5.4 5.3 5.6 5.4 5.4 5.5 | 8.3
7.8
7.7
7.9
7.8

5.8
6.1
5.9
6.2
6.1
6.0
5.8 | 8.3
7.4
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.7
6.5
6.5
6.5
6.2 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.2 5.0 5.1 5.1 5.1 5.4 5.1 5.4 5.5 5.1 5.1 5.4 5.5 5.1 5.1 5.4 5.5 5.1 5.1 5.4 5.5 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.6
5.7
6.7
6.2
6.3
5.8
5.9
6.0
6.2
5.7
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
5.9
6.3
6.4
6.2
6.9
6.6
6.3 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0
4.4
4.2
5.2
4.6
4.8
4.9
5.3
4.6 | 5.6
6.1
5.4
4.7
4.4
4.17
4.9

5.1
4.8
4.9
5.5
5.4
5.9
6.6
5.7
5.5
4.8 | 5.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.0
6.6
6.5
6.6
8.1
8.1
7.5
8.2
8.4
8.1
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 4.5 5.1 5.6 5.1 5.6 5.1 5.7 7.9 5.1 4.7 4.8 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.2
5.2
5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.8
6.1
7.7
8.1
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 8.9
8.1
8.3
8.3
8.3
8.3
8.3
6.6
7.1
6.2
6.2
6.2
6.4
6.5
6.5 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.3 5.4 5.3 5.6 5.4 5.5 5.5 | 8.3
7.8
7.7
7.9
7.8

5.8
6.1
5.9
6.2
6.1
6.0
5.8 | 8.3
7.4
6.8
6.8
7.2
7.6
8.0
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.8
6.7
6.6
7.1
6.5
6.5
6.2
6.4
6.5
6.4
6.5 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.8 5.7 5.1 5.1 5.1 5.4 5.1 5.4 5.1 5.2 5.0 5.1 5.1 5.2 5.0 5.1 5.2 5.0 5.1 5.2 5.0 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.6
5.7
6.7
6.4
6.6
6.7
6.3
5.8
5.9
6.2
5.7
5.6
5.7
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0

5.9
6.3
6.4
6.2
6.9
6.6
6.3
6.2
5.3 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0
4.4
4.2
5.2
4.6
4.8
4.9
5.3
4.6
4.5 | 5.6
6.1
5.4
4.7
4.4
4.17
4.9

5.1
4.8
9.3
5.5
5.6
5.7
5.7
5.6
6.6
5.7 | 5.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.2
7.0
6.6
6.5
8.1
8.1
7.5
8.2
8.4
8.4
8.1
8.1 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 5.1 5.6 5.1 5.6 5.1 5.6 7.9 5.1 4.7 4.8 4.0 4.5 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.5
6.8
6.3
6.1
7.7,7
8.1
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 8.9
8.1
8.3
8.3
8.3
8.3
6.6
7.1
6.2
6.5
6.5
6.5
6.6
7.2 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.2 5.3 5.4 5.3 5.6 5.6 5.4 5.5 5.5 | 8.3
7.8
7.79
7.8

5.8
5.8
6.1
5.9
6.2
6.1
6.0
5.8 | 8.3
7.4
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
8.0
7.9
7.4
8.0
7.3
6.8
6.7
6.6
7.9
6.6
7.4
6.9
6.5
6.2 | JULY 5.8 5.8 5.8 5.7 6.0 5.9 5.8 5.7 5.1 5.1 5.1 5.4 5.1 5.4 5.5 5.1 5.2 5.0 5.1 5.1 5.2 5.0 5.1 5.1 5.2 5.0 5.1 5.1 5.2 5.0 5.1 5.1 5.1 5.2 5.0 5.1 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.7
5.7
6.7
6.7
6.7
6.2
6.3
5.8
5.9
6.0
6.2
5.7
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
6.0
5.9
6.3
6.4
6.9
6.6
6.6
6.3 | AUGUST 4.6 5.1 4.0 4.6 4.0 4.1 3.6 3.6 3.7 4.1 4.0 3.8 4.0 4.0 4.4 4.2 5.2 4.6 4.8 4.9 5.3 4.6 4.5 | 5.6
6.1
5.4
4.7
4.4
4.1
4.7
4.9
5.1
8.8
9.5
5.5
5.4
5.6
6.0
5.7
5.7
5.7
5.7
5.7
5.7
5.7 |
6.5
5.0
5.1
6.0
6.1
5.6
5.3
7.2
7.2
7.0
6.6
8.1
8.1
8.1
8.1
8.1
8.1
8.5 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 5.1 4.4 5.2 5.3 5.2 5.0 4.5 5.1 5.6 7.9 5.1 4.8 4.0 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9
5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.5
6.5
6.3
6.1
7.7
8.1
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 8.9
8.1
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
6.6
7.1
6.5
6.6
7.1
6.5
6.5 | JUNE 7.6 7.3 7.2 7.4 7.3 5.2 5.3 5.4 5.3 5.6 5.6 5.4 5.5 5.5 5.7 | 8.3
7.8
7.9
7.8

5.8
6.1
5.9
6.2
6.1
6.0
6.3
6.3
6.5 | 8.3
7.4
6.8
7.2
7.6
8.0
7.4
7.3
6.8
6.1
6.5
6.5
7.9
7.4
8.0
7.3
6.5
6.5
6.4
6.5
6.4
6.5 | JULY 5.8 5.8 5.6 5.8 5.7 6.0 5.9 5.2 5.0 5.1 5.7 5.1 5.4 5.1 5.4 5.5 5.1 5.1 5.2 5.2 5.0 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.3 | 6.6
6.4
6.2
6.3
6.3
7.0
7.1
6.6
6.1
5.7
6.7
6.7
6.3
5.8
5.9
6.0
6.2
5.7
5.7
5.7
5.7 | 6.2
7.0
6.4
5.9
5.5
4.6
4.8
5.4
5.9
6.3
6.4
6.2
6.9
6.6
6.6
6.3 | 4.6
5.1
4.0
4.6
4.0
4.1
3.6
3.7
4.1
4.0
3.8
4.0
4.4
4.2
5.2
4.6
4.8
4.9
5.3
4.6
4.5 | 5.6
6.1
5.4
4.7
4.4
4.17
4.9

5.1
4.8
9.3
5.5
5.4
5.9
6.6
6.6
5.7
5.5
4.8 | 5.5
5.0
5.1
6.0
6.1
5.3
7.2
7.0
6.6
6.5
6.6
8.1
8.1
7.5
8.2
8.4
8.1
8.1
6.5
7.3
7.3 | SEPTEMBE 5.0 4.7 4.5 4.4 4.5 4.5 4.5 4.5 5.1 5.2 5.3 5.2 5.0 4.5 5.1 5.6 5.1 5.7 7.9 5.1 4.7 4.8 4.0 4.5 4.1 | 5.2
4.9
4.5
4.9
5.3
5.0
4.9

5.2
5.2
5.2
5.7
6.1
6.3
6.0
5.8
5.5
6.8
6.1
7.7
8.1
6.3 | #### 03431300 BROWNS CREEK AT STATE FAIRGROUNDS, AT NASHVILLE, TN LOCATION.--Lat $36^{\circ}07^{\circ}47^{\circ}$, long $86^{\circ}45^{\circ}40^{\circ}$, Davidson County, Hydrologic Unit 05130202, near center of span on downstream side of bridge on access road to pit area of the race track at State Fairgrounds, 300 ft west of Craighead Street, 0.3 mi upstream from bridge on U.S. Highway 31A and 41A, and 2.8 mi southwest of the State Capitol in Nashville. DRAINAGE AREA. -- 11.8 mi². PERIOD OF RECORD.--December 1963 to September 1975. August 1993 to current year. REVISED RECORDS.--WDR TN-94-1: 1975 (p). GAGE. -- Data collection platform. Datum of gage is 439.81 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|-------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1030 | 1,060 | 5.95 | Jul 12 | 1610 | 1,510 | 7.01 | | Mar 17 | 2000 | *2,160 | *8.09 | Aug 16 | 1400 | 1,380 | 6.73 | | Mav 1 | 0.030 | 1.100 | 6.05 | | | | | Minimum discharge, $1.4 \text{ ft}^3/\text{s}$, Oct. 1, 2, 3, 4, 5. | | | DISCHA | RGE, CUBI | C FEET PE | | , WATER YE
LY MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|---|--|---|---|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.4
1.4
1.4
1.4 | 2.9
2.8
2.7
2.7
2.5 | 30
17
13
10
8.3 | 4.5
4.5
4.3
4.6
4.8 | 46
21
22
17
15 | 6.2
5.9
5.5
5.4
5.4 | 105
67
49
38
30 | 95
24
18
37
20 | 4.0
3.7
3.4
7.6
5.9 | 11
5.2
43
20
6.4 | 3.1
2.8
2.7
2.5
2.4 | 1.9
1.8
1.7
2.3
1.9 | | 6
7
8
9
10 | 8.1
3.6
3.1
2.5
2.2 | 2.4
2.4
2.3
2.2
2.2 | 8.5
13
54
20
16 | 4.7
4.1
3.9
4.1
6.1 | 15
19
16
14
15 | 5.3
5.2
5.0
15
6.6 | 24
21
18
16
14 | 16
14
11
12
16 | 38
5.7
4.6
4.1
3.7 | 4.8
3.9
13
28
19 | 2.3
2.3
2.2
2.0
2.0 | 12
2.7
2.2
2.0
1.8 | | 11
12
13
14
15 | 3.8
18
38
70
12 | 2.2
2.3
2.4
2.4
2.2 | 13
19
88
58
28 | 6.9
4.6
4.5
4.3
4.0 | 12
11
10
9.6
9.0 | 6.6
12
7.9
7.5
6.8 |
13
14
10
8.9
8.6 | 9.5
7.8
130
37
24 | 3.4
3.1
6.0
3.0
2.7 | 8.4
160
76
28
17 | 2.0
1.9
1.9
45 | 1.7
1.6
1.6
1.8
34 | | 16
17
18
19
20 | 8.0
5.7
4.7
4.2
3.8 | 2.1
2.0
2.0
2.9
2.4 | 19
27
16
13
11 | 3.9
5.1
6.4
48
16 | 8.4
7.6
7.2
6.6 | 23
492
328
165
264 | 7.8
7.1
6.6
6.0
5.4 | 18
30
18
13 | 2.6
2.4
2.3
2.2
2.1 | 12
9.3
13
7.0
5.7 | 101
18
19
8.0
5.9 | 6.1
6.0
5.9
3.6
41 | | 21
22
23
24
25 | 3.7
3.3
3.2
26
7.3 | 2.1
2.0
2.0
10
3.2 | 9.5
8.8
15
9.2
7.8 | 13
18
91
273
104 | 8.4
7.6
7.1
6.4
6.4 | 130
80
57
43
34 | 5.1
13
5.1
80
19 | 9.4
8.2
7.0
6.2
5.7 | 2.0
1.9
1.8
1.8 | 4.9
27
19
8.2
6.2 | 4.7
3.9
3.5
3.2
3.0 | 12
5.9
4.5
3.8
5.7 | | 26
27
28
29
30
31 | 4.7
4.1
3.6
3.3
3.2
3.0 | 2.7
15
5.3
342
106 | 7.5
6.6
6.1
5.5
5.2
5.0 | 54
33
23
18
29
18 | 14
7.0
6.4
 | 72
36
29
27
33
225 | 12
9.5
33
11
11 | 7.8
5.3
5.3
4.7
8.8
4.5 | 5.5
18
6.4
4.4
22 | 5.2
5.1
4.2
3.7
3.6
3.3 | 2.7
2.4
2.3
2.2
2.2
2.0 | 252
208
58
32
21 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 297.7
9.603
70
1.4
0.81
0.94 | 538.3
17.94
342
2.0
1.52
1.70 | 568.0
18.32
88
5.0
1.55
1.79 | 823.3
26.56
273
3.9
2.25
2.60 | 363.7
12.99
46
6.4
1.10
1.15 | 2144.3
69.17
492
5.0
5.86
6.76 | 668.1
22.27
105
5.1
1.89
2.11 | 634.2
20.46
130
4.5
1.73
2.00 | 231.3
7.710
57
1.8
0.65
0.73 | 581.1
18.75
160
3.3
1.59
1.83 | 271.1
8.745
101
1.9
0.74
0.85 | 736.5
24.55
252
1.6
2.08
2.32 | ### 03431300 BROWNS CREEK AT STATE FAIRGROUNDS, AT NASHVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|---|---------------------------------------|---|---------------------------------------|--------------------------------------|---|---|---------------------------------------|--|---------------------------------------|--| | MEAN
MAX
(WY)
MIN
(WY) | 5.143
24.5
1996
0.71
1966 | 12.95
34.8
1974
1.36
1966 | 20.82
63.8
1973
1.28
1966 | 26.53
86.5
1974
5.79
1966 | 25.70
59.1
2001
5.87
1967 | 37.65
102
1975
9.70
1966 | 23.11
50.3
1973
4.36
1967 | 19.06
39.2
2000
5.42
1971 | 14.14
61.0
1998
1.71
1966 | 7.292
19.8
1967
0.96
1964 | 6.378
23.2
1971
1.65
1968 | 6.332
24.5
2002
0.92
1965 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALEN | IDAR YEAR | Ι | FOR 2002 WA | TER YEAR | | WATER YEARS | 1964 | - 2002 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL 10 PER 50 PER | T ANNUAL
ANNUAL M
T DAILY M
DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW CFSM) INCHES) EDS EDS | | 5396.1
14.78
379
1.4
1.5
1.25
17.01
29
5.7
2.0 | Feb 16
Jul 16
Jul 15 | | 7857.6
21.53
492
1.4
1.8
2160
8.09
a1.4
1.82
24.77
43
7.0
2.2 | Mar 17
Oct 1
Sep 8
Mar 17
Mar 17
Oct 1 | | 17.03
29.6
3.80
696
0.29
0.36
2210
8.20
0.15
1.44
19.61
38
6.4 | Sep
Sep
Nov 2
Nov 2 | 1973
1993
2 1975
5 1973
2 1973
7 1994
7 1994
5 1973 | a Also occurred Oct. 2, 3, 4, 5. #### 034315005 CUMBERLAND RIVER AT WOODLAND STREET AT NASHVILLE, TN LOCATION.--Lat 36°10'02", long 86°46'35", Davidson County, Hydrologic Unit 05130202, on left bank at northwest corner of Woodland Street Bridge, at Nashville, 3.5 mi downstream from Mill Creek, and at mile 190.9. DRAINAGE AREA.--12,860 mi², approximately. PERIOD OF RECORD.--May 1992 to current year. October 1892 to September 1954, monthly and yearly discharges published in WSP 1306 and 1726, October 1986 to September 1991, gage height, published as "at Nashville." Gage height record collected in this vicinity since 1873 are contained in reports of U.S. Weather Bureau. GAGE.--Data collection platform and acoustic velocity meter. Datum of gage is 368.17 ft above NGVD of 1929. Prior to fall of 1922 inclined and vertical staff gage at site 350 ft downstream and from fall of 1922 to Apr. 9, 1940, staff gage at site 400 ft downstream, both gages at same datum. Nov. 1, 1930, to Sept. 30, 1954, upper staff gage at former lock 1, 2.7 mi downstream was used as auxiliary gage. Prior to May 1992 at site 0.2 mi upstream at same datum. REMARKS .-- Records good except for estimated daily discharges, which are fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 203,000 ft³/s, Jan. 1, 1927, gage height 56.2 ft; minimum gage height observed after first filling of pool at dam 1, 6.1 ft, Oct. 19, 1935. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 100,000 ft³/s, March 18, maximum gage height, 35.60 ft, March 18, minimum daily discharge, 5,300 ft³/s, Nov. 11; minimum gage height, 16.50 ft, Oct. 1. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY SEP OCT NOV DEC JAN FEB MAR APR MAY AUG e28900 e15700 e9350 e13600 e9040 e33200 e11700 e11100 e35000 e9600 e9370 e28400 e7200 e8210 e9730 e35700 e7520 e11100 e11400 e32100 e8870 e10600 e9870 7110 e27800 e37100 8380 e11500 e6220 e11600 e13200 e34400 e6220 e11700 e33800 e11900 e10400 e34300 e9120 6640 7640 e33300 e9100 e8510 e35000 e9070 e13700 e31600 e50800 e12700 e26500 e41400 e8880 e18500 e13200 e41000 e10900 5310 e41000 e11900 e40700 e17600 e100000 e15600 e49100 e11800 e98400 e17500 e47600 e11300 e86000 e17200 e36900 e10300 e32000 e12000 e7900 e81700 e15300 e9000 e16000 e81700 e14600 e31600 e8160 e78700 e30400 e7020 e8420 e70400 2.4 e7880 e30300 e8500 e66500 e27600 e26200 e18900 e60900 e23100 e66100 e18200 e18800 e12400 e60500 e10300 e15000 e7100 e16700 e51900 e16000 e9730 e8780 --e16600 e52800 e15500 e15000 TOTAL MEAN MAX MIN e Estimated ### 034315005 CUMBERLAND RIVER AT WOODLAND STREET AT NASHVILLE, TN--Continued | STATISTICS OF | E MONTHLY MEAN | ע אטא עהעט ו | JATER VEARS | 1992 - 2002 | BY WATER YEAR (WY) | |---------------|----------------|--------------|-------------|-------------|--------------------| | MEAN | 9905 | 11870 | 19430 | 28650 | 30180 | 37200 | 32680 | 22080 | 21310 | 16160 | 16160 | 14790 | |---------|-----------|-------|-------|-----------|-----------|-------|------------|-----------|-------|-----------|-----------|-------| | MAX | 18380 | 22670 | 40930 | 43570 | 71760 | 82050 | 92860 | 47660 | 50810 | 35380 | 38630 | 53310 | | (WY) | 1993 | 1996 | 1997 | 1994 | 1994 | 1994 | 1994 | 1998 | 1997 | 2002 | 2002 | 2002 | | MIN | 6062 | 6813 | 7084 | 6978 | 10950 | 13280 | 10680 | 6530 | 8523 | 10440 | 10490 | 8176 | | (WY) | 2001 | 2000 | 2000 | 2000 | 2000 | 2000 | 1995 | 2001 | 2001 | 2000 | 1993 | 1993 | | | | | | | | | | | | | | | | SUMMAR' | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | I | FOR 2002 W | ATER YEAR | * | WATER YEA | RS 1992 - | 2002 | | FOR 2001 CALEN | VDAR YEAR | FOR 2002 WAT | ER YEAR | *WATER YEARS | 1992 - 2002 | |----------------|---|---|---|---|---| | 4615570 | | 7015250 | | | | | 12650 | | 19220 | | 21740 | | | | | | | 34940 | 1994 | | | | | | 11150 | 2000 | | 89200 | Feb 17 | 100000 | Mar 18 | 122000 | Mar 3 1997 | | 3220 | May 20 | 5300 | Nov 11 | 3220 | May 20 2001 | | 5770 | May 15 | 6290 | Nov 17 | 5020 | Dec 27 1999 | | | | | | 134000 | Mar 4 1997 | | | | 35.60 | Mar 18 | 39.26 | Mar 4 1997 | | 20200 | | 43200 | | 49200 | | | 10400 | | 11100 | | 13800 | | | 6170 | | 7130 | | 6860 | | | | 4615570
12650
89200
3220
5770
20200
10400 | 12650
89200 Feb 17
3220 May 20
5770 May 15
20200
10400 | 4615570 7015250 19220 89200 Feb 17 100000 3220 May 20 5300 5770 May 15 6290 20200 43200 10400 11100 | 4615570 7015250 19220 89200 Feb 17 100000 Mar 18 3220 May 20 5300 Nov 11 5770 May 15 6290 Nov 17 35.60 Mar 18 20200 43200 10400 11100 | 4615570 7015250 12650 19220 21740 34940 11150 89200 Feb 17 100000 Mar 18 122000 3220 May 20 5300 Nov 11 3220 5770 May 15 6290 Nov 17 5020 134000 35.60 Mar 18 39.26 20200 43200 49200 10400 11100 13800 | ^{*} Period of daily discharge only. #### 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN #### WATER-OUALITY RECORDS LOCATION.--Lat 36°10'59", long 86°49'56", Davidson County, Hydrologic Unit 05130202, on center pier of Nashville to
Ashland City Railroad Bridge, 0.8 mi south of Bordeaux, 2.6 mi upstream of Whites Creek, and at mile 185.2. DRAINAGE AREA. -- 12,862 mi², approximately. PERIOD OF RECORD. -- November 1996 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: November 1996 to current year. pH: November 1996 to current year. WATER TEMPERATURE: November 1996 to current year. DISSOLVED OXYGEN: November 1996 to current year. INSTRUMENTATION. -- Water-quality monitor since November 1996. REMARKS.--Flow regulated by Old Hickory Dam and other reservoirs above station. Periods of missing record were due to instrument malfunctions. Records for water temperature are excellent, specific conductance and pH are good, dissolved oxygen are poor. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- THEMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 303 microsiemens, March 14, 2000; minimum, 171 microsiemens, June 4, 1998. pH: Maximum, 9.0 units, Feb. 11, 2001; minimum, 6.6 units, Nov. 30, 1997, June 11, 1997. WATER TEMPERATURE: Maximum, 27.8°C, July 14, 2000; minimum, 4.4°C, Feb. 3, 2000. DISSOLVED OXYGEN: Maximum, 15.9 mg/L, Feb. 12, 2001; minimum, 3.6 mg/L, Oct. 26, 2001. #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 293 microsiemens, Jan. 9; minimum, 186 microsiemens, Apr. 15. PH: Maximum, 8.8 units, Mar. 14; minimum, 7.4 units, several days throughout the year. WATER TEMPERATURE: Maximum, 27.4°C, Aug. 9; minimum, 5.7°C, Jan. 8. DISSOLVED OXYGEN: Maximum, 15.3 mg/L, Mar. 15; minimum, 4.2 mg/L, July 8, 10. #### SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 212 | 208 | 210 | 237 | 225 | 232 | 265 | 250 | 256 | 279 | 269 | 274 | | 2 | 217 | 208 | 211 | 240 | 229 | 234 | 255 | 249 | 251 | | 264 | 268 | | 3 | 244 | 211 | 222 | 238 | 227 | 231 | 258 | 254 | 255 | 280 | 268 | 271 | | 4 | 229 | 209 | 220 | 245 | 230 | 239 | 260 | 252 | 255 | 279 | 268 | 274 | | 5 | 227 | 204 | 213 | 235 | 228 | 230 | 259 | 252 | 255 | 279 | 271 | 275 | | 6 | 226 | 204 | 215 | 244 | 229 | 233 | 260 | 254 | 257 | 284 | 269 | 276 | | 7 | 215 | 209 | 212 | 246 | 234 | 238 | 267 | 254 | 262 | 272 | 269 | 270 | | 8 | 218 | 209 | 212 | 249 | 234 | 238 | 282 | 255 | 265 | 278 | 267 | 268 | | 9 | 231 | 211 | 217 | 251 | 235 | 240 | 285 | 256 | 267 | 293 | 267 | 278 | | 10 | 228 | 212 | 220 | 246 | 235 | 239 | 266 | 243 | 252 | 267 | 259 | 265 | | 11 | 221 | 212 | 214 | 249 | 236 | 245 | 259 | 242 | 249 | 273 | 253 | 263 | | 12 | 228 | 213 | 220 | 244 | 231 | 237 | 261 | 252 | 257 | 256 | 251 | 253 | | 13 | 238 | 214 | 221 | 247 | 232 | 236 | 267 | 257 | 262 | 255 | 248 | 251 | | 14 | 235 | 221 | 226 | 253 | 238 | 244 | 268 | 255 | 262 | 248 | 244 | 246 | | 15 | 237 | 217 | 226 | 253 | 237 | 243 | 260 | 250 | 255 | 254 | 241 | 245 | | 16 | 233 | 214 | 221 | 246 | 235 | 241 | 263 | 251 | 257 | 253 | 235 | 241 | | 17 | 240 | 219 | 232 | 244 | 235 | 239 | 265 | 246 | 256 | 245 | 232 | 238 | | 18 | 248 | 231 | 240 | 250 | 235 | 241 | 266 | 255 | 262 | 236 | 230 | 232 | | 19 | 244 | 222 | 235 | 244 | 228 | 234 | 274 | 257 | 267 | 245 | 227 | 233 | | 20 | 233 | 226 | 230 | 253 | 229 | 235 | 269 | 261 | 266 | 255 | 224 | 234 | | 21 | 238 | 219 | 226 | 253 | 230 | 240 | 274 | 259 | 267 | 227 | 219 | 222 | | 22 | 238 | 216 | 223 | 253 | 236 | 245 | 275 | 263 | 268 | 258 | 227 | 242 | | 23 | 241 | 217 | 229 | 249 | 237 | 243 | 280 | 268 | 275 | 249 | 228 | 240 | | 24 | 243 | 218 | 234 | 249 | 231 | 239 | 275 | 261 | 268 | 239 | 217 | 226 | | 25 | 239 | 213 | 224 | 251 | 231 | 242 | 273 | 259 | 268 | 256 | 239 | 251 | | 26
27
28
29
30
31 | 239
233
240
239
240
240 | 223
224
224
223
221
223 | 232
230
233
229
226
231 | 234
248
255
260
257 | 230
230
235
236
239 | 231
237
242
248
245 | 268
266
270
275
279
281 | 254
257
259
261
267
270 | 261
262
265
268
270
276 | 253
253
253
254
252
240 | 228
239
242
244
239
223 | 238
248
247
247
243
235 | | MONTH | 248 | 204 | 224 | 260 | 225 | 239 | 285 | 242 | 262 | 293 | 217 | 251 | CUMBERLAND RIVER BASIN 113 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | S. | PECIFIC | CONDUCTANG | LE, IN US | /CM @ 25 | C, WATER | YEAR OCTOR | SER ZUUI | IO SEPIE | MDER 2002 | | | |---|--|---|---|---|---|--|--|--|--|--|---|---| | DAY | MAX | MIN | MEAN | | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 229 | | 224 | 224 | | 222 | 214 | | 211 | 228 | | 213 | | 2 | 230 | 222
222 | 228 | 223 | 220
222 | 223 | 214 | 210
206 | 211 | 230 | 199
211 | 213 | | 3
4 | 222 | 216 | 218 | 227 | 223 | 225 | 213 | 206 | 209 | 234 | 219 | 228
231 | | 5 | 222
222 | 216
217 | 219
221 | 236
254 | 227
229 | 229
237 | 217
216 | 213
204 | 215
211 | 236
237 | 224
224 | 231 | | 6 | 224 | 204 | 215 | 246 | 232 | 238 | 209 | 193 | 200 | 227 | 217 | 223 | | 7 | 230 | 210 | 220 | 246
236 | 222 | 230 | 209 | 193 | 196 | 237
237 | 217
222 | 223 | | 8
9 | 233 | 215 | 225 | 232 | 220 | 225 | 205 | 195 | 198 | 236 | 218 | 228 | | 10 | 234
226 | 220
220 | 225
222 | 224
222 | 215
218 | 218
219 | 209
205 | 195
194 | 200
197 | 231
232 | 215
221 | 221
227 | | 11 | 249 | 221 | 230 | 225 | 221 | 223 | 203 | 190 | 194 | 225 | 212 | 218 | | 12 | 236 | 223 | 228 | 235 | 225 | 227 | 201 | 188 | 192 | 224 | 211 | 215 | | 13
14 | 243
243 | 224
228 | 229
234 | 235
228 | 225
224 | 227
226 | 198
194 | 187
187 | 191
190 | 223
218 | 203
205 | 212
211 | | 15 | 243 | 229 | 234 | 228 | 224 | 226 | 188 | 186 | 187 | 221 | 200 | 211 | | 16 | 242 | 228 | 232 | 234 | 224 | 229 | 205 | 188 | 193 | 221 | 200 | 212 | | 17 | 239 | 230 | 233 | 250 | 215 | 230 | 205 | 189 | 193 | 218 | 201 | 211 | | 18
19 | 237
249 | 228
229 | 230
234 | 228
232 | 214
221 | 221
226 | 200
203 | 189
193 | 194
196 | 219
214 | 209
202 | 215
208 | | 20 | 242 | 232 | 236 | 237 | 221 | 230 | 200 | 191 | 194 | 213 | 200 | 207 | | 21 | 240 | 232 | 234 | 242 | 237 | 241 | 196 | 193 | 195 | 216 | 201 | 206 | | 22
23 | 245
245 | 231
232 | 236
235 | 240
209 | 209
201 | 229
203 | 195
208 | 192
193 | 193
196 |
215
220 | 202
204 | 205
214 | | 24 | 232 | 228 | 231 | 209 | 201 | 206 | 210 | 194 | 205 | 220 | 207 | 213 | | 25 | 237 | 228 | 229 | 213 | 209 | 212 | 220 | 191 | 207 | 220 | 206 | 210 | | 26 | 244 | 229 | 236 | 217 | 204 | 212 | 210 | 191 | 198 | 220 | 206 | 211 | | 27
28 | 229
239 | 222
222 | 226
231 | 210
210 | 203
200 | 206
208 | 222
217 | 203
200 | 210
207 | 208
212 | 204
201 | 206
205 | | 29 | | | | 214 | 205 | 210 | 230 | 212 | 217 | 214 | 199 | 203 | | 30 | | | | 215 | 205 | 208 | 221 | 206 | 211 | 216 | 199 | 204 | | 31 | | | | 219 | 211 | 215 | | | | 206 | 199 | 202 | | MONTH | 249 | 204 | 228 | 254 | 200 | 222 | 230 | 186 | 200 | 237 | 199 | 214 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | P | AUGUST | | \$ | SEPTEMBE | IR. | | 1
2 | 210
207 | JUNE
200
203 | 204
204 | 219
219 | JULY
210
212 | 213
216 | 207
221 | AUGUST
201
197 | 204
204 | 201
204 | SEPTEMBE
196
197 | 198
201 | | 1
2
3 | 210
207
215 | JUNE
200
203
205 | 204
204
209 | 219
219
 | JULY
210
212
 | 213
216
 | 207
221
215 | AUGUST
201
197
196 | 204
204
202 | 201
204
199 | SEPTEMBE
196
197
195 | 198
201
197 | | 1
2 | 210
207 | JUNE
200
203 | 204
204 | 219
219 | JULY
210
212 | 213
216 | 207
221 | AUGUST
201
197 | 204
204 | 201
204 | SEPTEMBE
196
197 | 198
201 | | 1
2
3
4 | 210
207
215
222 | JUNE 200 203 205 208 | 204
204
209
213 | 219
219
 | JULY 210 212 | 213
216
 | 207
221
215
206 | 201
197
196
197 | 204
204
202
202 | 201
204
199
201 | 196
197
197
195
197
197 | 198
201
197
199 | | 1
2
3
4
5 | 210
207
215
222
221
222
227 | JUNE 200 203 205 208 212 214 218 | 204
204
209
213
216
219
223 | 219
219

 | JULY 210 212 | 213
216

 | 207
221
215
206
204
212
215 | 201
197
196
197
197
198
202 | 204
204
202
202
200
201
207 | 201
204
199
201
228
214
214 | 196
197
195
197
197
197 | 198
201
197
199
203
202
204 | | 1
2
3
4
5 | 210
207
215
222
221 | JUNE 200 203 205 208 212 214 | 204
204
209
213
216 | 219
219

 | JULY 210 212 | 213
216

 | 207
221
215
206
204 | 201
197
196
197
197
197 | 204
204
202
202
200
201 | 201
204
199
201
228 | 196
197
195
197
197
197 | 198
201
197
199
203 | | 1
2
3
4
5 | 210
207
215
222
221
222
227
226 | JUNE 200 203 205 208 212 214 218 221 | 204
204
209
213
216
219
223
224 | 219
219

212 | JULY 210 212 210 | 213
216

211 | 207
221
215
206
204
212
215
209 | 201
197
196
197
197
198
202
198 | 204
204
202
202
200
201
207
204 | 201
204
199
201
228
214
214
204 | 196
197
195
197
197
197
198
199
195 | 198
201
197
199
203
202
204
200 | | 1
2
3
4
5
6
7
8
9
10 | 210
207
215
222
221
222
227
226
223
225 | JUNE 200 203 205 208 212 214 218 221 219 218 217 | 204
209
213
216
219
223
224
221
222 | 219
219

212
223
216 | JULY 210 212 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206 | 201
197
196
197
197
197
198
202
198
194
194 | 204
204
202
202
200
201
207
207
204
199
199 | 201
204
199
201
228
214
214
204
201
201 | 196
197
195
197
197
197
197
198
199
195
194
194 | 198
201
197
199
203
202
204
200
198
197 | | 1
2
3
4
5
6
7
8
9
10 | 210
207
215
222
221
222
227
226
223
225
242
226 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 | 204
204
209
213
216
219
223
224
221
222 | 219
219

212
223
216 | JULY 210 212 210 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206
203
204 | 201
197
196
197
197
198
202
198
194
194
197
194 | 204
204
202
202
200
201
207
204
199
199 | 201
204
199
201
228
214
214
204
201
201 | 196
197
195
197
197
197
197
198
199
195
194
194 | 198
201
197
199
203
202
204
200
198
197
200
196 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 210
207
215
222
221
222
227
226
223
225
242
226
223
225
242
226
227
227
222 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 214 217 215 | 204
209
213
216
219
223
224
221
222
224
221
218
218 | 219
219

212
223
216 | JULY 210 212 210 210 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204 | 201
197
196
197
197
197
198
202
198
209
194
194
194
197
194
197 | 204
204
202
202
200
201
207
204
199
199
198
199
201 | 201
204
199
201
228
214
214
204
201
201
202
199
201
202 | 196
197
195
197
197
197
198
199
199
199
194
194
194
196
190
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 210
207
215
222
221
222
227
226
223
225
242
226
227 | JUNE 200 203 205 208 212 214 218 221 219 218 221 217 215 214 | 204
204
209
213
216
219
223
224
221
222
224
221 | 219
219

212
223
216 | JULY 210 212 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206
203
204
204 | 201
197
196
197
197
197
198
202
198
194
194
197
197 | 204
204
202
202
200
201
207
204
199
199
199 | 201
204
199
201
228
214
214
204
201
201
202
199
201 | 196
197
197
195
197
197
197
198
199
195
194
194
196
190
195 | 198
201
197
199
203
202
204
200
198
197
200
196
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 210
207
215
222
221
222
227
226
223
225
242
226
223
225
242
226
227
222
220 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218 | 219
219

212
223
216 | JULY 210 212 210 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204 | 201
197
196
197
197
197
198
202
198
209
194
194
194
197
194
196
197
192 | 204
204
202
202
200
201
207
207
204
199
199
198
199
201
199 | 201
204
199
201
228
214
214
201
201
201
202
199
201
202
202 | 196
197
195
197
197
197
198
199
199
199
194
194
194
196
190
195
193
196 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 210
207
215
222
221
222
227
226
223
225
242
226
227
222
220
222
220 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 214 215 216 216 | 204
204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
218 | 219
219

212
223
216 | JULY 210 212 210 210 210 210 | 213
216

211
213
 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206 | 201
197
196
197
197
198
202
198
202
199
194
194
194
197
197
197
197
192 | 204
204
202
202
200
201
207
204
199
199
199
199
199
199
199 | 201
204
199
201
228
214
214
204
201
201
202
199
201
202
202
202 | 196
197
197
197
197
197
198
199
195
194
194
194
196
190
195
193
196 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
200
201 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 210
207
215
222
221
222
227
226
223
225
242
226
227
222
220
227
222
222
227
225 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 216 215 215 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
219
218
217 |
219
219
219

212
223
216

215
219 | JULY 210 212 210 | 213
216

211
213

210
211 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204
206 | 201
197
196
197
197
198
202
198
194
194
194
197
199
199
199
199
199
199
199
200
202 | 204
204
202
202
200
201
207
207
204
199
199
198
199
201
199
199
199
199
201
201
204 | 201
204
199
201
228
214
214
201
201
201
202
202
202
205
205
205 | 196
197
195
197
197
197
198
199
195
194
194
194
196
199
195
193
196 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
201
201
201
201
201
201 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 210
207
215
222
221
222
227
226
227
226
227
222
220
222
222
222
222
222
222
222 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 215 216 215 216 | 204
204
209
213
216
219
223
224
221
222
224
221
218
218
218
219
218
218
218
218
218
218
218 | 219
219
219

212
223
216

215
219
209 | JULY 210 212 210 210 210 210 210 210 210 208 208 206 205 | 213
216

211
213

210
211
207 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
204
201
202
206
207 | 201
197
196
197
198
202
198
202
198
194
194
197
199
199
199
199
199
199
202
202 | 204
204
202
202
200
201
207
204
199
199
198
199
201
199
199
201
204
205 | 201
204
199
201
228
214
214
204
201
201
202
199
201
202
202
205
205
205
205
201 | 196
197
197
198
199
199
199
199
199
194
194
194
196
190
195
193
196
197
198
197 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
197
198
200
201
202
199
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 210
207
215
222
221
222
227
226
223
225
242
226
227
222
220
222
222
222
222
222
222
222 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 216 215 216 216 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
219
218
217
218 | 219
219
219

212
223
216

215
219
209 | JULY 210 212 210 | 213
216

211
213

211
213
213
213
211
207
204 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204
204
206
207 | 201
197
196
197
197
198
202
198
194
194
194
197
199
199
199
199
199
202
202 | 204
204
202
202
200
201
207
207
204
199
199
199
199
201
199
199
201
204
205 | 201
204
199
201
228
214
214
201
201
201
202
202
202
205
205
205
205
201 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
201
201
202
2199
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 210
207
215
222
221
222
227
223
225
242
226
227
222
220
222
220
222
222
222
223
225 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 214 215 216 216 215 216 216 216 216 216 216 216 | 204
204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
218
218
218
218
218 | 219
219
219

212
223
216

215
219
209
207
210
212 | JULY 210 212 210 | 213
216

211
213

210
211
207
204
208
208 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
207
207
207
207 | 201
197
197
198
202
198
202
198
209
194
194
197
194
196
197
192
202
202
202
202
202 | 204
204
202
202
200
201
207
204
199
199
198
199
201
199
201
204
205
204
205 | 201
204
199
201
228
214
214
204
201
201
202
199
201
202
202
205
205
205
205
201 | 196
197
198
199
197
197
198
199
195
194
194
196
190
195
193
196
197
198
197
198
197
198 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
197
198
200
201
202
199
197
201
202
199 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 210
207
215
222
221
222
227
226
223
225
242
226
227
222
220
227
222
222
227
225
222
227
225
221 | JUNE 200 203 205 208 212 214 218 219 218 217 215 214 215 216 216 216 216 216 216 216 216 216 216 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
219
218
217
218
219
219
214 | 219 219 219 212 223 216 215 219 209 207 210 212 211 | JULY 210 212 210 | 213
216

211
213

211
213
213
213
211
207
204
208
208
208 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204
204
206
207 | 201
197
196
197
197
197
198
200
202
198
194
194
194
197
199
199
195
198
200
202
202
202
198
199 | 204
204
202
202
200
201
207
204
199
199
199
199
201
199
199
201
204
205
204
202
203 | 201
204
199
201
228
214
214
201
201
202
202
202
205
205
205
205
205
206
206
201
229 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
201
201
202
199
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 210
207
215
222
221
222
227
223
225
242
226
227
222
220
222
227
222
222
222
221
221
221
222
221 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 214 215 216 215 216 216 215 216 216 215 2116 216 215 2116 216 217 218 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
218
218
218
218
218 | 219 219 219 212 223 216 215 219 209 207 210 212 211 214 | JULY 210 212 210 210 210 210 210 210 210 210 210 210 | 213
216

211
213

211
213
213
213
213
213
211
207
208
208
208
208
208
208
208 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
207
207
207
205
206
207 | 201
197
198
202
198
202
198
202
198
194
194
197
194
196
197
192
202
202
202
202
202
198
196
197
195 | 204
204
202
202
200
201
207
204
199
199
199
201
199
201
204
205
204
205
204
205 | 201
204
199
201
228
214
214
201
201
201
202
199
201
202
202
205
205
205
205
205
201
206
201
229
219 | 196
197
198
199
199
197
197
198
199
195
194
194
194
196
190
195
193
196
197
198
197
198
197
198
197
198
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
200
201
202
199
197
201
202
199
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 210
207
215
222
221
222
227
226
223
225
242
226
227
222
220
227
222
222
227
225
222
227
225
221 | JUNE 200 203 205 208 212 214 218 219 218 217 215 214 215 216 216 216 216 216 216 216 216 216 216 |
204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
219
218
217
218
219
219
214 | 219
219
219

212
223
216

215
219
209
207
210
212
211 | JULY 210 212 210 | 213
216

211
213

211
213
213
213
211
207
204
208
208
208 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204
204
206
207 | 201
197
196
197
197
197
198
200
202
198
194
194
194
197
199
199
195
198
200
202
202
202
198
199 | 204
204
202
202
200
201
207
204
199
199
199
199
201
199
199
201
204
205
204
202
203 | 201
204
199
201
228
214
214
201
201
202
202
202
205
205
205
205
205
206
206
201
229 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
201
201
202
199
197 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 210
207
215
222
221
222
227
223
225
242
226
227
222
220
222
227
222
222
221
221
222
221
221
221 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 216 215 216 216 215 211 216 217 217 218 218 217 218 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 219 210 210 210 210 210 210 210 210 210 210 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
218
218
218
218
218 | 219 219 219 219 217 212 223 216 223 216 217 219 209 207 210 212 211 214 221 208 206 | JULY 210 212 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 | 213
216

211
213

211
213
2
210
211
207
208
208
208
208
210
211
202
202 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
207
207
207
207
207
207
207
207
207
204
204
204
207 | 201
197
197
198
202
198
202
198
209
194
194
194
197
197
199
200
202
202
202
202
202
202
202
198
196
197
197 | 204
204
202
202
200
201
207
204
199
199
199
199
201
199
201
204
205
204
205
204
205
200 | 201
204
199
201
228
214
214
201
201
201
202
199
201
202
202
205
205
205
205
205
201
206
201
229
219
220
220
220
220
220
220
220
220
220
22 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
197
201
202
199
197
201
202
199
203
201
202
198
203
203
203
204
200
201
202
203 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 210 207 215 222 221 222 221 226 223 225 242 226 227 222 220 222 227 225 221 221 226 231 222 216 | JUNE 200 203 205 208 212 214 218 219 218 217 215 216 216 216 216 215 217 215 216 216 217 217 217 218 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 219 210 210 210 210 210 210 210 210 210 210 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
218
219
218
217
218
219
219
210
217
218 | 219 219 219 217 212 223 216 223 216 217 219 209 207 210 212 211 214 221 208 206 206 | JULY 210 212 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 | 213
216

211
213

211
213

211
207
204
208
208
210
211
202
202
204 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
204
204
207
207
207
207
207
207
207
207
207
208
209
209
209
209
209
209
209
209
209
209 | 201
197
196
197
197
197
198
202
198
194
194
194
197
199
195
198
200
202
202
202
198
199
195
199
195
199
195 | 204
204
202
202
200
201
207
204
199
199
199
201
199
201
204
205
204
202
201
203
200
200
209 | 201
204
199
201
228
214
204
201
201
202
202
205
205
205
205
205
205
205
201
206
206
201
229
219
220
221
229
219 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198 201 197 199 203 202 204 200 198 197 200 196 197 196 198 200 201 201 202 199 197 201 201 203 203 203 203 207 208 213 210 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 210
207
215
222
221
222
227
223
225
242
226
227
222
220
222
227
222
222
221
221
222
221
221
221 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 216 215 216 216 215 211 216 217 217 218 218 217 218 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 219 210 210 210 210 210 210 210 210 210 210 | 204
209
213
216
219
223
224
221
218
218
218
218
219
218
219
219
219
214
 | 219 219 219 219 217 212 223 216 223 216 217 219 209 207 210 212 211 214 221 208 206 | JULY 210 212 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 | 213
216

211
213

211
213
2
210
211
207
208
208
208
208
210
211
202
202 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
207
207
207
207
207
207
207
207
207
204
204
204
207 | 201
197
197
198
202
198
202
198
209
194
194
194
197
197
199
200
202
202
202
202
202
202
202
198
196
197
197 | 204
204
202
202
200
201
207
204
199
199
199
199
201
199
201
204
205
204
205
204
205
200 | 201
204
199
201
228
214
214
201
201
201
202
199
201
202
202
205
205
205
205
205
201
206
201
229
219
220
220
220
220
220
220
220
220
220
22 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
197
201
202
199
197
201
202
199
203
201
202
198
203
203
203
204
200
201
202
203 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 210 207 215 222 221 222 227 226 223 225 242 226 227 222 220 222 227 221 221 221 221 221 221 221 221 | JUNE 200 203 205 208 212 214 218 221 219 218 217 215 214 215 216 216 216 216 216 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 217 219 218 219 219 218 217 219 219 219 219 219 219 219 219 219 219 | 204
209
213
216
219
223
224
221
222
224
221
218
218
218
218
219
218
217
218
219
219
210
210
210
210
210
210
210
210
210
210 | 219 219 219 219 217 212 223 216 223 216 217 219 209 207 210 212 211 214 221 208 206 208 | JULY 210 212 210 210 210 210 210 206 205 197 206 205 203 205 199 198 198 198 200 | 213
216

211
213

211
213

211
203
201
207
204
208
208
208
210
211
202
202
202
204
204
204 | 207
221
215
206
204
212
215
209
205
206
203
204
204
204
206
207
207
207
207
207
207
207
207
207
207 | 197
198
202
197
197
197
198
202
198
194
194
194
197
199
199
200
202
202
202
202
202
198
196
197
195
195
197
195
197
195 | 204
204
202
202
200
201
207
204
199
199
199
201
199
201
204
205
204
202
201
203
200
200
198
199 | 201
204
199
201
228
214
214
201
201
202
202
202
205
205
205
205
205
205
201
206
206
206
201
229
219
220
229
229
229
229
229
220
229
229
22 | 196
197
198
199
199
199
199
199
199
199
199
199 | 198
201
197
199
203
202
204
200
198
197
200
196
197
196
198
201
201
202
199
197
201
202
199
197
201
202
198
203
201
201
202
198
203
201
201
201
201
201
201
201
201
201
201 | # 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER
2001 TO SEPTEMBER 2002 | | | PH, WH, | FIELD, in | I (SIAMDAI | KD UNIIS), | WAILK I. | EAR OCTOBE | SR 2001 10 |) SEPIEMDE | 11 2002 | | | |---|--|---|--|---|---|--|---|---|---------------------------------|---------------------------------|--|---------------------------------| | DAY | MAX | MIN | | | OCTO | OBER | NOVEM | BER | DECEM | BER | JANU | JARY | FEBRU | JARY | MAR | CH | | 1
2
3
4
5 | 8.6
8.4
8.3
8.1
8.4 | 8.1
8.2
7.8
7.7
7.8 | 8.0
7.9
8.0
7.9 | 7.6
7.6
7.7
7.5
7.6 | 7.6
7.6
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6 | 8.0
8.0
8.0
8.1
8.1 | 7.9
7.9
8.0
8.0 | 7.6
7.7
7.6
7.6
7.6 | 7.5
7.6
7.6
7.6
7.6 | 8.4
8.3
8.3
8.5
8.5 | 8.2
8.2
8.3
8.3 | | 6
7
8
9
10 | 8.4
8.3
8.2
8.3
8.3 | 7.8
7.8
7.6
8.0
7.8 | 8.1
8.0
8.2
8.1
8.1 | 7.6
7.8
7.9
7.9
7.9 | 7.8
7.7
7.7
7.6
7.6 | 7.7
7.6
7.5
7.5
7.5 | 8.1
8.1
8.0
8.0
8.1 | 8.0
8.0
8.0
7.9
8.0 | 7.7
7.7
7.6
7.6
7.6 | 7.6
7.5
7.5
7.5
7.6 | 8.5
8.6
8.6
8.5
8.6 | 8.2
8.4
8.4
8.4 | | 11
12
13
14
15 | 8.3
7.9
7.7
7.6
7.7 | 7.8
7.6
7.5
7.5
7.5 | 8.0
8.2
8.2
7.9
8.0 | 7.8
7.8
7.8
7.7
7.7 | 7.6
7.6
7.5
7.6
7.6 | 7.5
7.5
7.5
7.5
7.5 | 8.1
8.1
8.2
8.3
8.4 | 8.0
8.0
8.0
8.3 | 7.6
7.9
7.9
7.8
7.8 | 7.6
7.6
7.8
7.7
7.8 | 8.6
8.5
8.5
8.8
8.7 | 8.5
8.3
8.3
8.4
8.6 | | 16
17
18
19
20 | 7.6
7.6
7.6
7.8
8.0 | 7.5
7.5
7.4
7.5
7.6 | 8.0
7.9
7.9
8.0
8.0 | 7.8
7.6
7.7
7.7 | 7.6
7.6
7.7
7.7 | 7.6
7.6
7.6
7.6
7.7 | 8.5
8.4
8.4
8.3
8.2 | 8.3
8.2
8.2
8.0
8.0 | 7.9
8.0
8.0
8.0 | 7.8
7.8
7.9
7.9
8.0 | 8.6
8.4
8.0
7.7
7.7 | 8.4
7.7
7.7
7.4
7.4 | | 21
22
23
24
25 | 8.3
8.2
8.0
8.2
8.2 | 7.8
7.8
7.5
7.5 | 8.2
7.9
7.9
8.0
8.0 | 7.8
7.8
7.8
7.7 | 7.8
7.8
7.8
7.8
7.8 | 7.7
7.7
7.8
7.7
7.7 | 8.3
8.3
8.2
8.1
7.9 | 8.2
8.1
8.0
7.9
7.7 | 8.2
8.2
8.2
8.2
8.3 | 8.1
8.1
8.1
8.2
8.2 | 7.7
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6 | | 26
27
28
29
30
31 | 8.0
7.9
7.9
8.0
8.3
8.0 | 7.7
7.6
7.6
7.6
7.7
7.8 | 7.9
7.8
7.6
7.6
7.6 | 7.8
7.6
7.6
7.5
7.5 | 7.8
7.8
7.9
7.9
7.9 | 7.7
7.8
7.8
7.8
7.8
7.8 | 7.7
7.7
7.7
7.7
7.6
7.6 | 7.6
7.7
7.7
7.6
7.6 | 8.2
8.2
8.4
 | 8.2
8.2
8.2
 | 7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | | MONTH | 8.6 | 7.4 | 8.2 | 7.5 | 7.9 | 7.5 | 8.5 | 7.6 | 8.4 | 7.5 | 8.8 | 7.4 | | | | | | | | | | | | | | | | DAN | M2 37 | MIN | MAN | MIN | 343.37 | MINI | 34237 | MIN | 142.37 | MIN | 343.37 | MTN | | DAY | MAX | MIN | | | API | RIL | MZ | ΔY | JUN | E | JUI | Ϋ́ | AUGU | JST | SEPTE | | | DAY 1 2 3 4 5 | | | | | | | | | | | | | | 1
2
3
4 | 7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.7 | MA
8.0
7.9
7.7
7.7 | 7.8
7.7
7.7
7.6 | JUN
8.2
7.9
7.8
7.8 | 7.7
7.6
7.6
7.6 | JUI
7.9
7.9
 | 7.6
7.6
 | AUGU

 | JST

 | SEPTE | MBER

 | | 1
2
3
4
5
6
7
8
9 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6 | 8.0
7.9
7.7
7.7
7.7
7.6
7.6
7.5
7.6 | 7.8
7.7
7.7
7.6
7.6
7.5
7.5
7.5 | JUN 8.2 7.9 7.8 7.8 7.7 7.6 7.5 7.6 7.7 | 7.7
7.6
7.6
7.6
7.5
7.5
7.4
7.4
7.6 | 7.9
7.9
7.9

7.7
7.6 | 7.6
7.6

7.5
7.4 | AUGU | IST | SEPTE | MBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 8.0
7.9
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.7
7.7
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5 | JUN
8.2
7.9
7.8
7.8
7.7
7.6
7.5
7.6
7.7
7.8
7.6
7.7 | 7.7
7.6
7.6
7.6
7.5
7.4
7.4
7.6
7.5
7.5
7.5 | JUI 7.9 7.9 7.9 7.7 7.6 7.5 7.7 7.7 | 7.6
7.6
7.6

7.5
7.4
7.6 | AUGU | UST | SEPTE | MBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 8.0
7.9
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.7
7.6
7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5 | JUN 8.2 7.9 7.8 7.8 7.7 7.6 7.5 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 | 7.7
7.6
7.6
7.6
7.5
7.4
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | JUI 7.9 7.9 7.9 7.7 7.6 7.5 7.7 7.7 | 7.6
7.6
7.6

7.5
7.4
7.4
7.6
 | AUGU | UST | SEPTE | MBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
21
21
22
23
24
25
26
27
27
28
27
27
27
28
27
27
27
27
27
27
27
27
27
27
27
27
27 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 8.0
7.9
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.7
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.6
7.5
7.5
7.6
7.5
7.6
7.5
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | JUN 8.2 7.9 7.8 7.8 7.7 7.6 7.5 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 8.0 | 7.66655
7.6665
7.6665
7.55554
7.466
7.55554
7.465
7.66556
7.666566
7.666656 | JUI 7.9 7.9 7.9 7.7 7.6 7.5 7.7 7.7 | 7.6
7.6
7.6

7.5
7.4
7.4
7.6

 | AUGU | UST | SEPTE | MBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 8.0
7.9
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.7
7.6
7.5
7.5
7.5
7.5
7.6
7.5
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.6
7.5
7.5
7.6
7.6
7.5
7.6
7.6
7.7
7.6
7.6
7.7
7.6
7.7
7.6
7.6 | JUN 8.2 7.9 7.8 7.8 7.6 7.5 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.6 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | 7.66655
7.6665
7.55554
7.4466
7.55554
7.666556
7.666656 | JUI 7.9 7.9 7.7 7.6 7.5 7.7 7.6 7.5 | 7.6
7.6
7.6

7.5
7.4
7.4
7.6

 | AUGU | UST | SEPTE | MBER | CUMBERLAND RIVER BASIN 115 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WATER TEN | IPERATURE | s, in (DEG | REES C), | WAIER | YEAR OCTOB | ER 2001 ' | IO SEPTEM | DER 2002 | | | |---|---|--|--|---
---|---|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | | IOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 20.4
20.1
20.0
20.0
20.0 | 19.7
19.6
19.3
19.3 | 20.0
19.9
19.8
19.6
19.8 | 16.0
16.4
16.7
16.9 | 15.7
15.9
16.3
16.4
15.7 | 15.9
16.2
16.5
16.6
16.1 | 14.1
13.8
13.6
13.7
13.8 | 13.5
13.4
13.5 | 13.8
13.7
13.5
13.6
13.7 | 8.1
7.4
7.1
6.6
6.6 | 7.6
7.1
6.4
6.3
6.2 | 7.8
7.2
6.9
6.5
6.4 | | 6
7
8
9
10 | 20.0
19.3
18.7
18.7 | 18.6
18.2
18.4 | 19.6
19.0
18.5
18.5 | 15.9
15.7
15.8
15.8 | 15.4 | 15.7
15.6
15.6
15.7
15.6 | 13.2 | 13.7
13.9
13.2 | 13.8
13.9
14.0
13.7
12.8 | 6.2
6.0
6.2
6.4 | 6.2
6.0
5.7
6.0
6.1 | 6.4
6.1
5.9
6.1
6.3 | | 11
12
13
14
15 | 19.0
18.9
19.0
19.3
19.1 | 18.7
18.7
18.9 | 18.8
18.8
18.9
19.1
18.8 | 15.7
15.4
15.2
15.2 | 15.2
15.0
14.9
14.8
14.9 | 15.4
15.2
15.0
15.0 | 12.8
12.9
13.3
13.3 | 12.8
12.9
13.0 | 12.7
12.8
13.1
13.1
12.9 | 7.1
7.0
6.9
7.2
7.2 | 6.4
6.6
6.6
6.9
7.0 | 6.7
6.8
6.8
7.0
7.1 | | 16
17
18
19
20 | 18.6
18.1
17.5
17.4
17.7 | 17.5
17.1
17.0 | 18.3
17.8
17.3
17.2
17.3 | 15.1
15.1
15.4
15.2
14.8 | 14.9
14.9
14.9
14.8
14.4 | 15.0
15.0
15.1
14.9
14.5 | 13.1
13.5
13.3
13.1
12.4 | 13.1
13.1
12.4 | 13.0
13.3
13.2
12.8
12.3 | 7.4
7.5
7.6
7.5
7.4 | 7.1
7.3
7.4
7.2
7.1 | 7.2
7.4
7.5
7.4
7.2 | | 21
22
23
24
25 | 17.6
17.7
18.0
18.6
18.5 | 17.5
17.6
17.9 | 17.4
17.6
17.8
18.2
18.3 | 14.4
14.0
13.9
14.1
14.5 | 14.0
13.6
13.6
13.9
14.0 | 14.2
13.8
13.7
14.0
14.2 | 12.1
11.9
11.9
11.6
11.0 | 11.8
11.5
11.5
11.0
10.2 | 12.0
11.7
11.8
11.3
10.6 | 7.6
7.7
8.4
9.3
8.2 | 7.4
7.4
7.5
8.2
7.5 | 7.5
7.5
8.0
8.8
7.8 | | 26
27
28
29
30
31 | 17.9
17.0
16.2
16.0
15.7 | 17.0
16.2
15.7
15.5
15.4 | 17.5
16.6
16.0
15.7
15.6
15.8 | 14.2
14.6
14.5
14.6 | 14.0
14.1
14.3
14.3 | 14.1
14.4
14.4
14.4
14.2 | 10.2
9.7
9.5
9.2
9.0
8.5 | 9.7
9.4
9.0
9.0
8.5
8.1 | 10.0
9.6
9.3
9.1
8.6
8.2 | 9.3
9.2
9.6
10.0
10.5
11.3 | 8.2
8.9
9.1
9.6
10.0
10.5 | 8.9
9.0
9.3
9.8
10.3 | | MONTH | 20.4 | 15.4 | 18.1 | 16.9 | 13.6 | 15.0 | 14.2 | 8.1 | 12.2 | 11.3 | 5.7 | 7.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | 11.4
11.0 | FEBRUARY
11.0
10.6
10.2
9.7 | | | | MEAN
8.4
8.5
8.4
8.1
7.9 | | APRIL
10.9
11.2 | MEAN 11.1 11.5 11.8 11.6 11.6 | 18.4
18.1 | | MEAN 18.1 17.8 17.6 17.3 17.4 | | DAY 1 2 3 4 5 | 11.4
11.0
10.7
10.2
9.7 | 11.0
10.6
10.2
9.7
9.2 | 11.3
10.7
10.4
10
9.4 | 8.6
8.6
8.6
8.2
8.3 | MARCH | 8.4
8.5
8.4
8.1 | 11.3
11.8
12.0
11.8 | APRIL 10.9 11.2 11.7 11.4 11.7 | 11.1
11.5
11.8
11.6
11.6 | 18.4
18.1 | MAY
17.9
17.6
17.4
17.1 | 18.1
17.8
17.6
17.3 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | 11.4
11.0
10.7
10.2
9.7
9.2
8.8
8.6
8.9
9.1
9.1 | FEBRUARY 11.0 10.6 10.2 9.7 9.2 8.8 8.4 8.3 8.4 8.8 8.9 8.7 | 11.3
10.7
10.4
10
9.4
9.0
8.6
8.4
8.6
8.9 | 8.6
8.6
8.2
8.3
8.6
8.9
9.4
9.5
9.6 | MARCH 8.1 8.4 8.1 7.9 7.6 7.9 8.3 8.7 9.2 9.3 9.3 9.5 | 8.4
8.5
8.4
8.1
7.9
8.2
8.6
9.1
9.4
9.5 | 11.3
11.8
12.0
11.8
11.7
11.9
12.0
12.2
12.4 | APRIL 10.9 11.2 11.7 11.4 11.3 11.4 11.7 11.9 12.2 12.1 12.5 13.1 | 11.1
11.5
11.8
11.6
11.6
11.7
11.8
12.1
12.3
12.4 | 18.4
18.1
17.9
17.5
17.8
17.7
18.1
18.6
18.2
18.0 | MAY 17.9 17.6 17.4 17.1 17.0 17.4 17.8 17.9 | 18.1
17.8
17.6
17.3
17.4
17.5
17.8
18.1
17.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 11.4
11.0
10.7
10.2
9.7
9.2
8.8
8.6
8.9
9.1
9.1
9.0
9.0
8.8 | FEBRUARY 11.0 10.6 10.2 9.7 9.2 8.8 8.4 8.3 8.4 8.8 8.9 8.7 8.7 8.5 | 11.3
10.7
10.4
10
9.4
9.0
8.6
8.6
8.9
9.0
8.8
8.7 | 8.6
8.6
8.2
8.3
8.6
8.9
9.4
9.5
9.6
9.8
10.0 | MARCH 8.1 8.4 8.1 7.9 7.6 7.9 8.3 8.7 9.2 9.3 9.3 9.5 10.0 10.1 | 8.4
8.5
8.4
8.1
7.9
8.2
8.6
9.1
9.5
9.6
9.7
10.1 | 11.3
11.8
12.0
11.8
11.7
11.9
12.0
12.2
12.4
12.8
13.1
13.7
14.0 | APRIL 10.9 11.2 11.7 11.4 11.3 11.4 11.7 11.9 12.2 12.1 12.5 13.1 13.6 14.0 | 11.1
11.5
11.8
11.6
11.6
11.7
11.8
12.1
12.3
12.4
12.8
13.3
13.8
14.2 | 18.4
18.1
17.9
17.5
17.8
17.7
18.1
18.6
18.2
18.0
18.1
17.9
17.5 | MAY 17.9 17.6 17.4 17.1 17.0 17.4 17.8 17.9 17.6 | 18.1
17.8
17.6
17.3
17.4
17.5
17.8
18.1
17.9
17.8
17.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 11.4
11.07
10.7
10.2
9.7
9.2
8.8
8.6
8.9
9.1
9.0
9.0
8.8
8.8 | FEBRUARY 11.0 10.6 10.2 9.7 9.2 8.8 8.4 8.3 8.4 8.8 8.9 8.7 8.7 8.7 8.7 8.7 8.7 9.0 | 11.3
10.7
10.4
10
9.4
9.0
8.6
8.9
9.0
8.8
8.7
8.8
8.9
8.9
8.9
8.9
8.9 | 8.6
8.6
8.2
8.3
8.6
8.9
9.4
9.5
9.6
0.0
10.3
10.6
11.3 | MARCH 8.1 8.4 8.1 7.9 7.6 7.9 8.3 8.7 9.2 9.3 9.3 9.5 10.0 10.1 10.5 11.2 11.1 11.6 11.5 | 8.4
8.5
8.4
8.1
7.9
8.2
8.6
9.1
9.4
9.5
9.6
9.7
10.1
10.4
10.9 | 11.3
11.8
12.0
11.8
11.7
11.9
12.0
12.2
12.4
12.8
13.1
13.7
14.0
14.5
15.0 | APRIL 10.9 11.2 11.7 11.4 11.3 11.4 11.7 11.9 12.2 12.1 12.5 13.1 13.6 14.0 14.4 15.0 15.8 16.2 16.3 | 11.1
11.5
11.8
11.6
11.6
11.7
11.8
12.1
12.3
12.4
12.8
13.3
13.8
14.2
14.7 | 18.4
18.1
17.9
17.5
17.8
17.7
18.1
18.6
18.2
18.0
18.1
17.9
17.5
17.0 | MAY 17.9 17.6 17.4 17.1 17.0 17.4 17.8 17.9 17.6 17.5 17.7 17.5 17.0 16.7 | 18.1
17.6
17.3
17.4
17.5
17.8
18.1
17.9
17.8
17.9
17.8
17.9
17.8
17.2
16.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 11.4
11.0.7
10.2
9.7
9.2
8.8
8.6
8.9
9.1
9.0
9.0
9.0
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 11.0
10.6
10.2
9.7
9.2
8.8
8.4
8.3
8.4
8.8
8.7
8.7
8.7
8.7
8.5
8.7
9.1
9.5
9.4
9.5
9.7 | 11.3
10.7
10.4
10 9.4
9.0
8.6
8.4
8.6
8.9
9.0
8.8
8.7
8.8
8.9
8.9
8.9
9.0
9.5
9.7
9.6
9.7
9.7
9.7
9.7
9.7
9.8 | 8.6
8.6
8.2
8.3
8.6
8.9
9.4
9.5
9.6
10.3
10.6
11.3
11.5
12.2
12.2
12.2
12.1
11.9
11.3
11.3
11.2 | MARCH 8.1 8.4 8.1 7.9 7.6 7.9 8.3 8.7 9.2 9.3 9.5 10.0 10.1 10.5 11.2 11.1 11.6 11.5 12.0 11.9 11.1 10.9 11.0 10.8 11.0 10.5 | 8.4
8.5
8.4
8.1
7.9
8.2
8.6
9.1
9.5
9.6
9.7
10.1
10.4
10.9
11.3
11.7
11.7
11.7
11.7
11.1
11.2
11.1
11.2
11.1
11.2 | 11.3
11.8
12.0
11.8
11.7
11.9
12.0
12.2
12.4
12.8
13.1
13.7
14.0
14.5
15.0
15.9
16.4
16.6
17.2
17.5
17.8
18.2
17.6
17.6
18.0 | APRIL 10.9 11.2 11.7 11.4 11.3 11.4 11.7 11.9 12.2 12.1 12.5 13.1 13.6 14.0 14.4 15.0 15.8 16.2 16.3 17.5 16.7 17.1 17.2 17.3 16.8 17.4 17.9 17.7 | 11.1
11.5
11.8
11.6
11.6
11.7
11.8
12.1
12.3
12.4
12.8
13.3
14.2
14.7
15.5
16.1
16.6
17.0
17.5
17.8
17.1
17.3
17.5
17.7
17.2
17.8
18.1
17.9 |
18.4
18.1
17.9
17.5
17.8
17.7
18.1
18.6
18.2
18.0
18.1
17.5
17.0
17.3
17.3
17.3
16.5
16.1
16.3
16.4
16.9
17.0
17.4 | MAY 17.9 17.6 17.4 17.1 17.0 17.4 17.4 17.8 17.9 17.6 17.5 17.7 17.5 17.0 16.7 17.0 16.7 17.1 16.5 15.8 15.9 16.3 16.7 16.8 | 18.1
17.8
17.6
17.3
17.4
17.5
17.8
18.1
17.9
17.8
17.9
17.2
16.9
17.0
17.2
16.1
15.8
16.1
15.8 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 11.4
11.07
10.2
9.7
9.2
8.8
8.6
8.9
9.1
9.0
8.8
8.8
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1 | ## FEBRUARY 11.0 10.6 10.2 9.7 9.2 8.8 8.4 8.3 8.4 8.8 8.9 8.7 8.7 8.5 8.7 8.7 8.9 9.1 9.5 9.5 9.4 9.5 9.7 9.3 8.5 8.3 | 11.3
10.7
10.4
10
9.4
9.0
8.6
8.9
9.0
8.8
8.7
8.8
8.9
9.0
9.5
9.7
9.6
9.7
9.9
9.7
8.8 | 8.6
8.6
8.2
8.3
8.6
8.9
9.4
9.5
9.6
10.3
10.6
11.3
11.5
12.2
12.2
12.0
12.2
12.1
11.9
11.3
11.3
11.3
11.3 | MARCH 8.1 8.4 8.1 7.9 7.6 7.9 8.3 8.7 9.2 9.3 9.3 9.5 10.0 10.1 10.5 11.2 11.1 11.6 11.5 12.0 11.9 11.1 10.9 11.0 10.8 | 8.4
8.5
8.4
8.1
7.9
8.2
8.6
9.1
9.4
9.5
9.6
9.7
10.1
10.4
10.9
11.3
11.7
11.7
12.1
12.0
11.5
11.1
11.2
11.2 | 11.3
11.8
12.0
11.8
11.7
11.9
12.0
12.2
12.4
12.8
13.1
13.7
14.0
14.5
15.0
15.9
16.4
16.6
17.2
17.5
17.8
18.2
17.6
17.6
18.0
17.6
18.0 | APRIL 10.9 11.2 11.7 11.4 11.3 11.4 11.7 11.9 12.2 12.1 12.5 13.1 13.6 14.0 14.4 15.0 15.8 16.2 16.3 16.5 17.3 17.5 16.7 17.1 17.2 | 11.1
11.5
11.6
11.6
11.7
11.8
12.1
12.3
12.4
12.8
13.3
13.8
14.2
14.7
15.5
16.1
16.6
17.0
17.5
17.8
17.1
17.3
17.5 | 18.4
18.1
17.9
17.5
17.8
17.7
18.1
18.6
18.2
18.0
18.1
17.9
17.5
17.0
17.3
17.3
17.3
17.3
17.3
17.1
16.5
16.4
17.0
17.4 | MAY 17.9 17.6 17.4 17.1 17.0 17.4 17.8 17.9 17.6 17.5 17.7 17.5 17.0 16.7 17.0 16.5 15.8 15.9 16.3 16.7 16.8 17.4 17.5 18.6 | 18.1
17.6
17.3
17.4
17.5
17.8
18.1
17.9
17.8
17.9
17.8
17.2
16.9
17.0
17.2
16.1
15.8
16.1
15.8 | ### 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAV | MAN | | MEDAL ONE, | | | | | | | | MIN | MEAN | |---|---|---|--|--|--|---|--|--|---|--|---|--| | DAY | MAX | MIN | MEAN | MAX | | MEAN | | | | MAX | | MEAN | | 4 | 00 5 | JUNE | 00.4 | | JULY | 06.6 | | AUGUST | | | SEPTEMBE | | | 1 2 | 20.7 | 19.6
19.8 | 20.1
20.3
20.8 | 26.9 | 26.4 | 26.8 | 26.4 | 25.6
25.6 | 25.9
26.1
26.8
26.4
26.7 | 26.6 | 25.9
25.6 | 26.1
25.8 | | 3
4 | 21.3
21.7 | 20.9 | 21.0 | | | | 27.1 | 26.1 | 26.1
26.8
26.4
26.7 | 26.6
26.3 | 25.5 | 25.8
25.8 | | 5 | 22.1 | | | | | | | | | | 24.5 | | | 6
7 | 21.9
21.8 | 21.5
21.0 | 21.7
21.6
21.6
22.9
23.5 | | | | 26.6
25.9 | 25.8
25.0 | 26.3
25.5
25.9
26.6
26.6 | 24.9
25.1 | 24.2
24.6 | | | 8 | 22.7 | 20.9 | 21.6 | 26.9 | 26.9 | 27.2
27.0 | 26.7 | 25.2 | 25.9 | 25.8
25.3 | 24.8 | 25.2 | | | 24.2 | 23.1 | 23.5 | 26.9 | 26.5 | 26.8 | | | 26.3
25.5
25.9
26.6
26.6 | 25.4 | 24.7 | | | 11 | 23.7 | 22.9 | 23.4 | 26.5
26.8 | 26.2 | 26.3 | 26.6 | 26.3 | 26.4 | 25.2 | 24.5 | 24.7 | | 12
13 | 24.4 | 23.0
23.8 | | 26.8 | 26.5 | 26.7 | 27.2 | 26.4 | 26.7 | 24.9 | 24.0
23.9 | 24.4 | | 14
15 | 23.7
24.4
24.6
24.0
24.0 | 23.6
22.9 | 23.9
23.4 | | | | 26.6
26.3 | 26.0
26.0 | 26.4
26.7
26.1
26.2
26.2 | 25.0
25.4 | 24.7
24.9 | 24.9
25.1 | | | | | 23.5 | | | | 26.2 | 25.7 | 25.9 | 25.2 | 24.9 | 25.1 | | 17
18 | 24.3 | 23.0
24.2 | 23.6 | 26.7 | 26.1 | 26.4 | 26.1
26.3 | 25.4 | 25.8
26.1 | 25.0
24.5 | 24.5
24.2 | 24.8 | | 19
20 | 23.7
24.3
25.0
25.2
25.6 | 24.9
25.1 | 23.5
23.6
24.6
25.1
25.4 | 26.1 | 25.8 | 26.4
26.0
26.1 | 26.1 | 25.4
25.9
25.6
25.9 | 25.9
25.8
26.1
25.9
26.1 | 24.8 | 24.2
24.6 | 24.4 | | 20 | 23.0 | | | | | 26.3 | 26.0 | | | | | | | 22 | 26.0
25.9
25.7 | 25.2 | 25.5
25.4
25.2
25.2
25.4 | 26.7 | 26.1
26.2
26.4
26.0
26.2 | 26.3
26.4
26.6
26.4
26.7 | 26.9 | 25.8 | 26.1
26.2
26.1
25.9
25.7 | 24.8 | 24.4
23.7 | | | 23
24 | 25.7
25.6
25.6 | 25.0
24.8 | 25.2
25.2 | 26.9
26.9 | 26.4 | 26.6 | 26.3
26.2 | 25.9
25.7 | 26.1
25.9 | 23.8 | 23.0
22.6 | 23.6
22.8 | | | | | | | | | | 25.4 | 25.7 | 22.6 | 22.2 | 22.5 | | 26
27 | 25.8
25.9 | 25.3
25.5 | 25.5
25.7
25.6
25.8
26.4 | 27.3
26.9 | 26.5
26.4
26.4
26.2
25.5
25.6 | 26.8
26.7
26.7
26.5
25.8
26.0 | 25.7
25.6 | 25.1
25.1 | 25.3
25.3
25.5
25.7
25.6
25.8 | 22.2
21.5 | 20.9
20.9 | | | 28 | 25.8 | 25.5
25.6 | 25.6 | 26.9 | 26.4 | 26.7 | 25.9 | 25.1 | 25.5 | 21.5 | 20.6 | 21.0
21.0 | | 30 | 27.0 | 26.0 | 26.4 | 26.4 | 25.5 | 25.8 | 26.0 | 25.4 | 25.6 | 21.1 | 20.9 | 21.0 | | 31 | | | | 26.4 | | 26.0 | 26.3 | 25.4 | 25.8 | | | | | MONTH | 27.0 | 19.6 | 23.7 | 27.3 | 25.5 | 26.5 | 27.4 | 25.0 | 26.0 | 26.6 | 20.6 | 24.1 | | | | | | | | | | | | | | | | | | OXYGE |
EN DISSOLVE | D, in (M | IG/L), WA | TER YEA | R OCTOBER 2 | 2001 TO | SEPTEMBER | 2002 | | | | DAY | MAX | | EN DISSOLVE
MEAN | | | | R OCTOBER 2 | | | 2002
MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | MIN | MEAN | | MIN
JANUARY | | | | 9.5 | MIN
OCTOBER | MEAN | MAX
N | MIN
OVEMBER | MEAN | MAX
1 | MIN
DECEMBER | MEAN | MAX | | | | 1
2 | 9.5 | MIN
OCTOBER | MEAN | MAX
N | MIN
OVEMBER | MEAN | MAX
1 | MIN
DECEMBER | MEAN | MAX
11.6
11.9 | JANUARY
11.0
11.3 | 11.3
11.6 | | 1
2
3
4 | 9.5
9.0
8.8
8.5 | MIN
OCTOBER
8.0
8.3
7.3
7.1 | MEAN | MAX
N | MIN
OVEMBER | MEAN | MAX
1 | MIN
DECEMBER | MEAN | MAX
11.6
11.9
12.0
12.3 | JANUARY
11.0
11.3
11.6
11.7 | 11.3
11.6
11.8
12.0 | | 1
2
3
4
5 | 9.5
9.0
8.8
8.5
8.6 | MIN
OCTOBER
8.0
8.3
7.3
7.1
7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 | MAX
9.9
9.8
9.8
9.7
9.8 | MIN
OVEMBER
8.2
8.5
8.3
7.7
8.5 | 9.4
9.3
9.4
9.0
9.3 | MAX
9.4
9.4
9.6
9.6
9.7 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 | 9.2
9.3
9.4
9.5
9.6 | MAX
11.6
11.9
12.0
12.3
12.6 | JANUARY
11.0
11.3
11.6
11.7
12.0 | 11.3
11.6
11.8
12.0
12.3 | | 1
2
3
4
5 | 9.5
9.0
8.8
8.5
8.6 | MIN
OCTOBER
8.0
8.3
7.3
7.1
7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 | MAX
9.9
9.8
9.8
9.7
9.8 | MIN
OVEMBER
8.2
8.5
8.3
7.7
8.5 | 9.4
9.3
9.4
9.0
9.3 | MAX
9.4
9.4
9.6
9.6
9.7 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 | 9.2
9.3
9.4
9.5
9.6 | 11.6
11.9
12.0
12.3
12.6 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 | 11.3
11.6
11.8
12.0
12.3 | | 1
2
3
4
5
6
7
8 | 9.5
9.0
8.8
8.5
8.6 | MIN
OCTOBER
8.0
8.3
7.3
7.1
7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 | MAX
9.9
9.8
9.8
9.7
9.8 | MIN
OVEMBER
8.2
8.5
8.3
7.7
8.5 | 9.4
9.3
9.4
9.0
9.3 | MAX
9.4
9.4
9.6
9.6
9.7 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 | 9.2
9.3
9.4
9.5
9.6 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 12.5 12.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5 | | 1
2
3
4
5 | 9.5
9.0
8.8
8.5
8.6 | MIN
OCTOBER
8.0
8.3
7.3
7.1
7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 | MAX
N | MIN
OVEMBER
8.2
8.5
8.3
7.7
8.5 | 9.4
9.3
9.4
9.0
9.3 | MAX
9.4
9.4
9.6
9.6
9.7 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 | 9.2
9.3
9.4
9.5
9.6 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 12.5 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7 | | 1
2
3
4
5
6
7
8
9
10 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 | 9.9
9.8
9.8
9.7
9.8
10.0
1.1
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1 | MAX
9.4
9.6
9.6
9.7
9.9
9.7
9.5
9.4
9.3 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 9.1 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1 | 11.6
11.9
12.0
12.3
12.6
12.6
12.7
12.8
13.0 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 12.5 12.1 12.6 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8 | | 1
2
3
4
5
6
7
8
9
10 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.8
8.7
8.6 | MIN OCTOBER 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 | MEAN 8 | MAX
9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.8 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1 | MAX
9.4
9.6
9.6
9.7
9.9
9.7
9.5
9.4
9.3 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.0 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
12.8
13.0
12.8 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 12.5 12.1 12.6 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8 | | 1
2
3
4
5
6
7
8
9
10 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.6 | MEAN 8.8 8.6 8.3 7.7 8.2 8.1 8.2 8.3 8.4 8.0 8.0 | MAX
9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
10.1 | 9.4
9.4
9.6
9.6
9.7
9.9
9.7
9.5
9.4
9.3 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.2 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0 | MAX
9.9
9.8
9.8
9.7
9.4
10.2
10.1
10.3
10.2
10.3
10.2 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.2 9.4 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
9.6
10.1
10.3
9.6
9.9 | MAX 9.4 9.4 9.6 9.6 9.7 9.9 9.7 9.5 9.4 9.3 9.3 9.3 9.3 9.6 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.1 9.3 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2 | 11.6
11.9
12.0
12.3
12.6
12.6
12.7
12.8
12.8
13.0
12.8
13.0 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.0 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.8
12.9
13.2 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.8
8.7
8.6 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 | 8.8
8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0 | 9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.8
10.1
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 9.5 9.6 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
10.3
9.6
9.9 | MAX 9.4 9.4 9.6 9.6 9.7 9.9 9.7 9.5 9.4 9.3 9.3 9.3 9.3 9.6 9.6 9.6 9.6 9.7 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.1 9.3 9.5 8.8 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0
13.1
13.2
13.5
13.9 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.0 12.4 12.5 12.1 12.6 12.5 12.4 12.6 13.0 13.1 13.2 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.7
12.8
12.9
13.5
13.5
13.3
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0 | 9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.8
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 | MEAN 9.4 9.3 9.4 9.0 9.3 9.2 8.9 9.5 9.8 10.1 10.3 9.6 10.1 10.3 9.6 9.9 | 9.4
9.4
9.6
9.6
9.7
9.9
9.7
9.5
9.4
9.3
9.3
9.3
9.3
9.6
9.6 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.1 9.3 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.1 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0
12.8
13.0
13.1
13.1
13.2
13.5 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.8
12.9
13.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6 | MIN OCTOBER 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 6.8 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0 | MAX
9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.1
10.3
10.2
10.1
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 9.5 9.2 9.6 9.7 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
9.6
10.1
10.3
9.6
9.9 | 9.4
9.4
9.6
9.7
9.9
9.7
9.5
9.4
9.3
9.3
9.3
9.1
9.3
9.6 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.1 9.3 9.5 8.8 8.8 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2
9.1 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
12.8
13.0
12.8
13.0
13.1
13.2
13.5 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.1 13.1 13.2 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.5
12.5
12.8
12.6
12.7
12.8
12.9
13.2
13.5
13.3
13.5
13.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 |
9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6
8.5

8.9
9.4 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.6 7.6 7.6 7.8 8.1 7.4 8.1 7.6 7.6 7.8 8.1 7.4 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0
8.0
 | 9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.1
10.3
10.2
10.1
10.3 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.7 9.3 9.5 9.4 9.5 9.4 9.5 9.6 9.7 9.1 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
10.3
9.6
10.1
10.3
9.9
9.9
9.7 | 9.4
9.4
9.6
9.6
9.7
9.7
9.5
9.4
9.3
9.3
9.3
9.3
9.6
9.5
9.0
9.0
9.1 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.0 9.1 9.3 9.5 8.8 8.8 8.8 8.8 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.1
9.5
9.5 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0
13.1
13.1
13.2
13.5
13.9
13.6
13.9
13.7
13.7 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.1 13.1 13.1 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.9
13.2
13.5
13.3
13.5
13.3 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.5

8.9
9.4
10.6
10.4
9.9
9.0 | MIN OCTOBER 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 6.8 8.0 8.7 8.6 7.4 | MEAN 8 | MAX
9.9
9.8
9.8
9.7
7.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.1
10.3
10.2
10.1
10.6
10.0
10.2
10.1 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 9.5 9.2 9.6 9.7 9.1 9.1 9.1 9.1 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
10.3
9.6
9.9
9.7
10.0
9.9
9.7 | MAX 9.4 9.6 9.6 9.7 9.9 9.7 9.5 9.4 9.3 9.3 9.3 9.3 9.1 9.3 9.6 9.6 9.7 9.9 9.9 9.9 9.9 9.9 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.3 9.5 8.8 8.8 8.8 9.0 9.3 9.3 9.6 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2
9.1
9.2
9.5
9.5
9.5
9.5 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
12.8
13.0
13.1
13.2
13.5
13.9
13.7
13.7 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.0 13.1 13.1 13.1 13.1 13.2 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.5
12.8
12.6
12.7
12.8
12.9
13.2
13.5
13.3
13.5
13.3
13.3
13.3
13.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6
8.5

8.9
9.4
10.6
10.4
9.9
10.0
10.0 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 6.8 8.0 8.7 8.6 7.6 8.4 8.4 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0
8.0
 | 9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.1
10.3
10.2
11.0
10.0
10.1
10.0
10.0
10.0
10.0 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 9.5 9.6 9.7 9.1 9.1 9.1 9.3 9.2 9.2 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
10.3
9.6
9.9
9.7
10.0
9.9
9.7 | MAX 9.4 9.4 9.6 9.6 9.7 9.9 9.7 9.5 9.4 9.3 9.3 9.3 9.3 9.1 9.3 9.6 9.6 9.6 9.7 9.9 9.7 9.9 9.7 9.9 9.7 9.8 9.8 10.1 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 9.1 9.0 9.1 9.3 9.5 8.8 8.8 8.8 8.8 9.0 9.3 9.6 9.6 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.1
9.5
9.5
9.7
9.5
9.5
9.7 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0
13.1
13.2
13.5
13.9
13.7
14.1
14.4
13.9
13.9 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.1 13.1 13.2 13.1 13.1 13.2 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.8
12.9
13.2
13.5
13.3
13.5
13.3
13.5
13.4
13.4 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6
8.5

8.9
9.4
10.6
10.4
9.9
10.0
10.0 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.6 7.6 7.8 8.1 7.4 8.1 8.4 8.4 8.4 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0
8.0
 | 9.9
9.8
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.1
10.3
10.2
11.4
9.9
9.8
10.1
10.9
10.1
10.9
10.1
10.9
10.1
10.9
10.1
10.9
10.1
10.9
10.1
10.9
10.1
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10. | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.7 9.3 9.5 9.4 9.5 9.6 9.7 9.1 9.1 9.1 9.3 9.2 9.6 9.7 9.1 | 9.4
9.3
9.4
9.0
9.3
9.5
9.5
9.5
9.7
10.1
10.3
9.6
9.7
10.0
9.9
9.7
10.0
9.7 | 9.4
9.4
9.6
9.6
9.7
9.7
9.5
9.4
9.3
9.3
9.3
9.3
9.5
9.0
9.0
9.0
9.7
9.5
9.0
9.1 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 9.1 9.0 9.1 9.3 9.5 8.8 8.8 8.8 9.0 9.3 9.3 9.3 9.6 9.7 10.0 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.1
9.5
9.5
9.5
9.5
9.5
9.7
9.5 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
13.0
13.1
13.2
13.5
13.9
13.6
13.9
13.7
13.7
14.1
14.4
13.9
14.2 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.0 13.1 13.1 13.2 13.1 13.1 13.2 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.8
13.3
13.5
13.3
13.5
13.3
13.1
13.8
13.9
13.3
13.1
14.0 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.5

8.9
9.4
10.6
10.4
9.9
9.0
10.0 | MIN OCTOBER 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 6.8 8.0 8.7 8.6 7.6 7.4 8.4 | MEAN 8 |
9.9
9.8
9.8
9.7
7.8
10.0
9.4
10.2
10.1
10.3
10.2
10.8
10.1
10.3
10.2
11.4
9.9
11.4
9.8
10.1
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.3 9.7 9.3 9.5 9.2 9.4 9.5 9.7 9.1 9.1 9.1 9.1 9.1 9.2 9.2 9.4 9.5 8.5 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.8
10.1
10.3
9.6
9.9
9.7
10.0
9.9
9.7 | MAX 9.4 9.4 9.6 9.6 9.7 9.9 9.7 9.5 9.4 9.3 9.3 9.3 9.3 9.3 9.3 9.6 9.6 9.5 9.0 9.0 9.1 9.5 9.7 9.8 9.8 10.1 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 8.9 9.0 9.1 9.3 9.5 8.8 8.8 8.8 8.8 9.0 9.3 9.6 9.6 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2
9.1
9.2
9.5
9.5
9.5
9.5
9.5 | 11.6
11.9
12.0
12.3
12.6
12.7
12.8
12.8
13.0
13.1
13.2
13.5
13.9
13.7
13.7
14.4
13.9
14.2 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.0 13.1 13.1 13.1 13.2 13.1 13.1 13.1 13.5 13.4 12.9 12.6 13.3 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.5
12.8
12.6
12.7
12.8
12.9
13.2
13.5
13.3
13.5
13.4
13.3
13.4
13.3
13.4
13.3 | | 1 2 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 9.5
9.0
8.8
8.5
8.6
8.7
8.6
8.7
8.6
8.5
 | MIN OCTOBEF 8.0 8.3 7.3 7.1 7.6 7.3 8.0 7.8 8.1 7.4 7.6 7.0 6.7 6.8 8.0 8.7 6.8 8.0 8.7 8.6 7.6 8.4 8.4 8.4 7.7 | 8.8
8.6
8.3
7.7
8.2
8.1
8.2
8.3
8.4
8.0
8.0

7.5
8.7
9.7
9.8
8.8
8.2
9.7 | 9.9
9.8
9.8
9.7
9.8
10.0
9.4
10.2
10.1
10.3
10.2
10.1
10.3
10.2
11.4
9.9
9.8
10.1
10.0
10.1
10.0
10.0
10.1
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10 | MIN OVEMBER 8.2 8.5 8.3 7.7 8.5 8.4 8.5 8.8 9.7 9.3 9.5 9.2 9.4 9.5 9.6 9.7 9.1 9.1 9.1 9.1 9.3 9.2 9.4 8.7 | 9.4
9.3
9.4
9.0
9.3
9.2
8.9
9.5
9.5
9.6
9.7
10.0
9.9
9.7
10.0
9.9
9.7
10.0
9.6
9.6
9.6
9.6 | 9.4
9.4
9.6
9.6
9.7
9.9
9.7
9.5
9.4
9.3
9.3
9.2
9.1
9.5
9.0
9.0
9.1
9.7
9.8
9.8 | MIN DECEMBER 9.0 9.2 9.3 9.4 9.5 9.6 9.4 9.0 9.1 9.0 9.1 9.3 9.5 8.8 8.8 8.8 8.8 9.0 9.3 9.3 9.6 9.6 | 9.2
9.3
9.4
9.5
9.6
9.7
9.5
9.2
9.1
9.2
9.1
9.2
9.1
9.5
9.5
9.5
9.5
9.5
9.5 | 11.6
11.9
12.0
12.3
12.6
12.6
12.7
12.8
13.0
13.1
13.2
13.5
13.9
13.7
14.1
14.4
13.9
13.9
14.2 | JANUARY 11.0 11.3 11.6 11.7 12.0 12.4 12.5 12.1 12.6 12.5 12.1 12.6 13.1 13.1 13.2 13.1 13.1 13.2 13.1 13.1 | 11.3
11.6
11.8
12.0
12.3
12.4
12.5
12.7
12.5
12.8
12.6
12.7
12.8
13.3
13.5
13.3
13.5
13.3
13.1
14.0
12.6
12.7
12.9
13.2 | MONTH 11.1 6.7 8.7 11.4 7.7 9.6 11.3 8.8 9.6 14.4 11.0 12.7 CUMBERLAND RIVER BASIN 117 03431514 CUMBERLAND RIVER NEAR BORDEAUX, TN--Continued OXYGEN DISSOLVED, in (Mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | OXYGEN | DISSO | LVED, in | (MG/L), | WATER YEAR | COCTOBER | 2001 10 | SEPTEMBE | R 2002 | | | |---|--|---|--|---|-------------------------------------
---|----------------------|---------------|--------------|--|-----------------|----------------| | DAY | MAX | MIN | MEAN | MAX | MIN | I MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | I | | APRIL | | | MAY | | | 1 | 11.4 | 11.1 | 11.3 | 13.0 | 12.5 | 12.8 | 11.3 | 10.6 | 11.1 | 10.7 | 10.0 | 10.3 | | 2 | 11.7 | 11.3 | 11.6 | 12.8 | 12.4 | 12.6 | 11.2 | 10.9 | 11.0 | 10.3 | 10.0 | 10.2 | | 3
4 | 11.5
11.5 | 11.3
11.2 | 11.4
11.3 | 12.8
13.5 | 12.3
12.7 | | 11.0
11.1 | 10.8
10.8 | 10.9
10.9 | 10.4
10.7 | 10.0
10.1 | 10.2
10.4 | | 5 | 11.7 | 11.5 | 11.6 | 13.8 | 12.9 | | 10.8 | 10.3 | 10.4 | 11.2 | 10.1 | 10.4 | | 6 | 11.8 | 11.6 | 11.7 | 14.3 | 13.2 | 13.7 | 10.7 | 10.3 | 10.6 | 11.0 | 10.4 | 10.8 | | 7 | 11.9 | 11.7 | 11.8 | 14.5 | 13.2 | | 10.7 | 10.5 | 10.7 | 10.9 | 10.4 | 10.6 | | 8 | 11.9 | 11.7 | 11.8 | 14.6 | 13.7 | | 10.8 | 10.5 | 10.7 | 11.7 | 10.5 | 11.0 | | 9
10 | 11.8
11.8 | 11.7
11.7 | 11.7
11.8 | 14.1
14.2 | | | 10.6
10.8 | 10.4
10.5 | 10.5
10.7 | 11.8
11.1 | 10.9
10.0 | 11.2
10.8 | | 11 | 12.0 | 11.8 | 11.9 | 14.4 | 12 5 | 14.0 | 11.2 | 10.7 | 10.9 | 11.2 | 10.7 | 10.9 | | 12 | 12.4 | 11.8 | 12.0 | 14.2 | 13.5
13.6 | | 10.9 | 10.7 | 10.9 | 10.8 | 10.7 | 10.9 | | 13 | 13.4 | 12.4 | 12.9 | 14.2 | 13.4 | | 10.8 | 10.6 | 10.7 | | 9.7 | 10.2 | | 14
15 | 13.8
13.4 | 13.4 | 13.6 | 14.6
15.3 | | | 10.8
10.9 | 10.6
10.6 | 10.7
10.8 | 11.1
10.3 | 9.7
9.2 | 10.3
9.8 | | | | | | | | | | | | | | | | 16
17 | | | | 14.9
13.9 | 13.8 | | 11.3
12.5 | 10.7
10.8 | 11.0
11.4 | 9.9
9.2 | 8.9
8.5 | 9.3
8.9 | | 18 | | | | | | | 12.1 | 11.1 | 11.7 | 9.1 | 7.8 | 8.4 | | 19
20 |
11.9 | 11.6 | 11.7 | 10.8 | | | 12.2
11.9 | 11.2
10.9 | 11.6
11.5 | 9.9
9.6 | 9.1
8.9 | 9.5
9.2 | | | | | | | | | | | | | | | | 21
22 | 12.0
12.2 | 11.5
11.7 | 11.8
11.9 | 10.8
10.9 | 10.7
10.7 | | 11.6
11.2 | 10.9
10.6 | 11.3
10.9 | 9.3
9.7 | 8.6
8.6 | 9.0
9.3 | | 23 | 12.2 | 11.7 | 11.9 | 10.7 | 10.5 | | 10.8 | 9.9 | 10.2 | 10.0 | 8.9 | 9.5 | | 24 | 12.3 | 11.9 | 12.1 | 10.6 | 10.3 | | 10.5 | 9.7 | 10.1 | 10.3 | 9.2 | 9.9 | | 25 | 12.5 | 11.9 | 12.2 | 10.8 | 10.5 | 10.7 | 10.0 | 9.7 | 9.8 | 10.6 | 9.6 | 10.2 | | 26 | 12.4 | 12.1 | 12.2 | 10.6 | 10.4 | | | | | 10.6 | 9.7 | 10.2 | | 27
28 | 12.2
12.8 | 12.0
12.1 | 12.1
12.4 | 11.3
11.0 | 10.5
10.9 | | | | | 10.7
10.4 | 10.0
9.7 | 10.4
10.0 | | 29 | | | | 10.9 | 10.6 | 10.7 | 10.7 | 9.8 | 10.4 | 9.8 | 9.0 | 9.5 | | 30 | | | | 10.7 | 10.6 | | 11.0 | 9.7 | 10.3 | 9.8 | 8.9 | 9.4 | | 31 | | | | 10.7 | 10.5 | 10.6 | | | | 10.1 | 8.5 | 9.2 | | MONTH | 13.8 | 11.1 | 11.9 | 15.3 | 10.3 | 12.5 | 12.5 | 9.7 | 10.8 | 11.8 | 7.8 | 10.0 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | MAX | MIN | I MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | I MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBI | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | DAY
1
2 | MAX
10.4
9.7 | | MEAN
9.7
9.3 | MAX
7.3
7.6 | JULY
6.5 | 6.9 | MAX
 | | MEAN | MAX | | | | 1
2
3 | 10.4
9.7
9.3 | JUNE 9.2 8.8 8.6 | 9.7
9.3
8.9 | 7.3
7.6 | JULY
6.5
5.8 | 6.9
6.9 |
 | AUGUST | | | SEPTEMBI | ER

 | | 1
2 | 10.4
9.7 | JUNE
9.2
8.8 | 9.7
9.3 | 7.3
7.6 | JULY
6.5
5.8 | 6.9
8 6.9
 | | AUGUST | | | SEPTEMBE | ER
 | | 1
2
3
4
5 | 10.4
9.7
9.3
9.1
8.9 | JUNE 9.2 8.8 8.6 8.3 8.2 | 9.7
9.3
8.9
8.7
8.5 | 7.3
7.6
 | JULY 6.5 5.8 | 6.9
8 6.9

 |

 | AUGUST |

 |

 | SEPTEMBI | ER

 | | 1
2
3
4
5 | 10.4
9.7
9.3
9.1
8.9 | JUNE 9.2 8.8 8.6 8.3 8.2 | 9.7
9.3
8.9
8.7
8.5 | 7.3
7.6
 | JULY
6.5
5.8
 | 6.9
8 6.9

 |

 | AUGUST |

 | ==== | SEPTEMBI | ER

 | | 1
2
3
4
5 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.2 | 7.3
7.6

5.5 | JULY 6.5 5.8 4.2 | 6.9
8.6.9

2.5.2 |

 | AUGUST | | ==== | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9 | 10.4
9.7
9.3
9.1
8.9
8.2
7.6
7.9 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.2
7.6 | 7.3
7.6

5.5
5.1 | JULY 6.5 5.8 4.2 4.5 | 6.9
6.9

2.5.2
6.9 |

 | AUGUST |

 |

 | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.2
7.6
7.7 | 7.3
7.6

5.5
5.1
4.6 | JULY 6.5 5.8 4.2 4.5 4.2 | 6.9
6.9

2.5.2
4.7
4.4 |

 | AUGUST | |

 | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7 | 7.3
7.6

5.5
5.1
4.6 | JULY 6.5 5.8 4.2 4.5 4.2 | 6.9
8.6.9
 | | AUGUST | | ====
====
====
====
==== | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.2
7.6
7.7 | 7.3
7.6

5.5
5.1
4.6 | JULY 6.5 5.8 4.2 4.5 4.2 | 6.9
8.6.9
 |

 | AUGUST | |

 | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 | 9.7
9.3
8.9
8.5
7.8
7.2
7.2
7.6
7.7
7.1
6.9
6.4 | 7.3
7.6

5.5
5.1
4.6
6.6
6.9 | JULY 6.5.8 5.8 4.2 4.5 4.2 6.2 6.5 | 6.9
6.9
8

2. 5.2
6.4,7
2. 4.4
8. 6.4
6.6 |

 | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.4 6.2 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7 | 7.3
7.6

5.5
5.1
4.6
6.9 | JULY 6.5 5.8 4.2 4.5 4.2 6.5 | 6.9
6.9
8

2. 5.2
6.4,7
2. 4.4
8. 6.4
6.6 | | AUGUST | | ====================================== | SEPTEMBI | GR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
7.9 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3 | 7.3
7.6

5.5
5.1
4.6
6.9
 | JULY 6.55.8 5.8 4.2 4.5 4.2 6.5 6.5 | 6.9
6.9
8

2. 5.2
6.4
7. 4.4
8. 6.4
6.6
6.6 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8
6.7
6.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 | 9.7
9.3
8.9
8.7
8.5
7.2
7.26
7.7
7.1
6.9
6.6
6.3
6.3 | 7.3
7.6

5.5
5.1
4.6
6.6
6.9
 | JULY 6.5 5.8 4.2 4.5 4.2 6.2 6.5 |
6.9
6.9
8. 6.9
 | | AUGUST | | | SEPTEMBI | GIR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
7.9
6.8
6.7
6.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.3
6.6
7.7 | 7.3
7.6

5.5
5.1
4.6
6.9
 | JULY 6.55.8 5.8 4.2 4.5 4.2 6.5 | 6.9
6.9
8

2. 5.2
6.4
7. 4.4
8. 6.6
6.6 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8
6.7
6.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 | 9.7
9.3
8.9
8.7
8.5
7.2
7.2
7.2
7.7
7.1
6.6
6.4
6.3
6.3
6.3
6.7
1 | 7.3
7.6

5.5
5.1
4.6
6.6
6.9
 | JULY 6.55.8 4.2 4.5 4.2 6.5 | 6.9
6.9
8

2. 5.2
6.4
7. 4.4
8. 6.6
6.6 | | AUGUST | | ====================================== | SEPTEMBI | GIR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
8.7
6.8
6.7
6.8
6.7
9.8
9.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.7 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.5 5.8 4.2 4.5 4.2 6.5 | 6.9
6.9
6.9
 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8
6.7
6.8
6.6
7.1
7.6
9.8
8.0 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 | 9.7
9.3
8.7
8.5
7.2
7.7
7.1
9.6
6.4
6.3
6.6
7.1
7.6
7.5
9.5 | 7.3
7.6

5.5
5.1
4.6
6.9

 | JULY 6.55.8 4.22 4.55 4.2 6.2 | 6.9 6.9 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
8.7
6.8
6.7
6.8
6.7
9.8
9.8 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.7 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.5 5.8 4.2 4.5 4.2 6.5 | 6.998.6.999.0 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8
6.7
7.9
8.2
7.6
7.1
7.6
7.9
8.2 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 6.8 6.7 6.6 | 9.7
9.3
8.7
8.5
7.2
7.2
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.5
9.0 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.5 5.8 4.2 4.2 6.5 | 6.9
6.9
6.9
 | | AUGUST | | | SEPTEMBI | GR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
8.7
6.8
6.7
6.8
6.7
7.1
7.9
8.0 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 6.8 6.7 6.8 6.7 6.6 6.4 | 9.7
9.3
8.9
8.7
8.5
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.5
9.0
6.6 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.55.8 4.24.5 4.2 6.5 | 6.9986.9986.9986.99886.99 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
6.8
6.7
6.8
6.6
7.1
7.9
8.0
8.1
7.5
7.0
7.3 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 6.8 6.7 6.6 6.4 7.0 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.9
6.4
6.3
6.6
7.1
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.5.8 4.2 4.5 4.2 6.2 6.5 | 6.9
8.6.9
8.6.9
8.7
8.7
8.4.4
8.6.4
8.6.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.6
8.7
6.8
6.7
6.8
6.7
7.1
7.5
7.0
7.3 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.1 5.9 6.1 5.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.9 7.0 6.1 7.0 6.1 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.5
9.0
6.6
7.1 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.55.8 4.24.5 4.2 6.5 | 6.9 6.9 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |
10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.9
8.2
7.6
7.1
6.8
6.7
6.8
6.6
7.1
7.6
7.9
8.0
8.1
7.5
7.0
7.3 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 6.8 6.7 6.6 6.4 7.0 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.9
6.4
6.3
6.6
7.1
7.7
7.6
7.9
7.0
6.7 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.55.8 4.22 4.55 4.2 6.5 | 6.9 6.9 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | AUGUST | | | SEPTEMBI | GR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.7
6.8
6.7
6.8
6.6
7.1
7.5
7.0
7.3 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.11 5.9 6.1 5.8 6.7 6.8 6.7 6.8 6.7 6.8 6.7 6.9 7.0 6.7 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.6
6.4
6.3
6.6
7.7
7.6
7.5
9.0
6.6
7.1 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.55.8 5.8 4.2 4.5 4.2 6.5 | 6.9 6.9 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 10.4
9.7
9.3
9.1
8.9
8.2
7.4
7.6
7.9
8.2
7.6
7.1
7.6
8.0
8.1
7.7
9.3
8.0 | JUNE 9.2 8.8 8.6 8.3 8.2 7.4 7.0 6.9 7.3 7.3 6.7 6.4 6.2 6.1 5.9 6.1 5.8 5.6 7.0 6.7 6.8 6.7 6.6 6.4 7.0 | 9.7
9.3
8.9
8.7
8.5
7.8
7.2
7.6
7.7
7.1
6.9
6.4
6.3
6.6
7.1
7.7
7.6
7.9
7.0
6.7 | 7.3 7.6 5.5 5.1 4.6 6.6 6.9 | JULY 6.55.8 4.22 4.55 4.2 6.5 | 6.9
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | AUGUST | | | SEPTEMBI | ER | #### 03431599 WHITES CREEK NEAR BORDEAUX, TN LOCATION.--Lat 36°13'03", long 86°49'13", Davidson County, Hydrologic Unit 05130202, on right bank on downstream side of bridge on Buena Vista Pike, 0.4 mi downstream from Ewing Creek, 1.8 mi northeast of Bordeaux, 2.1 mi above Drakes Branch, and at mile 6.1. DRAINAGE AREA. -- 51.3 mi². PERIOD OF RECORD.--October 1964 to April 1975 (published as at Tucker Road, near Bordeaux), August 1993 to current year. Occasional low-flow measurements, water years 1962-64. GAGE.--Data collection platform. Datum of gage is 402.87 ft above NGVD of 1929. Oct. 1964 to April 1975 at site 0.4 mi downstream at datum 1.23 ft lower, August 1993 to Sept. 1995 at datum 3.85 ft higher. REMARKS.--No estimated daily discharges. Records good. Peak discharge of 12,200 ft³/s, Feb. 23, 1975, gage height 17.06 ft, occurred at Tucker Road near Bordeaux site. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1145 | 6,920 | 15.44 | Mar 20 | 0745 | 4,980 | 13.33 | | Nov 29 | 2200 | 4,220 | 12.41 | Apr 17 | 2014 | 4,490 | 12.74 | | Dec 13 | 0300 | 4,480 | 12.73 | Apr 24 | 1415 | 6,190 | 14.67 | | Jan 24 | 0630 | 8,660 | 17.15 | May 1 | 0215 | 5,350 | 13.75 | | Mar 17 | 0545 | 3,670 | 11.71 | Jul 12 | 1715 | 4,160 | 12.34 | | Mar 17 | 2100 | *11,000 | *19.18 | | | | | Minimum discharge, 0.51 ft³/s, Oct. 3, 4, 5. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO |) SEPTEMBI | ER 2002 | | | |--|--|--|---|---|--|--|---|--|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.66
0.63
0.62
0.60
26 | 6.6
6.0
5.7
6.2
5.1 | 284
174
124
94
75 | 27
23
20
19
17 | 281
176
144
118
91 | 21
21
22
18
15 | 442
240
152
105
74 | 1140
327
215
212
156 | 5.3
4.6
4.0
3.6
3.5 | 2.7
2.4
102
17
6.9 | 13
9.2
7.4
5.9
6.0 | 2.1
2.0
1.8
1.9
2.0 | | 6
7
8
9
10 | 15
3.5
2.3
2.2
1.7 | 4.9
4.7
4.6
4.6
5.0 | 68
73
129
133
109 | 19
17
15
14
16 | 81
106
119
108
95 | 14
13
12
45
48 | 55
41
34
33
25 | 115
88
66
58
47 | 304
48
20
12
8.1 | 4.6
3.6
3.0
54
111 | 4.4
3.7
3.3
3.0
2.8 | 2.3
2.8
2.2
2.1
2.1 | | 11
12
13
14
15 | 1.9
34
47
424
78 | 4.7
4.6
4.3
4.3 | 88
97
1290
513
262 | 35
25
22
19
17 | 77
66
56
48
41 | 36
55
68
58
57 | 23
87
199
284
131 | 36
27
498
175
95 | 6.5
5.6
8.1
5.6
4.7 | 37
480
151
57
27 | 2.7
2.5
2.3
2.5 | 2.1
2.1
1.9
1.9
7.6 | | 16
17
18
19
20 | 39
22
15
12 | 4.2
4.4
4.5
5.0
6.2 | 180
212
218
164
123 | 15
15
27
163
134 | 38
33
28
26
43 | 109
3180
1430
694
1710 | 80
673
516
218
131 | 61
61
57
36
27 | 4.1
3.9
3.5
3.5
3.3 | 16
21
20
14
11 | 86
16
7.9
6.5
5.1 | 9.4
4.5
3.9
3.7 | | 21
22
23
24
25 | 9.0
7.4
6.6
12
35 | 6.4
6.0
5.7
22 | 96
77
130
111
93 | 103
88
448
2700
592 | 33
29
26
24
21 | 566
292
186
127
92 | 85
59
41
1290
584 | 22
18
15
12
9.5 | 3.0
2.8
2.6
2.7
5.9 | 8.6
111
29
21
13 | 5.0
3.6
3.4
3.1
2.9 | 27
9.6
6.2
4.8
4.3 | | 26
27
28
29
30
31 | 15
12
9.6
8.7
8.1
7.4 | 11
539
158
2780
869 | 79
66
56
46
34
29 | 304
192
137
106
125
115 | 38
28
24
 | 401
225
152
112
96
905 | 267
167
218
133
103 | 13
9.3
9.2
8.0
8.5
6.3 | 3.6
11
9.6
3.8
3.1 | 9.9
8.2
13
12
42
24 | 2.9
2.8
3.0
2.4
2.2 | 761
952
165
75
43 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 867.91
28.00
424
0.60
0.55
0.63 | 4520.0
150.7
2780
4.2
2.94
3.28 | 5227
168.6
1290
29
3.29
3.79 | 5569
179.6
2700
14
3.50
4.04 | 1998
71.36
281
21
1.39
1.45 | 10780
347.7
3180
12
6.78
7.82 | 6490
216.3
1290
23
4.22
4.71 | 3627.8
117.0
1140
6.3
2.28
2.63 | 510.0
17.00
304
2.6
0.33
0.37 | 1432.9
46.22
480
2.4
0.90
1.04 | 233.7
7.539
86
2.2
0.15
0.17 | 2156.3
71.88
952
1.8
1.40
1.56 | ### 03431599 WHITES CREEK NEAR BORDEAUX, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1965 - 2002, BY WATER YEAR (WY) | MEAN 14.98 57.84
MAX 67.1 151
(WY) 1996 2002
MIN 2.05 6.30
(WY) 1970 1999 | 106.8 133.7
286 288
1973 1999
8.18 25.2
1966 1966 | 148.1
369
1975
36.3
1968 | 190.5
530
1975
46.0
1966 | 129.8
286
1994
18.8
1967 | 87.49
277
1995
20.1
2001 | 49.11
264
1998
4.70
1966 | 16.71
48.3
1967
1.11
1966 | 15.54
87.2
1972
1.79
1999 | 19.57
122
1974
0.98
1999 | |---|--|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---|---|--------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALEND | AR YEAR | F | OR 2002 WAT | ER YEAR | | WATER YEARS | 1965 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 24415.57
66.89
2780
0.60
0.68
1.30
17.70
128
14
1.4 | Nov 29
Oct 4
Sep 28 | | 3180
0.60
2.0
11000
19.18
0.51
2.32
31.48
231
23
2.9 | Mar 17
Oct 4
Aug 30
Mar 17
Mar 17
Oct 3 | | 77.80
129
35.2
5100
0.19
0.30
12200
19.18
0.07
1.52
20.61
169
20
2.5 | Feb 23
Sep 12
Sep 7
Feb 23
Mar 17
Sep 10 | 1999
1999
1975
2002 | From rating curve extended above
$6,900~{\rm ft}^3/{\rm s}$ on basis of contracted-opening measurement of peak flow, see REMARKS. Current site and datum. Also occurred Oct. 4, 5. а b c #### 03431700 RICHLAND CREEK AT CHARLOTTE AVENUE, AT NASHVILLE, TN LOCATION.--Lat $36^{\circ}09^{\circ}04^{\circ}$, long $86^{\circ}51^{\circ}16^{\circ}$, Davidson County, Hydrologic Unit 05130202, near right bank on downstream end of pier of Charlotte Avenue bridge on U.S. Highway 70, 4.0 mi southwest of the State Capitol in Nashville, and at mile 3.7. DRAINAGE AREA.--24.3 mi². PERIOD OF RECORD.--July 1964 to September 1990, August 1993 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 409.56 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good, except below 5 ${\rm ft}^3/{\rm s}$ which are fair. Diversions above station used for irrigation of golf courses. Periodic observations of specific conductance and water temperature are published in this report as miscellaneous water quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1100 | 2,110 | 7.28 | Mar 17 | 2100 | *5,100 | *11.45 | | Jan 24 | 0530 | 1,750 | 6.61 | Sep 27 | 0200 | 1,570 | 6.25 | Minimum discharge, 0.98 ft³/s, Oct. 4. | | | DISCHA | ARGE, CUB | IC FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO | SEPTEMBE | IR 2002 | | | |--|--|---|---|---|--|--|--|---|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.9
1.7
1.6
1.4 | 11
11
11
11
11 | 78
47
31
22
17 | 8.5
8.1
7.7
7.2
7.4 | 93
61
56
48
41 | 17
17
16
15
15 | 144
97
73
58
48 | 126
49
40
63
44 | 7.3
6.8
6.3
6.3 | 16
12
79
51
22 | 4.8
4.4
4.0
3.8
3.8 | 3.4
3.1
3.2
4.6
3.1 | | 6
7
8
9
10 | 18
5.3
3.8
2.7
2.4 | 10
9.9
9.2
9.8
9.5 | 16
15
102
57
38 | 7.4
6.8
6.5
6.1
7.8 | 40
48
47
42
40 | 14
13
13
30
20 | 41
36
33
30
25 | 36
34
26
24
24 | 103
21
15
12 | 16
13
11
20
28 | 3.5
3.4
3.4
3.1
3.2 | 10
4.6
3.3
3.3
2.9 | | 11
12
13
14
15 | 4.1
35
45
121
38 | 9.5
9.3
9.7
9.5
9.3 | 28
32
199
121
70 | 12
8.3
7.6
7.2
6.9 | 35
32
28
25
24 | 18
29
26
23
21 | 38
42
31
26
23 | 21
17
212
74
49 | 9.1
8.1
7.7
6.9
6.4 | 15
87
68
32
20 | 3.2
3.2
2.7
28
26 | 3.0
2.6
5.8
5.8
24 | | 16
17
18
19
20 | 28
21
18
15
13 | 9.2
8.8
9.6
11 | 49
59
44
34
26 | 6.5
7.2
12
92
46 | 22
20
19
18
35 | 43
930
463
231
417 | 21
21
18
17
15 | 37
42
34
24
20 | 6.2
5.8
5.1
4.4
4.3 | 15
12
15
12
9.3 | 60
13
7.8
6.7
6.0 | 11
7.0
6.2
5.1 | | 21
22
23
24
25 | 13
12
11
30
33 | 11
11
10
20
14 | 20
17
32
21
17 | 32
29
172
511
167 | 22
20
18
17
17 | 186
129
97
75
59 | 14
25
14
112
45 | 18
15
13
12
11 | 3.9
3.7
3.5
10
160 | 8.1
39
17
12
9.5 | 5.1
10
7.9
5.6
5.2 | 18
8.7
6.7
6.0
6.7 | | 26
27
28
29
30
31 | 20
16
15
13
13 | 12
48
31
633
187 | 15
13
12
11
9.7
9.0 | 103
76
59
48
75
63 | 30
19
18
 | 102
63
52
47
51
328 | 32
26
42
27
24 | 14
11
12
9.6
9.0
8.2 | 23
20
15
12
9.4 | 7.8
6.8
8.1
6.4
6.1
5.7 | 4.9
4.5
5.9
4.3
4.0
3.7 | 317
428
84
48
33 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 596.9
19.25
121
1.4
0.79
0.91 | 1176.3
39.21
633
8.8
1.61
1.80 | 1261.7
40.70
199
9.0
1.67
1.93 | 1614.2
52.07
511
6.1
2.14
2.47 | 935
33.39
93
17
1.37
1.43 | 3560
114.8
930
13
4.73
5.45 | 1198
39.93
144
14
1.64
1.83 | 1128.8
36.41
212
8.2
1.50
1.73 | 518.3
17.28
160
3.5
0.71
0.79 | 679.8
21.93
87
5.7
0.90
1.04 | 255.1
8.229
60
2.7
0.34
0.39 | 1100.1
36.67
428
2.6
1.51
1.68 | ## 03431700 RICHLAND CREEK AT CHARLOTTE AVENUE, AT NASHVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) | MEAN | 11.24 | 31.90 | 53.82 | 51.74 | 55.71 | 64.32 | 43.63 | 37.18 | 21.83 | 11.33 | 7.943 | 12.73 | |---------|-------------|-----------|-------|------------|-----------|-------|------------|----------|-------|------------|--------|--------| | MAX | 53.0 | 89.8 | 247 | 151 | 205 | 208 | 146 | 131 | 107 | 42.0 | 24.6 | 127 | | (WY) | 1976 | 1987 | 1965 | 1974 | 1989 | 1975 | 1979 | 1984 | 1998 | 1979 | 1994 | 1979 | | MIN | 0.41 | 1.79 | 2.57 | 3.96 | 10.3 | 18.2 | 5.76 | 5.06 | 1.33 | 1.34 | 1.18 | 0.92 | | (WY) | 1966 | 1972 | 1966 | 1986 | 1968 | 1966 | 1986 | 1977 | 1988 | 1966 | 1980 | 1980 | | SUMMARY | STATIST | ICS | FOR : | 2001 CALEN | IDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEAR | S 1964 | - 2002 | | ANNUAL | тотат. | | | 9671.2 | | | 14024.2 | | | | | | | ANNUAL | | | | 26.50 |) | | 38.42 | | | 33.56 | | | | | ANNUAL | MEAN | | 20.50 | | | 50.12 | | | 71.3 | | 1979 | | | ANNUAL M | | | | | | | | | 13.6 | | 1966 | | | DAILY M | | | 678 | Feb 16 | | 930 | Mar 17 | | 7020 | Nov | 2 1990 | | | DAILY ME | | | 1.4 | Jul 23 | | 1.4 | Oct 4 | | 0.05 | | 8 1980 | | | | | | | | | 3.2 | | | | | | | | | Y MINIMUM | | 1.6 | Jul 17 | | | Aug 7 | | 0.23 | | 8 1965 | | | I PEAK FL | | | | | | 5100 | Mar 17 | | 9470 | | 3 1979 | | | I PEAK ST | | | | | | 11.45 | | | 15.13 | | 3 1979 | | | 'ANEOUS L | | | | | | 0.98 | | | 0.05 | Oct | 7 1980 | | ANNUAL | RUNOFF (| CFSM) | | 1.09 |) | | 1.58 | | | 1.38 | | | | ANNUAL | RUNOFF (| INCHES) | | 14.81 | | | 21.47 | | | 18.77 | | | | 10 DEDG | TOTAL DISCO | TDC | | 4.0 | | | | | | | | | ### 03432350 HARPETH RIVER AT FRANKLIN, TN LOCATION.--Lat $35^{\circ}55^{\circ}14$ ", long $86^{\circ}51^{\circ}56$ ", Williamson County, Hydrologic Unit 05130204, on left bank 15 ft downstream from State Highway 96 bridge, 0.4 mi southeast of the courthouse in Franklin, and at mile 88.1. DRAINAGE AREA.--191 mi^2 , includes 15 mi^2 without surface drainage. PERIOD OF RECORD.--October 1974 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 604.42 ft above NGVD of 1929. REMARKS.--No estimated daily discharge. Records good except those below 5.0 ft³/s, which are poor. The Franklin Utility District diverts part of its municipal water supply from the river above the gage. This water along with other water is returned to the river through the sewage treatment plant 2.7 mi below gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,900 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|------------------|--------------|-----------------------------------|---------------------| | Nov 30
Jan 24 | 0530
2230 | 5,120
*9,010 | 19.38
*25.80 | Mar 31
May 13 | 1930
1630 | 4,710
3,880 | 18.34
16.07 | | Mar 18 | 0700 | 7,110 | 23.34 | - | | | | Minimum daily discharge, $2.6 \, \mathrm{ft}^3/\mathrm{s}$, Sept. 13. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE | R 2001 TO |) SEPTEMBE | IR 2002 | | | |--|--|--|---|--|---|--|---|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.4
3.4
3.6
4.5 | 28
27
29
32
27 | 1060
627
459
354
267 | 110
99
96
94
89 | 516
456
406
382
345 | 111
115
116
100
86 | 2470
1120
747
566
469 | 367
266
554
819
535 | 33
29
25
28
59 | 3.9
6.5
8.4
12
7.9 | 3.5
3.3
4.2
4.5
3.1 | 3.5
3.6
3.7
3.6
3.4 | |
6
7
8
9
10 | 125
95
39
24
16 | 19
18
16
13 | 216
235
1580
1210
706 | 89
86
77
73
74 | 328
388
419
383
366 | 82
82
86
98
99 | 405
359
326
308
266 | 366
273
207
168
152 | 37
29
21
17
14 | 3.3
3.0
3.6
4.2
6.3 | 3.0
3.0
3.1
3.1 | 3.4
3.7
3.6
3.5
3.0 | | 11
12
13
14
15 | 11
72
113
1130
587 | 12
11
13
11
12 | 573
462
1030
1460
911 | 87
84
76
66 | 359
322
294
263
237 | 87
144
450
321
253 | 240
232
214
199
171 | 157
135
2210
1280
575 | 12
15
21
15
9.8 | 65
34
15
11 | 3.7
3.5
3.6
3.6
5.9 | 3.0
2.8
2.6
3.1
4.4 | | 16
17
18
19
20 | 289
176
120
92
74 | 18
18
14
9.7 | 611
522
480
394
329 | 58
64
78
777
835 | 223
200
170
151
222 | 250
4200
6450
2250
1910 | 143
124
116
94
86 | 377
303
327
235
181 | 8.5
11
9.7
4.9
5.1 | 5.7
4.1
8.7
6.3
3.3 | 6.1
4.3
3.9
3.8
3.9 | 127
7.0
17
43
71 | | 21
22
23
24
25 | 61
50
47
63
118 | 12
10
9.6
30 | 271
230
364
425
328 | 517
387
3070
7500
6290 | 227
175
149
139
134 | 1340
870
661
540
455 | 85
74
62
64
75 | 147
122
105
93
87 | 10
6.8
2.9
5.8
7.3 | 4.1
4.8
20
11
3.7 | 3.8
3.7
4.2
6.0
3.7 | 55
8.8
5.8
6.0
5.5 | | 26
27
28
29
30
31 | 87
61
43
37
33 | 37
67
302
2360
3710 | 269
222
193
172
152
130 | 1610
1000
734
590
512
444 | 145
133
116
 | 703
578
461
422
936
3260 | 68
63
165
108
70 | 72
61
56
58
53
42 | 2.7
4.0
4.5
10
7.1 | 3.8
6.3
6.3
5.5
3.9
3.7 | 20
4.8
3.8
6.1
3.7
3.5 | 190
793
281
104
56 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3611.3
116.5
1130
3.4
0.61
0.70 | 6919.3
230.6
3710
9.6
1.21
1.35 | 16242
523.9
1580
130
2.74
3.16 | 25727
829.9
7500
58
4.35
5.01 | 7648
273.1
516
116
1.43
1.49 | 27516
887.6
6450
82
4.65
5.36 | 9489
316.3
2470
62
1.66
1.85 | 10383
334.9
2210
42
1.75
2.02 | 465.1
15.50
59
2.7
0.08
0.09 | 298.3
9.623
65
3.0
0.05
0.06 | 139.8
4.510
20
3.0
0.02
0.03 | 1821.0
60.70
793
2.6
0.32
0.35 | # 03432350 HARPETH RIVER AT FRANKLIN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2002, BY WATER YEAR (WY) | MEAN 90.61 254.8
MAX 610 778
(WY) 1976 1980
MIN 0.52 4.08
(WY) 1981 1981 | 463.9 537.0
1172 1472
1991 1979
16.2 14.4
1981 1986 | 540.0
1358
1990
139
1978 | 662.6 359
1945 106
1975 197
159 62
1985 198 | 6 1489
9 1984
2 21.8 | 119.9
574
1997
1.25
1988 | 61.33
431
1989
1.44
1988 | 39.32
208
1998
1.58
1988 | 66.65
971
1979
1.17
1980 | |---|--|--------------------------------------|---|--|--------------------------------------|---|--|--------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALEND | DAR YEAR | FOR 200 | 2 WATER YEAR | , | WATER YEARS | 1975 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 91234.1
250.0
7920
1.7
4.0
1.31
17.77
581
63 | Feb 17
Sep 18
Sep 12 | 750
903
2
6 | 2.1 0 Jan 24 2.6 Sep 13 3.1 Sep 8 0 Jan 24 5.80 Jan 24 2.3 Sep 12 1.58 1.47 | | 290.6
522
68.7
18500
0.30
0.32
20200
33.65
0.30
1.52
20.67
642
89 | Mar 13
Oct 14
Oct 20
Mar 13
Mar 13
Oct 14 | 1980
1980
1975
1975 | # a Also occurred Sept. 13. ### 034323531 HARPETH RIVER TRIBUTARY AT MACK HATCHER PARKWAY NEAR FRANKLIN, TN LOCATION.--Lat 35°55'20", long 86°51'18", Williamson County, Hydrologic Unit 05130204, on downstream left abutment on highway bridge on Mack Hatcher Parkway 0.5 north of Hwy 96 and Mack Hatcher intersection. DRAINAGE AREA.--0.91 mi². PERIOD OF RECORD.--October 1999 to current year. GAGE.--Data logger. REMARKS.--Records poor. Periodic observations of water temperature and specific conductance are published in the report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR WATER YEARS 2000-2002.--Peak discharges greater than base discharge of 100 ft}^3/s \ \ \hbox{\it and maximum (*):}$ | Water
year | Date | Tir | ne | Discharg
(ft ³ /s) | e Ga | ge height
(ft) | | Date | Time | e | Discharge
(ft ³ /s) | Gag | ge height
(ft) | |---------------|--|--|---|---|--|--|--|---|---|--|--|--|--| | 2000 | Jan 3
Feb 17
May 3 | 223
211
165 | 15 | 171
149
142 | | 4.63
4.47
4.42 | | May 25
Sep 24 | 0225
1510 | | *454
205 | | 6.47
4.86 | | Mini | mum disc | harge, 0. | .00 ft ³ /s, | on many | days. | | | | | | | | | | Water
year | Date | Tir | me | Discharg
(ft ³ /s) | e Ga | ge height
(ft) | | Date | Time | : | Discharge
(ft ³ /s) | Gag | ge height
(ft) | | 2001 | Nov 9 | 000 | 05 | *130 | | *5.54 | | Feb 25 | 0155 | 5 | 126 | | 5.49 | | Mini | mum disc | harge, 0. | .00 ft ³ /s, | on many | days. | | | | | | | | | | Water
year | Date | Tir | me | Discharg
(ft ³ /s) | e Ga | ge height
(ft) | | Date | Time | | Discharge
(ft ³ /s) | Gag | ge height
(ft) | | 2002 | Nov 29 | 104 | 10 | 108 | | 5.19 | | May 13 | 0735 | 5 | *221 | * | 5.03 | | Mini | mum disc | charge, 0. | .00 ft ³ /s, | on many | days. | | | | | | | | | | | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YE
Y MEAN V | | ER 1999 TO | SEPTEMBI | ER 2000 | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00 | 0.15
6.6
0.09
0.04
0.02 | 0.0
0.00
0.00
0.00
0.39 | 0.02
0.02
14
4.3
1.9 | 0.24
0.17
0.14
0.09
0.06 | 0.62
0.49
0.58
0.40
0.24 | 0.25
0.71
17
7.7
3.6 | 1.9
1.6
13
2.2
1.7 | 1.2
0.87
0.66
0.53
0.46 | 0.08
0.06
0.05
0.04
0.03 | 0.00
0.00
0.0
3.8
0.03 | 0.01
0.01
0.01
0.01
0.01 | | | 6
7
8
9
10 | 0.00
0.00
0.00
3.9
0.71 | 0.01
0.00
0.00
0.00
0.00 | 0.17
0.03
0.01
0.01
2.8 | 1.4
1.2
0.77
1.9
0.68 | 0.05
0.04
0.03
0.03
0.03 | 0.20
0.16
0.11
0.07
0.21 | 2.5
2.0
4.3
1.7
1.4 | 1.3
0.73
0.35
0.19
1.1 | 0.39
0.33
0.26
0.20
0.16 | 0.03
0.03
0.03
0.01
0.00 | 0.0
0.00
0.02
0.07
0.12 | 0.01
0.01
0.01
0.01
0.01 | | | 11
12
13
14
15 | 0.07
0.0
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.26
7.4
6.4
2.9
2.0 | 0.38
0.29
1.2
0.36
0.25 | 0.09
0.22
9.1
4.1
2.5 | 1.6
0.28
0.16
0.11
0.09 | 4.9
e8.1
e5.8
e5.1
e4.6 | 0.16
0.11
0.09
0.05
0.03 | 0.13
0.09
0.08
0.07
0.06 | 0.00
1.2
0.08
0.03
0.00 | 0.08
0.03
0.02
0.02
0.02 | 0.01
0.01
0.04
0.01
0.01 | | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.4
1.0
0.72
0.45
0.31 | 0.26
0.23
0.23
0.24
0.31 | 2.0
13
4.3
3.7
3.0 | 0.50
0.18
0.09
14
5.8 | e3.8
e5.4
e4.2
e3.6
e3.2 | 0.03
0.03
0.02
0.01
0.02 | 0.05
0.63
0.21
0.11
0.08 | 0.00
0.00
0.00
0.00
0.00 | 0.02
0.01
0.01
0.01
0.01 | 0.01
0.01
0.01
0.01
0.01 | | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.0
2.9 | 0.22
0.15
0.12
0.11
0.10 | 0.22
0.18
0.27
0.27
0.21 | 2.3
1.8
1.4
1.2
0.85 | 2.9
2.0
1.5
1.2 | e2.9
e2.6
e2.4
e33
e20 | 0.03
0.02
6.0
0.06
54 | 0.06
0.05
0.04
0.03
0.02 | 0.02
0.00
0.00
0.00
0.00 | 0.01
0.01
0.01
0.01
0.01 | 0.01
0.01
0.01
13
0.52 | | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 1.4
0.20
0.06
0.01
0.01 | 0.09
0.08
0.06
0.05
0.04
0.03 | 0.40
0.16
0.10
0.58
0.46
0.30 | 0.70
3.6
1.2
0.88 | 0.95
1.2
0.47
0.36
0.86
0.33 |
e7.2
e8.4
e7.0
e3.8
2.7 | 11
9.7
7.1
5.5
3.4
1.9 | 0.03
2.7
0.26
0.13
0.10 | 0.00
0.00
0.00
0.00
0.00
0.03 | 0.01
0.72
0.05
0.02
0.02
0.01 | 0.28
0.24
0.23
0.21
0.18 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4.68
0.151
3.9
0.00
0.17
0.19 | 11.49
0.383
6.6
0.00
0.42
0.47 | 27.30
0.881
7.4
0.00
0.97
1.12 | 33.09
1.067
14
0.02
1.17
1.35 | 56.82
1.959
13
0.03
2.15
2.32 | 39.36
1.270
14
0.07
1.40
1.61 | 179.86
5.995
33
0.25
6.59
7.35 | 123.33
3.978
54
0.01
4.37
5.04 | 9.99
0.333
2.7
0.02
0.37
0.41 | 1.72
0.055
1.2
0.00
0.06
0.07 | 5.15
0.166
3.8
0.00
0.18
0.21 | 14.92
0.497
13
0.01
0.55
0.61 | e Estimated ### 034323531 HARPETH RIVER TRIBUTARY AT MACK HATCHER PARKWAY NEAR FRANKLIN, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.5 1.2 0.93 0.25 0.00 0.39 0.36 1.1 0.53 0.11 2.5 0.50 0.07 0.51 1.2 2 0.34 0.33 0.47 0.24 0.0 0.00 0.94 0.11 0.42 0.06 0.00 0.38 0.43 0.00 0.82 0.08 4 0.00 0.00 0.26 0.27 0.72 2.0 0.44 0.06 0.65 0.49 0 15 0.21 5 0.00 0.00 0.22 0.26 0.64 1.2 0.40 0.06 0.44 0.43 0.08 0.17 0.49 6 7 0.55 0.19 0.23 0.56 e1.1 0.34 0.08 0.33 0.34 0.06 0.13 e0.77 e0.52 0.53 0.36 0.07 0.63 0.16 0.14 0.21 0.47 0.30 e0.07 0.32 0.06 0.11 0.00 12 22 0.39 0.28 e0.07 0.30 0.06 0.10 8 9 0.00 0.11 0.17 3.5 e0.30 0.26 e0.07 0.25 0.29 0.06 0.16 10 2.6 0.09 1.6 e0.20 e0.07 0.19 0.00 0.15 0.24 0.30 0.70 0.17 0.00 1.4 0.09 0.28 1.1 e0.11 0.12 0.16 0.29 0.17 0.10 11 0.19 0.00 0.77 0.24 0.43 0.25 0.96 e0.45 e0.21 0.25 3.7 0.07 0.12 0.10 0.29 0.09 0.08 12 0.00 0.61 0.02 0.29 13 14 0.00 0.45 3 0 0.21 3.8 e0.02 0.63 0.02 2 4 0.28 0.06 0.07 5.0 19 e1.3 15 0.00 0.31 3.5 0.18 2.5 0.01 0.28 0.05 0.07 0.75 0.71 0.27 0.05 0.07 16 0.00 0.38 18 0.16 38 0.0 13 6.6 0.55 0.00 5.7 0.05 0.00 0.14 19 0.57 0.26 0.06 0.33 17 18 0.00 0.22 3.4 2.8 11 0.48 0.61 0.00 2.6 0.26 0.05 0.06 19 0 00 0 17 2.4 14 5 1 0.46 0 54 0.01 1 5 0.26 0.05 5 4 1.7 5.7 6.7 1.2 0.69 20 0.00 0.16 3.0 0.46 0.02 0.26 0.05 0.17 2.1 3.7 0.41 0.82 0.04 0.26 21 0.00 1.4 3.4 2.5 0.26 22 0.00 1.1 2.3 2.9 2.5 0.32 6.8 3.9 0.25 0.04 0.22 0.17 23 0.00 0.14 0.99 1.5 1.5 1.9 0.33 1.1 1.0 0.24 4.6 0.21 24 1.5 0.60 0.82 0.00 1.0 0.86 1.3 1.2 1.0 0.46 1.6 25 0.00 1.7 0.75 1.1 18 1.2 0.32 0.37 0.72 2.7 0.21 0.30 0.70 0.90 4.4 1.1 0.25 0.24 0.66 0.20 0.24 26 0.00 0.66 0.15 0.00 0.76 0.90 0.55 0.60 3.0 0.21 0.19 0.60 0.09 7.6 0.23 0.00 0.51 0.76 0.29 0.54 0.48 0.22 28 0.47 0.65 2.1 0.18 0.09 29 0.48 3.4 0.15 0.09 ---30 0.00 0.41 0.40 0.64 0.12 0.14 0.90 0.14 0.21 31 0.00 0.36 1.4 ___ 0.59 3.7 0.08 0.35 TOTAL 0.87 57.35 36.22 18.03 45.14 0.574 3.7 1.710 13 0.357 0.582 7.6 0.400 5.4 MEAN 0.028 1.610 1.850 1.456 5.289 1.168 0.501 6.7 0.12 0.63 0.70 0.02 1.28 1.48 38 0.39 5.81 6.05 6.8 0.00 0.55 0.63 0.10 1.88 0.08 0.39 0.45 0.04 0.64 0.06 0.44 0.49 MAX MIN IN. CESM 0.55 0.00 0.03 0.04 22 0.00 1.77 1.97 18 0.09 2.03 2.34 14 0.14 1.60 1.85 e Estimated 034323531 HARPETH RIVER TRIBUTARY AT MACK HATCHER PARKWAY NEAR FRANKLIN, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | DALI | TI MEMIN AN | TUES | | | | | | |--|--|--|---|--|---|--|---|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.09
0.08
0.06
0.05
2.4 | 0.19
0.17
0.17
0.14
0.12 | 26
22
19
13
7.5 | 0.64
0.59
0.54
0.50
0.47 | 7.1
3.1
3.2
2.6
2.1 | 0.58
0.53
0.50
0.46
0.42 | 24
19
14
9.5
6.2 | 16
7.8
5.4
8.7
5.3 | 0.15
0.14
0.13
1.3
0.98 | 0.08
0.08
0.48
0.13
0.10 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 1.5
0.14
0.06
0.02
0.00 | 0.11
0.10
0.09
0.09
0.09 | 5.4
7.9
30
16
9.7 | 0.54
0.46
0.41
0.38
0.38 | 2.2
2.8
2.3
1.9
2.3 | 0.40
0.39
0.34
1.3
0.54 | 4.5
4.2
4.3
3.5
2.7 | 4.4
4.0
3.5
3.4
4.1 | 0.18
0.19
0.17
0.16
0.15 | 0.10
0.10
0.10
0.13
0.85 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | e0.39
e5.6
e0.45
e16
e5.0 | 0.08
0.07
0.06
0.06
0.05 | 4.4
3.9
10
8.3
5.3 | 0.84
0.49
0.41
0.37
0.33 | 1.8
1.6
1.4
1.3 | 0.38
0.98
e0.72
e0.64
e0.58 | 2.4
2.9
2.4
2.0
1.8 | 3.3
2.8
e26
e11
e5.4 | 0.15
0.15
0.27
0.17
0.17 | 0.11
0.66
0.14
0.07
0.08 | 0.00
0.00
0.00
0.00
0.86 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | e1.7
0.20
0.00
0.00
0.00 | 0.05
0.04
0.04
0.05
0.20 | 4.0
4.5
2.9
2.3
1.9 | 0.32
e0.33
e0.97
e3.0
1.9 | 1.1
0.99
0.88
0.82
4.0 | e4.9
e40
e25
e16
e36 | 1.7
1.5
1.4
1.3 | e3.2
e3.7
e2.3
e1.4
e0.96 | 0.17
0.17
0.15
0.14
0.13 | 0.09
0.05
0.13
0.18
0.01 | 0.36
0.09
0.00
0.00 | 0.00
0.00
0.17
0.00
2.4 | | 21
22
23
24
25 | 0.00
0.00
0.00
4.3
5.6 | 0.05
0.04
0.03
6.1
0.56 | 1.6
1.4
2.1
1.5
1.3 | 1.4
1.7
e16
e120
e34 | 1.2
0.94
0.84
0.75
0.69 | e27
21
17
14
11 | 1.2
1.1
1.2
3.9
2.8 | e0.63
e0.42
e0.28
0.19
0.15 | 0.11
0.11
0.10
0.12
0.11 | 0.04
0.04
2.5
0.41
0.17 | 0.00
2.0
3.6
0.90
0.55 | 0.02
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.55
0.43
0.40
0.36
0.32
0.25 | 0.21
7.6
0.99
47
33 | 1.1
1.0
0.92
0.82
0.75
0.69 | e14
9.9
6.1
4.4
3.5
2.7 | 1.4
0.76
0.67
 | 17
13
11
12
15
27 | 1.9
1.7
11
3.5
3.1 | 0.16
0.15
0.13
0.13
0.52 | 0.10
0.10
0.11
0.09
0.09 | 0.13
0.09
0.16
0.09
0.64
0.19 | 0.28
0.16
0.11
0.04
0.0
0.00 | 9.7
7.8
3.6
3.9
1.8 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 45.95
1.482
16
0.00
1.63
1.88 | 97.55
3.252
47
0.03
3.57
3.99 | 217.18
7.006
30
0.69
7.70
8.88 | 227.57
7.341
120
0.32
8.07
9.30 | 51.84
1.851
7.1
0.67
2.03
2.12 | 315.66
10.18
40
0.34
11.2
12.90 | 141.9
4.730
24
1.1
5.20
5.80 | 125.61
4.052
26
0.13
4.45
5.13 | 6.26
0.209
1.3
0.09
0.23
0.26 | 8.13
0.262
2.5
0.01
0.29
0.33 | 8.99
0.290
3.6
0.00
0.32
0.37 | 29.39
0.980
9.7
0.00
1.08
1.20 | e Estimated THIS PAGE IS INTENTIONALLY BLANK ## 03432387 SOUTH PRONG SPENCER CREEK NEAR FRANKLIN, TN LOCATION.--Lat 35°56'39", long 86°49'35", Williamson County, Hydrologic Unit 05130204, on left upstream side of the bridge on Cool Spring Blvd., 1.7 miles northeast of Franklin, Tennessee. DRAINAGE AREA.--2.66 \mbox{mi}^2 . PERIOD OF RECORD.--June 2000 to current year. GAGE.--Data logger. REMARKS.--No estimated daily discharges. Records fair. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 250 ${\rm ft^3/s}$, May 13, gage height, 8.55 ft; minimum daily discharge, 0.08 ${\rm ft^3/s}$, Aug. 12, 13, 14. | | | DISCHA | RGE, CUB | IC FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|---|---|---|---|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.25
0.24
0.22
0.22
2.5 | 0.25
0.24
0.31
0.27
0.27 | 12
7.3
5.0
4.0
3.3 | 1.6
1.4
1.4
1.3 | 13
7.2
7.0
5.9
5.1 | 2.1
2.0
2.0
1.9
1.8 | 30
19
14
10
8.4 | 12
7.8
7.1
11
6.5 | 3.8
3.6
3.4
6.6
6.1 | 2.6
2.5
6.2
0.91
0.70 | 0.31
0.27
0.23
0.23
0.19 | 0.33
0.31
0.29
0.32
0.28 | | 6
7
8
9
10 | 0.86
0.44
0.37
0.33
0.30 | 0.27
0.25
0.24
0.24
0.24 | 3.1
3.5
36
14
9.6 | 1.4
1.2
1.1
1.1 | 5.4
6.4
5.7
5.2
5.5 | 1.8
1.7
1.7
3.8
2.0 | 7.0
6.0
5.5
5.0
4.3 | 5.1
4.2
3.6
3.3
4.6 | 4.2
3.9
3.7
3.6
3.6 | 0.58
0.49
0.50
1.0
2.8 | 0.15
0.14
0.13
0.12
0.12 | 0.26
0.26
0.24
0.23
0.22 | | 11
12
13
14
15 | 1.2
4.9
8.3
12
2.2 | 0.24
0.23
0.22
0.20
0.20 | 6.3
5.6
16
18
12
 1.6
1.1
1.1
1.1 | 4.6
4.2
3.9
3.5
3.2 | 2.1
3.6
2.4
2.4
2.3 | 4.0
4.8
3.6
3.3 | 3.2
2.8
52
21
13 | 3.2
3.1
3.4
3.0
3.0 | 0.99
1.5
1.00
0.80
0.77 | 0.11
0.09
0.09
0.32
1.3 | 0.21
0.21
0.20
0.26
0.97 | | 16
17
18
19
20 | 1.6
1.1
1.1
0.71
0.57 | 0.19
0.18
0.17
0.31
0.19 | 7.8
7.6
5.3
4.2
3.5 | 0.97
1.1
1.4
7.4
3.8 | 3.0
2.7
2.5
2.4
5.9 | 12
90
59
35
41 | 2.8
2.6
2.5
2.4
2.3 | 9.8
11
9.0
7.4
6.6 | 3.0
2.9
2.8
2.7
2.6 | 0.63
0.54
0.62
0.41
0.36 | 0.81
0.29
0.22
0.20
0.16 | 0.50
0.40
1.2
0.56
5.5 | | 21
22
23
24
25 | 0.45
0.49
0.41
3.8
1.3 | 0.16
0.15
0.14
1.8
0.39 | 3.1
2.7
3.7
2.6
2.5 | 3.1
4.0
35
81
36 | 3.0
2.7
2.5
2.4
2.3 | 28
19
14
11
8.6 | 2.1
2.3
2.1
5.5
2.8 | 6.0
5.7
5.2
4.9
4.7 | 2.5
2.5
2.7
2.6
2.7 | 0.42
0.38
2.2
0.66
0.46 | 0.15
2.3
2.7
0.99
0.99 | 1.4
0.91
0.78
0.66
0.88 | | 26
27
28
29
30
31 | 0.70
0.48
0.44
0.34
0.31
0.29 | 0.33
2.2
0.85
75
25 | 2.3
2.1
2.0
1.9
1.8 | 24
16
12
9.0
7.6
6.3 | 3.6
2.4
2.2
 | 20
12
9.4
10
13
44 | 2.4
2.1
5.5
2.6
2.4 | 4.5
4.3
4.3
4.0
6.2
4.3 | 2.6
3.0
2.7
2.5
2.7 | 0.38
0.33
0.37
0.32
0.94
0.38 | 0.75
0.66
0.57
0.47
0.42
0.37 | 19
14
3.7
2.4
1.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 48.42
1.562
12
0.22
0.59
0.68 | 110.73
3.691
75
0.14
1.39
1.55 | 210.5
6.790
36
1.7
2.55
2.94 | 267.47
8.628
81
0.97
3.24
3.74 | 123.4
4.407
13
2.2
1.66
1.73 | 459.6
14.83
90
1.7
5.57
6.43 | 170.3
5.677
30
2.1
2.13
2.38 | 255.1
8.229
52
2.8
3.09
3.57 | 98.7
3.290
6.6
2.5
1.24
1.38 | 32.74
1.056
6.2
0.32
0.40
0.46 | 15.85
0.511
2.7
0.09
0.19
0.22 | 58.38
1.946
19
0.20
0.73
0.82 | ## 03432387 SOUTH PRONG SPENCER CREEK NEAR FRANKLIN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN
(WY) | 0.812
1.56
2002
0.063
2001 | 3.668
3.69
2002
3.64
2001 | 5.466
6.79
2002
4.14
2001 | 6.222
8.63
2002
3.82
2001 | 9.698
15.0
2001
4.41
2002 | 9.563
14.8
2002
4.30
2001 | 3.595
5.68
2002
1.51
2001 | 5.206
8.23
2002
2.18
2001 | 2.319
3.29
2002
0.95
2000 | 0.607
1.06
2002
0.16
2000 | 0.617
1.07
2001
0.27
2000 | 1.060
1.95
2002
0.30
2000 | |--|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | SUMMAR | Y STATIST | ICS | FOR | 2001 CALENI | DAR YEAR | I | OR 2002 WA | TER YEAR | | WATER YEARS | 2000 - | 2002 | | LOWEST
HIGHES | | EAN
EAN | | 1315.40
3.604
113
0.14 | Feb 16 | | 1851.19
5.07
90
0.09 | 2
Mar 17 | | 4.160
5.07
3.25
113
a0.01 | Feb 16 | | | ANNUAL
MAXIMUI
MAXIMUI
INSTAN | | Y MINIMUM
OW
PAGE
OW FLOW | | 0.19 | Nov 17 | | 0.11
250
8.55
b0.08
1.91 | Aug 7
May 13
May 13
Aug 12 | | 0.01
270
9.06 | Oct 28
Nov 9 | | | ANNUAL
10 PERC
50 PERC | RUNOFF (CENT EXCE CENT EXCE CENT EXCE | INCHES)
EDS
EDS | | 18.40
7.8
1.2
0.27 | | | 25.89
12
2.4
0.24 | | | 21.25
9.0
1.5
0.23 | | | a Many days. b Also occurred Aug. 13, 14. # 03432390 SPENCER CREEK NEAR FRANKLIN, TN LOCATION.--Lat 35°56'35", long 86°51'18", Williamson County, Hydrologic Unit 05130204, on right downstream side of bridge on U.S. Highway 31, 1.5 mi northeast of Franklin. DRAINAGE AREA.--10.3 mi². PERIOD OF RECORD.--April 1999 to current year. Occasional low-flow measurements, water year 1959, 1975. GAGE.--Data collection platform and crest-stage gage at present. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $517~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 1145 | *1,030 | *9.66 | Mar 17 | 0530 | 833 | 9.23 | | Nov 29 | 2100 | 622 | 8.66 | Mar 17 | 2100 | 740 | 9.00 | | Dec 8 | 0715 | 726 | 8.96 | May 13 | 0830 | 776 | 9.09 | | Jan 24 | 0615 | 901 | 9.39 | _ | | | | Minimum discharge, 1.6 ft³/s, June 21, 22. | | ٠. | | • | | | | | | | | | | |----------------------------------|--|---------------------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------------|---------------------------------|---------------------------------------|---------------------------------|---|--|---------------------------------| | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | EAR OCTOBE | R 2001 TO | SEPTEMBE | R 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.6
2.6
2.9
3.2 | 3.3
3.1
3.9
3.0
2.8 | 48
30
23
20
17 | 5.9
5.6
5.3
5.1
5.0 | 53
24
23
19
16 | 6.2
6.3
6.0
5.5
5.2 | 89
57
38
28
22 | 57
29
19
37
17 | 4.0
3.3
2.9
9.0 | 3.9
3.4
33
7.5
5.1 | 3.8
3.5
3.1
2.9
2.8 | 3.5
2.8
2.6
2.6
2.7 | | 6
7
8
9
10 | 12
4.8
3.9
3.3
3.2 | 2.5
2.4
2.4
2.4
2.3 | 17
19
174
55
39 | 6.2
5.5
5.0
4.6
4.7 | 18
23
19
17
19 | 4.9
4.8
4.6
16
7.0 | 19
16
16
15
12 | 14
11
9.2
9.1 | 5.3
4.2
3.3
3.0
2.9 | 4.3
3.4
4.5
8.6
20 | 2.8
2.5
2.4
2.3
2.3 | 2.4
2.5
2.4
2.4 | | 11
12
13
14
15 | 4.4
46
46
86
17 | 2.3
2.2
2.2
2.1
2.0 | 29
29
72
81
45 | 11
6.2
5.5
5.0
4.5 | 15
13
12
11
10 | 6.1
15
9.7
8.6
8.0 | 11
14
10
9.0
8.0 | 8.8
7.2
149
31
17 | 2.7
2.4
4.1
2.7
2.4 | 8.7
14
10
7.5
6.0 | 2.3
2.1
2.0
2.5 | 2.4
2.4
2.5
3.1 | | 16
17
18
19
20 | 13
9.5
8.2
7.5
7.1 | 1.9
1.9
1.9
3.1
3.3 | 32
40
26
22
18 | 4.2
4.4
9.3
51
20 | 9.8
8.4
7.8
7.3
26 | 57
384
226
109
174 | 7.1
6.8
6.4
5.8
5.4 | 12
15
11
7.6
6.4 | 2.2
2.2
2.1
2.1
2.0 | 5.1
4.1
4.5
4.8
3.9 | 15
6.3
4.8
4.1
3.8 | 5.7
3.7
15
5.2
43 | | 21
22
23
24
25 | 5.6
5.3
6.3
28
12 | 2.4
2.3
2.3
24
3.8 | 16
13
23
14
13 | 16
20
188
351
121 | 10
8.7
7.9
7.3
6.9 | 87
55
39
29
24 | 4.9
5.5
4.3
27
8.9 | 5.4
4.6
3.9
3.6
3.4 | 1.8
1.8
2.1
3.2
2.9 | 7.9
5.0
18
6.8
4.9 | 3.2
20
13
7.5
8.1 | 15
8.0
6.0
5.0
6.9 | | 26
27
28
29
30
31 | 5.9
5.3
4.8
4.3
4.2
3.5 | 2.6
20
6.5
364
114 | 9.5
8.5
7.6
6.7
6.2 | 68
46
34
27
24
20 | 14
7.4
6.7
 | 69
29
24
34
43
204 | 6.0
5.4
21
6.6
5.7 | 3.5
3.0
2.9
2.7
29
5.9 | 2.5
3.4
3.9
2.9
3.6 | 4.2
3.6
3.5
e3.5
e3.60
e3.50 | 5.4
4.2
3.7
3.1
2.9
3.1 | 145
114
26
16
13 | | MEAN
MAX
MIN | 12.50
86
2.6 | 19.76
364
1.9 | 31.15
174
6.2 | 35.13
351
4.2 | 15.01
53
6.7 | 54.87
384
4.6 | 16.36
89
4.3 | 17.75
149
2.7 | 3.530
15
1.8 | 7.316
33
3.4 | 5.145
20
2.0 | 15.84
145
2.4 | e Estimated ## 03432390 SPENCER CREEK NEAR FRANKLIN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 2002, BY WATER YEAR (WY) | MEAN 6.441 16.66
MAX 12.5 22.4
(WY) 2002 2001
MIN 1.80 7.77
(WY) 2001 2000 | 20.06 22.85
31.1 35.1
2002 2002
9.54 15.4
2000 2000 | 34.05
63.9
2001
15.0
2002 | 31.79
54.9
2002
19.2
2000 | 16.61
29.9
2000
9.83
2001 | 22.29
44.3
2000
13.1
1999 | 7.308
12.8
2001
3.53
2002 | 5.623
7.32
2002
3.42
2000 | 5.342
8.75
2001
2.73
1999 | 6.976
15.8
2002
2.44
1999 | |---|---|---------------------------------------
---------------------------------------|--|--|---------------------------------------|--|---|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FO | R 2002 WAS | TER YEAR | | WATER YEARS | 3 1999 - | 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 453
1.9
2.0
39
6.7
2.6 | Feb 16
Nov 16
Nov 12 | | 19.63
384
1.8
2.0
1030
9.66
b1.6
39
6.6
2.4 | Mar 17
Jun 21
Jun 17
Nov 29
Nov 29
Jun 21 | | 16.86
19.6
14.5
550
0.78
0.99
3250
a11.75
0.77
31
6.2
2.4 | May 25
Sep 18
Sep 6
May 25
May 25
Jun 30 | 1999
1999
2000
2000 | From high-water mark. Also occurred June 22. ### 03432400 HARPETH RIVER BELOW FRANKLIN, TN LOCATION.--Lat 35°56'53", long 86°52'54", Williamson County, Hydrologic Unit 05130204, on right bank 0.1 mi below bridge on U.S. Highway 431, 1.2 mi downstream from Spence Creek, 1.8 mi northwest of the courthouse in Franklin, and at mile 84.3. DRAINAGE AREA.--210 mi^2 , includes 15 mi^2 without surface drainage. PERIOD OF RECORD.--August 1988 to September 1999, discharge for gage height of 6.00 ft and below only, October 1999 to current year. GAGE. -- Data collection platform. REMARKS.--Records good except for estimated daily discharges Feb. 9-11, which are fair. Flow is affected by Franklin sewage treatment plant outflow 1.1 mi upstream. Periodic observations of water temperature and specific conductance are published in the report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined; maximum gage height, 28.97 ft, Feb. 4, 1990; minimum discharge, 3.0 ft 3 /s, Aug. 19, 1988, Sept. 12, 18, 1999; minimum daily, 4.1 ft 3 /s, Aug. 18, 1988. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |----------------------------|----------------------|-----------------------------------|--------------------------|------------------|--------------|-----------------------------------|---------------------| | Nov 29
Jan 25
Mar 18 | 2330
0015
0900 | 6,000
*9,170
7,870 | 19.68
*25.49
23.39 | Mar 31
May 13 | 2045
1715 | 5,290
4,220 | 18.47
16.12 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge, 5.2 ft $^3/s$, Sept. 14. Minimum daily discharge, 9.5 ft $^3/s$, Sept. 13. | | | DISCHA | KGE, CUBI | C FEET PE | | Y MEAN VA | | SR 2001 10 |) SEPIEMBE | JR 2002 | | | |----------------------------------|-----------------------------------|---------------------------------|--|--|-----------------------------------|--|-----------------------------------|------------------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
12
11
11
21 | 43
40
42
44
41 | 1400
863
647
512
403 | 122
112
107
105
101 | 612
514
446
413
367 | 141
144
143
131
119 | 2930
1310
875
655
528 | 423
281
585
872
592 | 56
48
43
41
105 | 16
20
57
27
23 | 14
14
14
14 | 12
11
11
11
11 | | 6
7
8
9
10 | 137
119
53
37
29 | 33
32
30
28
26 | 345
369
1830
1410
812 | 101
97
90
83
81 | 347
411
447
e500
e450 | 113
111
113
135
129 | 440
382
342
320
278 | 383
279
215
179
173 | 62
53
40
35
31 | 15
13
14
19
30 | 11
11
11
11
10 | 9.7
10
10
11
11 | | 11
12
13
14
15 | 24
143
160
1240
650 | 26
25
26
25
23 | 643
512
1120
1630
1060 | 101
94
87
79
74 | e400
332
304
275
250 | 116
152
450
318
250 | 249
244
223
209
184 | 168
151
2380
1550
693 | 27
28
39
33
25 | 79
66
45
29
30 | 10
11
12
12
26 | 10
10
9.5
10 | | 16
17
18
19
20 | 309
197
144
114
94 | 31
30
29
24
29 | 709
604
540
423
342 | 71
75
93
786
959 | 238
217
192
176
250 | 295
4580
7420
2750
2230 | 161
145
135
118
109 | 445
346
375
271
212 | 22
24
25
18
17 | 20
17
21
22
15 | 32
21
17
16
15 | 135
26
34
42
77 | | 21
22
23
24
25 | 78
66
60
83
163 | 26
23
22
71
48 | 280
239
367
454
330 | 577
409
3220
7850
7410 | 242
197
175
166
160 | 1580
1050
798
639
525 | 108
101
89
112
105 | 177
153
136
122
116 | 22
21
14
17
22 | 17
17
51
32
19 | 15
26
24
27
19 | 72
29
21
16
18 | | 26
27
28
29
30
31 | 108
81
61
53
49
46 | 50
97
286
2650
4540 | 268
224
197
176
156
140 | 1900
1190
867
685
581
493 | 174
159
147
 | 822
682
522
476
1000
3590 | 94
88
184
139
96 | 103
88
80
81
101
70 | 16
15
19
21
20 | 15
18
17
18
19 | 30
19
14
15
14 | 346
960
346
171
109 | | TOTAL
MEAN
MAX
MIN | 4366
140.8
1240
11 | 8440
281.3
4540
22 | 19005
613.1
1830
140 | 28600
922.6
7850
71 | 8561
305.8
612
147 | 31524
1017
7420
111 | 10953
365.1
2930
88 | 11800
380.6
2380
70 | 959
31.97
105
14 | 819
26.42
79
13 | 509
16.42
32
10 | 2565.2
85.51
960
9.5 | e Estimated ## 03432400 HARPETH RIVER BELOW FRANKLIN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2002, BY WATER YEAR (WY) | MEAN
MAX | 42.49
141 | 103.5
281 | 396.3
613 | 495.4
923 | 695.5
1273 | 660.8
1017 | 310.7
748 | 223.9 | 62.97
111 | 32.64
45.9 | 131 | 29.42
85.5
2002 | |-------------|---|--|--|--|---|--|--|---
---|--|--|---| | | | | | | | | | | | | | 10.0 | | | | | | | | | | | | | | 1993 | | (VVI) | 1334 | 1999 | 2000 | 2000 | 2002 | 2001 | 1999 | 2001 | 2002 | 2000 | 1300 | 1333 | | SUMMARY | STATIST | ics | FOR | 2001 CALE | IDAR YEAR | F | FOR 2002 WA | TER YEAR | | WATER YEARS | 1988 - | 2002 | | ANNUAL | TOTAL | | | 110508 | | | 128101.2 | | | | | | | ANNUAL | MEAN | | | 302.8 | | | 351.0 | | | 275.6 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 351 | | 2002 | | LOWEST | ANNUAL, M | EAN | | | | | | | | 207 | | 2000 | | | | | | 8650 | Feb 17 | | 7850 | Jan 24 | | | Feb 17 | | | LOWEST | DATLY ME | AN | | 11 | Jul 16 | | 9.5 | | | 4.1 | | 1988 | | | | | | 14 | | | | | | | | | | MAXIMUM | PEAK FL | OW | | | | | 9170 | Jan 25 | | 9730 | | | | MAXTMUM | FEAK ST | AGE | | | | | 25.49 | Jan 25 | NOT | DETERMINED | Feb 4 | 1990 | 668 | | | 740 | | | 606 | . 3 =- | | | | MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANI | MAX 141 (WY) 2002 MIN 7.68 (WY) 1994 SUMMARY STATIST ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL LOWEST ANNUAL LOWEST ANNUAL LOWEST DAILY ME ANNUAL SEVEN-DA MAXIMUM PEAK FL MAXIMUM PEAK ST INSTANTANEOUS I | MAX 141 281
(WY) 2002 2002
MIN 7.68 16.7
(WY) 1994 1999
SUMMARY STATISTICS | MAX 141 281 613 (WY) 2002 2002 2002 MIN 7.68 16.7 115 (WY) 1994 1999 2000 SUMMARY STATISTICS FOR ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW | MAX 141 281 613 923 (WY) 2002 2002 2002 2002 MIN 7.68 16.7 115 173 (WY) 1994 1999 2000 2000 SUMMARY STATISTICS FOR 2001 CALEN ANNUAL TOTAL 110508 ANNUAL MEAN 302.8 HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN 8650 LOWEST DAILY MEAN 11 ANNUAL SEVEN-DAY MINIMUM 14 MAXIMUM PEAK FLOW 14 MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW | MAX 141 281 613 923 1273 (WY) 2002 2002 2002 2002 2001 MIN 7.68 16.7 115 173 306 (WY) 1994 1999 2000 2000 2002 2002 2002 2002 2002 | MAX 141 281 613 923 1273 1017 (WY) 2002 2002 2002 2002 2002 2001 2002 MIN 7.68 16.7 115 173 306 458 (WY) 1994 1999 2000 2000 2002 2001 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FAINUAL TOTAL ANNUAL TOTAL 110508 ANNUAL TOTAL 302.8 HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN 8650 Feb 17 LOWEST ANNUAL MEAN 11 Jul 16 ANNUAL SEVEN-DAY MINIMUM 14 Jul 16 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW | MAX 141 281 613 923 1273 1017 748 (WY) 2002 2002 2002 2001 2002 2000 MIN 7.68 16.7 115 173 306 458 110 (WY) 1994 1999 2000 2000 2002 2001 1999 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WA' ANNUAL TOTAL 110508 128101.2 351.0 128101.2 351.0 351.0 10810 351.0 10810 | MAX 141 281 613 923 1273 1017 748 381 (WY) 2002 2002 2002 2001 2002 2000 2002 MIN 7.68 16.7 115 173 306 458 110 66.8 (WY) 1994 1999 2000 2000 2002 2001 1999 2001 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR ANNUAL TOTAL 110508 128101.2 ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 8650 Feb 17 7850 Jan 24 LOWEST DAILY MEAN 11 Jul 16 9.5 Sep 13 ANNUAL SEVEN-DAY MINIMUM 14 Jul 16 10 Sep 7 MAXIMUM PEAK FLOW 9170 Jan 25 INSTANTANEOUS LOW FLOW 5.2 Sep 14 | MAX 141 281 613 923 1273 1017 748 381 111 (WY) 2002 2002 2002 2001 2002 2000 2002 2001 MIN 7.68 16.7 115 173 306 458 110 66.8 32.0 (WY) 1994 1999 2000 2000 2002 2001 1999 2001 2002 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR ANNUAL TOTAL 110508 128101.2 ANNUAL MEAN 128101.2 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 8650 Feb 17 7850 Jan 24 LOWEST DAILY MEAN 11 Jul 16 9.5 Sep 13 ANNUAL SEVEN-DAY MINIMUM 14 Jul 16 10 Sep 7 MAXIMUM PEAK FLOW 9170 | MAX 141 281 613 923 1273 1017 748 381 111 45.9 (WY) 2002 2002 2002 2001 2002 2000 2002 2001 1994 MIN 7.68 16.7 115 173 306 458 110 66.8 32.0 17.8 (WY) 1994 1999 2000 2002 2001 1999 2001 2002 2000 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS ANNUAL TOTAL 110508 128101.2 ANNUAL MEAN 302.8 128101.2 ANNUAL MEAN 351. LOWEST ANNUAL MEAN 351 LOWEST DAILY MEAN 8650 Feb 17 7850 Jan 24 8650 LOWEST DAILY MEAN 11 Jul 16 9.5 Sep 13 4.1 ANNUAL SEVEN-DAY MINIM | MAX 141 281 613 923 1273 1017 748 381 111 45.9 131 (WY) 2002 2002 2002 2001 2002 2000 2002 2001 1994 2001 MIN 7.68 16.7 115 173 306 458 110 66.8 32.0 17.8 8.22 (WY) 1994 1999 2000 2002 2001 1999 2001 2002 2000 1988 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1988 - ANNUAL TOTAL 110508 128101.2 ANNUAL MEAN 302.8 128101.2 ANNUAL MEAN 302.8 351.0 275.6 HIGHEST ANNUAL MEAN 207 HIGHEST DAILY MEAN 10 Jail 24 8650 Feb 17 COMEST ANNU | ### 03433500 HARPETH RIVER AT BELLEVUE, TN $\label{location.--Lat 36°03'16", long 86°55'42", Davidson County, Hydrologic Unit 05130204, on right bank 45 ft upstream from bridge on State Highway 100, 0.1 mi downstream from Little Harpeth River, 0.9 mi southeast of Bellevue, and at mile 62.1.$ DRAINAGE AREA.--408 mi^2 , includes 15 mi^2 without surface drainage. PERIOD OF RECORD.--April 1920 to current year. Monthly discharge only November 1929 to December 1931, published in WSP 1306. REVISED RECORDS.--WSP 953: 1920-30, 1932-35. WSP 1386: 1948. WSP 1556: Drainage area. WSP 1910: 1960. GAGE.--Data collection platform. Datum of gage is 541.04 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Apr. 11, 1920, to Oct. 31, 1929, Jan. 1, 1932, to Sept. 30, 1933, nonrecording gage at site 2.8 mi downstream at datum 7.85 ft lower. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as
miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1897, that of Feb. 13, 1948. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,500 $\mathrm{ft^3/s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 30 | 1000 | 10,600 | 15.16 | Mar 18 | 0100 | 13,900 | 17.39 | | Jan 25 | 0530 | *14,400 | *17.69 | Mar 31 | 2330 | 8,360 | 13.09 | | | 2 | | | | | | | Minimum discharge, 11 ft³/s, Aug. 10, Sept. 12. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TC | SEPTEMBE | IR 2002 | | | |----------------------------------|-------------------------------------|-----------------------------------|--|---|---------------------------------|--|---------------------------------|--|-------------------------------|----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 21 | 75 | 2640 | 263 | 1100 | 271 | 5790 | 853 | 140 | 43 | 35 | 22 | | 2 | 16 | 66 | 1370 | 240 | 1010 | 270 | 2520 | 730 | 118 | 39 | 27 | 19 | | 3 | 15 | 63 | 977 | 224 | 866 | 273 | 1780 | 1040 | 104 | 114 | 22 | 17 | | 4 | 14 | 67 | 761 | 216 | 799 | 252 | 1430 | 1380 | 93 | 103 | 21 | 16 | | 5 | 20 | 64 | 598 | 204 | 699 | 224 | 1180 | 1330 | 157 | 58 | 20 | 15 | | 6
7
8
9
10 | 72
221
127
80
61 | 56
42
40
40
40 | 484
461
2840
2910
1530 | 207
206
191
177
173 | 647
696
767
729
690 | 213
207
209
230
288 | 999
869
783
733
643 | 910
684
529
429
381 | 160
123
103
84
71 | 45
30
25
35
46 | 18
15
13
13 | 14
15
14
13
12 | | 11 | 56 | 34 | 1180 | 199 | 699 | 248 | 581 | 391 | 63 | 86 | 14 | 13 | | 12 | 146 | 35 | 954 | 201 | 637 | 276 | 579 | 341 | 58 | 362 | 15 | 13 | | 13 | 280 | 33 | 1880 | 191 | 555 | 623 | 542 | 2690 | 57 | 256 | 22 | 13 | | 14 | 1630 | 31 | 2840 | 174 | 492 | 614 | 495 | 3180 | 67 | 141 | 19 | 14 | | 15 | 1210 | 34 | 2010 | 159 | 453 | 510 | 446 | 1450 | 59 | 89 | 40 | 38 | | 16 | 561 | 29 | 1330 | 149 | 427 | 610 | 393 | 983 | 49 | 87 | 64 | 76 | | 17 | 387 | 29 | 1110 | 146 | 394 | 6930 | 355 | 780 | 44 | 63 | 80 | 142 | | 18 | 294 | 32 | 1050 | 173 | 360 | 13000 | 326 | 763 | 41 | 68 | 64 | 57 | | 19 | 228 | 32 | 856 | 771 | 327 | 7050 | 290 | 590 | 45 | 63 | 53 | 51 | | 20 | 193 | 38 | 706 | 1580 | 424 | 5150 | 259 | 455 | 36 | 52 | 37 | 79 | | 21 | 145 | 44 | 596 | 999 | 491 | 3540 | 250 | 371 | 32 | 39 | 30 | 188 | | 22 | 135 | 43 | 511 | 754 | 406 | 2210 | 234 | 313 | 33 | 39 | 31 | 119 | | 23 | 129 | 41 | 554 | 3690 | 354 | 1720 | 204 | 275 | 34 | 41 | 33 | 66 | | 24 | 118 | 55 | 761 | 11500 | 327 | 1460 | 298 | 246 | 34 | 64 | 56 | 49 | | 25 | 276 | 134 | 609 | 13500 | 314 | 1230 | 296 | 225 | 76 | 57 | 54 | 41 | | 26
27
28
29
30
31 | 237
162
118
97
86
80 | 102
124
330
3960
9540 | 517
447
398
359
322
291 | 4690
2050
1460
1170
1030
907 | 336
322
290

 | 1520
1510
1180
1040
1430
5300 | 232
211
255
418
248 | 220
191
171
160
154
200 | 61
50
44
42
44 | 39
30
29
29
30
37 | 45
52
39
25
24
26 | 483
2500
1000
492
306 | | TOTAL | 7215 | 15253 | 33852 | 47594 | 15611 | 59588 | 23639 | 22415 | 2122 | 2239 72.23 362 25 0.18 0.20 | 1019 | 5897 | | MEAN | 232.7 | 508.4 | 1092 | 1535 | 557.5 | 1922 | 788.0 | 723.1 | 70.73 | | 32.87 | 196.6 | | MAX | 1630 | 9540 | 2910 | 13500 | 1100 | 13000 | 5790 | 3180 | 160 | | 80 | 2500 | | MIN | 14 | 29 | 291 | 146 | 290 | 207 | 204 | 154 | 32 | | 12 | 12 | | CFSM | 0.57 | 1.25 | 2.68 | 3.76 | 1.37 | 4.71 | 1.93 | 1.77 | 0.17 | | 0.08 | 0.48 | | IN. | 0.66 | 1.39 | 3.09 | 4.34 | 1.42 | 5.43 | 2.16 | 2.04 | 0.19 | | 0.09 | 0.54 | ## 03433500 HARPETH RIVER AT BELLEVUE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 2002, BY WATER YEAR (WY) | MEAN 113.3 365.6
MAX 953 1678
(WY) 1976 1987
MIN 1.90 10.4
(WY) 1932 1940 | 832.9 1165 1280
3952 4305 3606
1927 1937 1950
32.3 40.5 90.2
1940 1940 1941 | 1340 872.6 566.5
4263 2579 3232
1975 1927 1984
167 138 38.7
1941 1967 1941 | 280.5 143.0 112.5 117.0 1834 827 663 1685 1928 1999 1926 1979 13.1 15.6 5.76 1.28 1988 1954 1954 1948 | |--|--|--|---| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1920 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 201710
552.6
14100 Feb 17
14 Oct 4
22 Sep 29
1.35
18.39
1160
173
35 | 236444
647.8
13500 Jan 25
12 Aug 10
13 Sep 8
14400 Jan 25
17.69 Jan 25
b11 Aug 10
1.59
21.56
1430
207
28 | 595.7 1157 1973 137 1941 32400 Mar 13 1975 0.00 Oct 5 1922 0.07 Oct 4 1922 40000 Feb 13 1948 a24.34 Feb 13 1948 c0.00 Oct 5 1922 1.46 19.84 1380 190 | a From floodmarks. b Also occurred Sept. 12. c Also occurred Oct. 6-10, 1922. ### 03434500 HARPETH RIVER NEAR KINGSTON SPRINGS, TN LOCATION.--Lat $36^{\circ}07^{\circ}19^{\circ}$, long $87^{\circ}05^{\circ}56^{\circ}$, Cheatham County, Hydrologic Unit 05130204, on right bank 400 ft upstream from bridge on U.S. Highway 70, 1.7 mi northeast of Kingston Springs, 3.0 mi downstream from Turnbull Creek, and at mile 32.4. DRAINAGE AREA.--681 mi^2 , includes 15 mi^2 without surface drainage. PERIOD OF RECORD.--October 1924 to current year. Prior to July 1925 monthly discharge only, published in WSP 1306. REVISED RECORDS.--WSP 953: 1927, 1933, 1935-36. WSP 1033: 1927(M), 1932-33(M), 1935(M), 1937(M). WSP 1706: 1945(P). WSP 2110: Drainage area. GAGE.--Data collection platform. Datum of gage is 447.04 ft above NGVD of 1929. July 8, 1925, to Jan. 22, 1939, nonrecording gage at site 150 ft downstream, and Jan. 22, 1939, to July 26, 1988, water-stage recorder at present site at datum 1.0 ft REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1897, that of Jan. 7, 1946. Flood of March 1902 reached a stage about 3 ft lower than that of Jan. 7, 1946. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $10,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | e | Discharge
(ft ³ /s) | Gage | e height
(ft) | | Date | Time | | Discharge
(ft ³ /s) | | height
ft) | |----------------------------|----------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|------------------------------|----------------------------| | Nov 30
Jan 24
Jan 25 | unkno
unkno
190 | own | 18,100
17,900
14,000 | 2 | 20.46
20.32
17.36 | | Mar 18
Mar 31 | unkno
1630 | | *28,900
10,900 | | 3.10
3.32 | | inimum disc | harge, 29 | ft^3/s , s | Sept. 12, 1 | L3. | | | | | | | | | | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YE
Y MEAN VAI | | R 2001 TO | SEPTEME | BER 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 66
60
51
45
51 | 149
142
138
132
127 | 6030
2620
1870
1460
1160 | 479
435
410
380
370 | 2150
2110
1770
1610
1400 | 515
490
488
454
422 | 8760
4370
2910
2200
1800 | 1070
1340
1180
1600
2020 | 286
231
209
193
189 | 154
135
269
340
241 | 114
103
91
79
72 | 63
76
59
51
48 | | 4 5 | 45 | 132 | 1460 | 380 | 1610 | 454 | 2200 | 1600 | 193 | 340 | 79 | 51 | |----------------------------------|--|-------------------------------------|--|--|-----------------------|--|---------------------------------|--|---------------------------------|--|------------------------------------|------------------------------------| | | 51 | 127 | 1160 | 370 | 1400 | 422 | 1800 |
2020 | 189 | 241 | 72 | 48 | | 6 | 175 | 125 | 949 | 372 | 1270 | 394 | 1530 | 1370 | 1670 | 177 | 68 | 42 | | 7 | 158 | 121 | 856 | 366 | 1290 | 376 | 1350 | 1050 | 653 | 144 | 61 | 42 | | 8 | 255 | 111 | 2360 | 346 | 1430 | 363 | 1210 | 830 | 396 | 121 | 57 | 40 | | 9 | 178 | 107 | 4680 | 328 | 1390 | 463 | 1140 | 675 | 320 | e150 | 53 | 39 | | 10 | 130 | 104 | 2610 | 321 | e1280 | 647 | 1020 | 582 | 274 | e180 | 50 | 37 | | 11 | 108 | 100 | 1920 | 388 | e1150 | 548 | 910 | 565 | 242 | 461 | 59 | 36 | | 12 | 253 | 98 | 1600 | 389 | e1300 | 590 | 888 | 515 | 221 | 275 | 72 | 32 | | 13 | 439 | 95 | 4170 | 364 | e1050 | 855 | 854 | 3410 | 207 | 592 | 60 | 31 | | 14 | 2390 | 95 | 4530 | 343 | 917 | 1150 | 801 | 5570 | 211 | 394 | 64 | 33 | | 15 | 2450 | 93 | 3620 | 317 | 836 | 959 | 728 | 2450 | 199 | 264 | 100 | 35 | | 16 | 1120 | 92 | 2430 | 298 | 784 | 1000 | 647 | 1580 | 185 | 204 | 133 | 97 | | 17 | 653 | 91 | 1990 | 287 | 727 | 5610 | 576 | 1190 | 171 | 180 | 253 | 136 | | 18 | 440 | 88 | 1940 | 349 | 658 | e18000 | 537 | 1130 | 158 | 154 | 155 | 172 | | 19 | 341 | 93 | 1610 | 1160 | 593 | 9490 | 504 | 946 | 144 | 142 | 123 | 107 | | 20 | 284 | 104 | 1330 | 2500 | 719 | 7770 | 457 | 754 | 144 | 130 | 108 | 108 | | 21 | 244 | 104 | 1110 | 1830 | 889 | 5700 | 416 | 618 | 137 | 122 | 99 | 284 | | 22 | 212 | 97 | 962 | 1370 | 777 | 3810 | 411 | 526 | 125 | 116 | 82 | 256 | | 23 | 189 | 98 | 1090 | 3140 | 670 | 2860 | 370 | 463 | 118 | 155 | 73 | 170 | | 24 | 175 | 119 | 1270 | e14500 | 603 | 2290 | 500 | 418 | 122 | 202 | 96 | 119 | | 25 | 327 | 229 | 1160 | e17000 | 562 | 1890 | 671 | 379 | 440 | 148 | 115 | 97 | | 26
27
28
29
30
31 | 394
296
233
193
172
159 | 234
1280
860
8250
13800 | 978
863
765
687
600
534 | 7740
3560
2650
2140
1960
1910 | 637
634
560
 | 2380
2520
1930
1660
1870
7370 | 447
386
370
541
458 | 415
364
315
291
273
266 | 362
214
226
182
156 | 145
120
102
112
123
134 | 134
113
88
86
71
62 | 705
6240
2170
1040
643 | | TOTAL | 12241 | 27276 | 59754 | 68002 | 29766 | 84864 | 37762 | 34155 | 8385 | 6186 | 2894 | 13008 | | MEAN | 394.9 | 909.2 | 1928 | 2194 | 1063 | 2738 | 1259 | 1102 | 279.5 | 199.5 | 93.35 | 433.6 | | MAX | 2450 | 13800 | 6030 | 17000 | 2150 | 18000 | 8760 | 5570 | 1670 | 592 | 253 | 6240 | | MIN | 45 | 88 | 534 | 287 | 560 | 363 | 370 | 266 | 118 | 102 | 50 | 31 | | MED | 212 | 109 | 1460 | 410 | 903 | 1150 | 699 | 754 | 208 | 154 | 86 | 86 | | CFSM | 0.58 | 1.34 | 2.83 | 3.22 | 1.56 | 4.02 | 1.85 | 1.62 | 0.41 | 0.29 | 0.14 | 0.64 | | IN. | 0.67 | 1.49 | 3.26 | 3.71 | 1.63 | 4.64 | 2.06 | 1.87 | 0.46 | 0.34 | 0.16 | 0.71 | Μi e Estimated ## 03434500 HARPETH RIVER NEAR KINGSTON SPRINGS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|-------------------------------------|-------------------------------------|---|--------------------------------------|---------------------------------------|---|---|---------------------------------------| | MEAN 226.3 615.8 MAX 1516 2761 (WY) 1976 1980 MIN 28.9 63.2 (WY) 1932 1955 | 1305 1867
6274 6975
1927 1937
94.9 116
1936 1940 | 2050
6078
1950
187
1941 | 2159
6806
1975
279
1941 | 1475
3942
1927
269
1967 | 1020
5107
1984
99.3
1941 | 522.9
2849
1928
59.0
1988 | 270.8
1071
1989
62.7
1954 | 209.7
1099
1926
38.5
1954 | 214.3
2530
1979
25.0
1939 | | SUMMARY STATISTICS | FOR 2001 CAI | LENDAR YEAR | F | OR 2002 V | WATER YEAR | | WATER YEARS | 1925 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 322836
884.
16800
45
55
1,
17,
1930
277 | Feb 17
Oct 4
Sep 13 | | 384293
1053
18000
31
35
28000
a25 .:
c29
1.!
20.!
2370
380
87 | Sep 12
55
99 | | 988.2
2000
41.3
43100
16
18
60000
b32.20
12
1.45
19.72
2230
348
71 | Feb 14
Sep 24
Sep 27
Jan 7
Jan Sep 14 | 3 1939
2 1939
7 1946
7 1946 | a b c From high-water mark. From high-water mark in gage house. Also occurred Sept. 13. ### 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN ### WATER-OUALITY RECORDS LOCATION.--Lat 36°19'22", long 87°13'42", Cheatham County, Hydrologic Unit 05130205, on left bank 0.4 mi downstream from Cheatham Dam, 2.0 mi southwest of Neptune, 2.6 mi upstream from Half Pone Creek, 9.7 mi west of Ashland City, and at mile 148.4. DRAINAGE AREA. -- 14, 163 mi². PERIOD OF RECORD.--February 1993 to September 1997, October 1998 to current year. PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: February 1993 to September 1997, October 1998 to current year. pH: February 1993 to September 1997, October 1998 to current year. WATER TEMPERATURE: February 1993 to September 1997, October 1998 to current year. DISSOLVED OXYGEN: February 1993 to September 1997, October 1998 to current year. INSTRUMENTATION. -- Data collection platform and water-quality monitor. REMARKS.--Flow regulated by Cheatham Dam and other reservoirs above station. Interruptions in the record were due to instrument malfunctions. Records for water temperature are rated excellent, specific conductance are rated good except for the period from June to Sept. rated poor, p.H. records are rated fair and dissolved oxygen is rated poor. EXTREMES FOR PERIOD OF DAILY RECORD .-- THEMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 298 microsiemens, May 4, 1995; minimum, 152 microsiemens, Jan. 23, 1999. pH: Maximum, 9.0 units, March 11, 13, 2002; minimum, 6.0 units, June 13, 1993. WATER TEMPERATURE: Maximum, 28.4°C, Aug. 2, 3, 1995; minimum, 2.3°C, Feb. 6, 1996. DISSOLVED OXYGEN: Maximum, 16.0 mg/L, Jan. 16, 2001; minimum, 3.7 mg/L, June 29, 1994. EXTREMES FOR CURRENT YEAR.-- THEMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum, 290 microsiemens, Dec. 26; minimum, 169 microsiemens, April 25. pH: Maximum, 9.0 units, March 11, 13; minimum, 7.0 units, several days in September. WATER TEMPERATURE: Maximum, 28.6°C, Aug. 6; minimum, 5.5°C, Jan. 7, 8. DISSOLVED OXYGEN: Maximum, 15.5 mg/L, March 11. SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 217 | 211 | 213 | 251 | 240 | 244 | 239 | 205 | 223 | 277 | 272 | 274 | | 2 | 219 | 210 | 213 | 248 | 243 | 245 | 262 | 239 | 253 | 283 | 274 | 279 | | 3 | 213 | 211 | 212 | 248 | 238 | 243 | 262 | 256 | 260 | 286 | 275 | 282 | | 4 | 212 | 211 | 212 | 245 | 239 | 242 | 263 | 258 | 261 | 284 | 279 | 281 | | 5 | 214 | 211 | 212 | 246 | 242 | 244 | 267 | 263 | 265 | 279 | 273 | 276 | | 6 | 227 | 212 | 218 | 248 | 241 | 244 | 269 | 263 | 265 | 285 | 277 | 280 | | 7 | 222 | 215 | 220 | 246 | 238 | 242 | 269 | 263 | 265 | 286 | 278 | 282 | | 8 | 224 | 214 | 219 | 245 | 240 | 243 | 270 | 259 | 264 | 284 | 280 | 282 | | 9 | 222 | 214 | 218 | 248 | 243 | 246 | 288 | 264 | 274 | 287 | 281 | 284 | | 10 | 225 | 215 | 219 | 243 | 236 | 239 | 275 | 254 | 264 | 288 | 280 | 284 | | 11 | 219 | 215 | 217 | 247 | 238 | 240 | 277 | 266 | 271 | 281 | 277 | 279 | | 12 | 219 | 210 | 214 | 249 | 246 | 247 | 266 | 233 | 259 | 289 | 278 | 284 | | 13 | 229 | 215 | 223 | 249 | 244 | 246 | 260 | 233 | 246 | 284 | 275 | 280 | | 14 | 234 | 220 | 227 | 248 | 243 | 245 | 264 | 236 | 251 | 278 | 273 | 275 | | 15 | 237 | 213 | 224 | 248 | 246 | 247 | 265 | 256 | 261 | 276 | 272 | 274 | | 16 | 249 | 234 | 240 | 249 | 244 | 247 | 262 | 260 | 261 | 275 | 263 | 267 | | 17 | 243 | 233 | 236 | 244 | 235 | 238 | 266 | 259 | 262 | 265 | 261 | 263 | | 18 | 241 | 231 | 236 | 244 | 237 | 241 | 270 | 266 | 268 | 261 | 255 | 257 | | 19 | 237 | 229 | 234 | 246 | 244 | 244 | 270 | 267 | 268 | 259 | 250 | 256 | | 20 | 244 | 233 | 236 | 246 | 242 | 243 | 276 | 263 | 269 | 255 | 245 | 250 | | 21 | 251 | 244 | 249 | 243 | 239 | 242 | 278 | 275 | 277 | 258 | 243 | 250 | | 22 | 253 | 249 | 251 | 243 | 239 | 241 | 285 | 275 | 281 | 254 | 246 | 249 | | 23 | 253 | 248 | 250 | 242 | 236 | 239 | 284 | 274 | 278 | 254 | 236 | 242 | | 24 | 248 | 241 | 243 | 242 | 231 | 235 | 281 | 275 | 278 | 253 | 196 | 219 | | 25 | 245 | 236 | 241 | 245 | 231 | 236 | 280 | 277 | 278 | 228 | 190 | 212 | | 26
27
28
29
30
31 | 241
247
251
250
253
248 | 229
234
245
234
237
243 | 235
243
248
241
247
245 | 246
255
257
230
205 | 240
240
229
184
182 |
243
244
243
214
192 | 290
284
277
274
276
277 | 278
276
266
266
271
272 | 284
280
274
269
273
274 | 232
245
250
244
250
242 | 222
217
243
239
241
235 | 228
233
246
242
245
239 | | MONTH | 253 | 210 | 230 | 257 | 182 | 240 | 290 | 205 | 266 | 289 | 190 | 261 | CUMBERLAND RIVER BASIN 139 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | S. | PECIFIC | CONDOCTAN | LE, III US | / CM @ 23 | C, WAILK | YEAR OCTOR | SER ZUUI | IO SEFIE | MBER 2002 | | | |---|--|--|--|---|--|---|---|---|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 237
228
230
222
223 | 223
223
222
217
218 | 230
225
228
219
221 | 232
230
230
230
231 | 222
217
220
222
175 | 226
222
225
226
197 | 216
220
218
220
226 | 207
212
213
218
218 | 212
216
215
219
221 | 214
214
225
228
231 | 197
200
208
215
224 | 207
208
214
223
228 | | 6
7
8
9
10 | 224
226
228
230
232 | 222
211
216
218
223 | 224
219
222
225
227 | 203
206
214
221
219 | 195
197
202
210
205 | 198
200
206
214
210 | 224
212
214
215
218 | 211
205
206
210
209 | 218
208
209
211
211 | 231
228
231
231
221 | 220
215
218
219
214 | 226
220
226
224
217 | | 11
12
13
14
15 | 234
238
233
233
236 | 223
226
226
228
230 | 228
231
229
231
233 | 220
220
221
221
226 | 210
212
213
213
218 | 215
217
216
215
221 | 215
212
209
207
204 | 205
202
199
200
200 | 208
206
202
203
201 | 225
220
212
216
210 | 214
210
203
199
201 | 220
215
208
205
206 | | 16
17
18
19
20 | 236
237
237
238
240 | 231
232
230
232
230 | 234
234
233
235
234 | 238
232
199
223
221 | 226
194
172
197
215 | 231
217
186
215
218 | 200
203
210
212
233 | 198
199
202
202
204 | 199
201
206
206
209 | 213
218
221
220
214 | 204
205
204
210
207 | 208
211
214
214
210 | | 21
22
23
24
25 | 242
239
240
241
243 | 233
233
231
234
232 | 238
236
234
238
236 | 240
241
236
217
222 | 218
236
211
211
217 | 229
240
220
213
219 | 213
209
213
212
208 | 208
207
208
179
169 | 210
208
209
202
180 | 214
214
215
222
217 | 205
206
205
206
211 | 210
209
209
214
214 | | 26
27
28
29
30
31 | 241
239
241
 | 232
231
226
 | 236
233
233
 | 225
224
220
224
224
224 | 220
213
212
212
216
209 | 223
218
218
220
220
217 | 224
207
209
222
213 | 207
200
201
209
204 | 214
202
204
214
209 | 219
216
218
212
213
214 | 212
212
210
209
206
204 | 215
213
213
210
210
209 | | MONTH | 243 | 211 | 230 | 241 | 172 | 217 | 233 | 169 | 208 | 231 | 197 | 214 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX 213 215 215 217 220 | | MEAN 208 210 212 213 217 | MAX
224
223
225
223
229 | | MEAN 221 221 220 221 222 | | | MEAN 212 216 216 217 219 | | | | | 1
2
3
4 | 213
215
215
217 | JUNE 205 208 209 211 | 208
210
212
213 | 224
223
225
223 | JULY 220 218 216 219 | 221
221
220
221 | 217
221
219
220 | 209
211
213
214 | 212
216
216
217 | 199
201
201
200 | 194
195
195
195
195 | 197
198
198
198 | | 1
2
3
4
5
6
7
8
9
10 | 213
215
215
217
220
224
240
229
237 | JUNE 205 208 209 211 215 214 224 222 226 230 233 237 | 208
210
212
213
217
217
232
226
231 | 224
223
225
223
229
224
224
221
224 | JULY 220 218 216 219 218 219 218 216 215 215 214 220 | 221
220
221
222
222
222
221
218
219 | 217
221
219
220
225
223
227
225
225
230
231
227 | 209
211
213
214
215
215
216
216
219
222
223
220 | 212
216
216
217
219
219
220
220
221 | 199
201
201
200
198
199
199
201
209 | 194
195
195
195
195
192
192
192
197
200
199 | 197
198
198
198
195
196
197
199
204 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 213
215
215
217
220
224
240
229
237
237
237
247
239 | JUNE 205 208 209 211 215 214 224 222 226 230 233 237 228 231 | 208
210
212
213
217
217
232
226
231
233
235
241
236
233 | 224
223
225
223
229
224
224
221
224
220
223
225
223
225 | JULY 220 218 216 219 218 219 218 219 215 216 215 215 214 220 214 216 | 221
221
220
221
222
221
218
219
218
217
223
219
218 | 217
221
219
220
225
223
227
225
225
230
231
227
224
227 | 209 211 213 214 215 215 216 219 222 223 220 219 203 | 212
216
216
217
219
219
220
220
221
226
227
223
221
220 | 199
201
2001
200
198
199
199
201
209
205
206
203
197
199 | 194
195
195
195
195
195
192
192
192
197
200
199
197
195
195 | 197
198
198
198
195
196
197
199
204
201
202
200
194
190 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 213
215
215
217
220
224
240
229
237
237
237
239
244
238
239
244
234
232
230
232 | JUNE 205 208 209 211 215 214 224 222 226 230 233 237 228 231 233 229 227 225 226 | 208
210
212
213
217
217
232
226
231
233
235
241
236
233
238
232
229
228
229 | 224
223
225
223
229
224
224
221
224
220
223
225
223
221
225
230
230
230
231
238 | JULY 220 218 216 219 218 219 218 219 215 216 215 215 214 220 214 221 223 | 221
221
220
221
222
221
218
219
218
217
223
219
218
220
227
226
226
229 | 217
221
219
220
225
223
227
225
225
230
231
227
227
207
207
209
213
210 | 209 211 213 214 215 215 216 216 219 222 223 220 219 203 204 202 203 204 206 | 212
216
216
217
219
220
220
221
226
227
223
221
220
206
203
206
208
208 | 199
201
200
198
199
199
201
209
205
206
203
197
195
192
209
209 |
194
195
195
195
195
195
192
192
192
197
200
199
197
199
188
187
186
186
206
206 | 197
198
198
198
195
196
197
199
204
201
202
200
194
190
190
198
208 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 213
215
215
217
220
224
240
229
237
237
239
247
238
239
244
232
230
232
232
232
231
232
231
230
230
230
229
225 | JUNE 205 208 209 211 215 214 224 222 226 230 233 237 228 231 233 229 227 225 226 226 220 223 224 225 224 220 223 224 | 208
210
212
213
217
217
232
226
231
233
235
241
236
233
238
232
229
229
229
229
229
229
227
226
227
226
227
228
227
226
227
228 | 224
223
225
223
229
224
224
220
223
225
223
221
225
230
230
231
225
223
221
225
227
227
227
227
227
227
227
227
227 | JULY 220 218 216 219 218 219 218 219 218 216 215 215 214 220 214 216 218 224 221 223 213 216 217 213 212 214 213 211 207 211 209 | 221
220
221
222
221
218
219
218
217
223
219
218
220
227
226
226
229
220
218
227
221
217
217
217
217 | 217
221
219
220
225
223
227
225
225
230
231
227
207
207
207
209
213
210
212
213
215
217
218
213
213
215
217
218
213 | 209 211 213 214 215 215 216 216 219 222 223 220 219 203 204 202 203 204 202 203 204 202 203 204 206 208 209 211 215 212 210 200 198 200 197 195 | 212
216
216
217
219
220
220
221
226
227
223
221
220
206
208
208
208
209
211
213
216
215
212
206
202
203
206
208
209 | 199
201
2001
2001
200
198
199
201
209
205
206
203
197
195
192
209
209
211
210
213
212
213
216
212
203
213
216 | 194
195
195
195
195
195
197
200
199
197
200
199
197
195
192
188
187
186
186
206
206
206
207
207
208
207
207
208
207
208
208
209
209
209
209
209
209
209
209
209
209 | 197
198
198
198
195
196
197
199
204
201
202
200
194
190
190
190
190
208
208
209
210
210
201
202
208
210
211
208
211
208
211
208
211
208
211
208
211
208
211
208
211
211
211
211
211
211
211
211
211
21 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 213
215
215
217
220
224
240
229
237
237
237
238
239
244
232
230
232
232
232
232
233
232
232
232 | JUNE 205 208 209 211 215 214 224 226 230 233 237 228 231 233 229 227 225 226 226 220 225 225 225 225 224 220 223 224 220 223 224 220 223 224 | 208 210 212 213 217 217 232 226 231 233 235 241 236 233 238 232 229 228 229 228 227 226 227 228 227 228 | 224
223
225
223
229
224
221
224
220
223
225
223
221
225
230
230
231
238
224
220
223
225
227
227
228
229 | JULY 220 218 219 218 219 218 219 218 219 218 216 215 215 214 220 214 221 223 213 216 217 213 212 214 213 211 207 211 | 221
221
220
221
222
221
218
219
218
217
223
219
218
220
227
226
229
220
218
220
217
226
229
220 | 217
221
219
220
225
223
227
225
225
230
231
227
207
207
209
213
210
212
213
215
217
218
213
213
215
217
218
213 | 209 211 213 214 215 215 216 219 222 223 220 219 203 204 202 203 204 202 203 204 206 208 209 211 215 210 200 198 200 197 | 212
216
216
217
219
220
220
221
226
227
223
221
220
206
208
208
209
211
213
215
215
212 | 199
201
200
198
199
199
201
209
205
206
203
197
195
192
209
209
211
210
213
213
213
216
212
203
213
213
213
213
223 | 194 195 195 195 195 197 199 199 197 199 197 199 197 199 188 187 186 206 206 208 205 203 207 206 184 173 199 210 | 197
198
198
198
195
196
197
197
199
204
201
202
200
194
190
190
190
208
208
209
210
210
211
203
189
208
219 | # 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | FII, WII, | FIEDD, II | i (Dirivbri | im olviib), | WIIIII . | ILAK OCTOBE | A 2001 | TO SEFTEMBE | MC 2002 | | | |---|---|---|--|--|---|---|---|---|---|--|---|---| | DAY | MAX | MIN | | | OCTO | OBER | NOVE | MBER | DECEM | BER | JANU | ARY | FEBRU | JARY | MAR | CH | | 1
2
3
4
5 | 8.2
8.0
8.1
8.0
8.0 | 7.9
7.7
7.9
7.9 | 8.0
8.0
7.9
7.9 | 7.8
7.8
7.7
7.7 | 7.4
7.5
7.5
7.5
7.5 | 7.2
7.4
7.4
7.5
7.5 | 8.0
8.1
8.1
8.1
8.2 | 8.0
8.0
8.0
8.0 | 7.8
7.8
7.9
7.9
7.9 | 7.8
7.8
7.8
7.9 | 8.5
8.5
8.5
8.7 | 8.3
8.4
8.4
8.4 | | 6
7
8
9
10 | 8.0
7.9
7.9
7.8
7.9 | 7.8
7.7
7.6
7.6 | 7.8
7.9
7.9
7.9
8.0 | 7.7
7.7
7.7
7.8
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.5 | 8.1
8.2
8.2
8.2
8.3 | 8.0
8.0
8.1
8.1
8.2 | 7.9
7.9
7.9
7.9
7.9 | 7.9
7.9
7.9
7.9 | 8.8
8.9
8.9
8.8
8.9 | 8.6
8.7
8.7
8.7
8.8 | | 11
12
13
14
15 | 7.9
7.8
7.7
7.8
7.8 | 7.7
7.6
7.6
7.5
7.6 | 7.8
7.8
7.8
7.8
7.8 | 7.5
7.5
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.5
7.6 | 8.4
8.3
8.4
8.5 | 8.3
8.3
8.3
8.3 | 8.0
8.0
8.0
8.0 | 7.9
7.9
8.0
8.0 | 9.0
8.9
8.9
8.9
9.0 | 8.8
8.8
8.8
8.8 | | 16
17
18
19
20 | 7.9
8.0
8.1
8.0
8.1 | 7.7
7.9
7.9
7.9 | 7.8
7.8
7.8
7.7
7.7 | 7.7
7.6
7.6
7.5
7.6 | 7.6
7.6
7.7
7.7 | 7.6
7.6
7.7
7.6
7.7 | 8.6
8.5
8.6
8.6
8.5 | 8.3
8.4
8.4
8.3 | 8.1
8.1
8.1
8.2
8.2 | 8.0
8.0
8.0
8.1
8.1 | 8.9
8.8
8.2
7.9
7.8 | 8.8
8.2
7.8
7.8
7.8 | | 21
22
23
24
25 | 8.0
7.9
7.8
7.8
8.0 | 7.8
7.7
7.6
7.7
7.6 | 7.8
7.8
7.8
7.8
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.7
7.8
7.8
7.8
7.9 | 7.7
7.7
7.7
7.8
7.8 | 8.4
8.4
8.3
7.9 | 8.3
8.2
8.3
7.8
7.8 | 8.2
8.2
8.3
8.4
8.5 | 8.1
8.1
8.2
8.2
8.3 | 7.8
7.8
7.9
7.8
7.9 | 7.8
7.8
7.8
7.8
7.8 | | 26
27
28
29
30
31 | 8.0
8.0
7.9
8.1
8.0 | 7.7
7.5
7.6
7.8
7.8 | 7.8
7.7
7.7
7.5
7.3 | 7.6
7.6
7.5
7.3
7.2 | 7.9
7.9
7.9
7.9
8.0
8.1 | 7.8
7.8
7.9
7.9
7.9 | 7.9
7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.8
7.8
7.8
7.8 | 8.4
8.5
 | 8.3
8.3
8.3 | 7.9
7.9
7.9
7.9
7.9
7.9 | 7.8
7.9
7.8
7.9
7.9 | | MONTH | 8.2 | 7.5 | 8.0 | 7.2 | 8.1 | 7.2 | 8.6 | 7.8 | 8.5 | 7.8 | 9.0 | 7.8 | | | | | | | | | | | | | | | | DAY | MAX | MTN | | DAY | MAX
API | MIN | MAX | MIN | MAX
JUN | MIN | MAX | MIN | MAX
AUGU | MIN | MAX
SEPTE | MIN
MBER | | | API | RIL | M | ΑY | JUN | E | JUL | Y | AUGU | JST | SEPTE | MBER | | DAY 1 2 3 4 5 | | RIL | | ΑY | | | | | | | | | | 1
2
3
4 | 7.9
7.9
7.9
7.9
7.8 |
7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7 | 7.7
7.6
7.6
7.6 | JUN
7.8
7.7
7.9
7.9 | 7.4
7.4
7.5
7.7 | JUL
8.1
8.1
8.1
8.0 | 7.8
7.8
7.9
7.8 | AUGU
7.8
7.7
7.7
7.8 | 7.5
7.5
7.5
7.5
7.5 | SEPTE
7.6
7.5
7.5
7.6 | 7.4
7.4
7.3
7.3 | | 1
2
3
4
5
6
7
8 | 7.9
7.9
7.9
7.8
7.8
7.8
7.8
7.9
8.0 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7
7.7
7.8
7.7
7.7 | 7.7
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.7
7.9
7.9
7.8
7.7
7.5
7.5 | 7.4
7.4
7.5
7.7
7.5
7.4
7.2
7.2
7.4 | JUL 8.1 8.1 8.0 7.9 7.9 8.0 7.9 8.0 7.9 8.0 7.7 | 7.8
7.8
7.9
7.8
7.8
7.7
7.7
7.7
7.8
7.4
7.7 | AUGU 7.8 7.7 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.6 | 7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.4
7.3 | SEPTE 7.6 7.5 7.5 7.6 7.8 7.5 7.4 7.3 7.2 | 7.4
7.4
7.3
7.3
7.5
7.4
7.2
7.1
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.9
7.9
7.9
7.8
7.8
7.8
7.8
7.9
7.9
8.0
8.0 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.8 | 7.7
7.6
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7 | JUN
7.8
7.7
7.9
7.9
7.8
7.5
7.5
7.4
7.5
7.5
7.5
7.6 | 7.4
7.4
7.5
7.7
7.5
7.4
7.2
7.4
7.3
7.4
7.4
7.5 | JUL 8.1 8.1 8.1 8.0 7.9 7.9 8.0 7.9 8.0 7.9 8.0 7.7 7.6 7.7 | 7.8
7.8
7.9
7.8
7.7
7.7
7.7
7.8
7.4
7.7 | AUGU 7.8 7.7 7.8 7.7 7.8 7.7 7.6 7.6 7.6 7.6 7.6 7.7 7.7 | 7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.4
7.3
7.3 | SEPTE 7.6 7.5 7.5 7.6 7.8 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.2 7.3 | 7.4
7.4
7.3
7.3
7.5
7.4
7.2
7.1
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 7.9
7.9
7.8
7.8
7.8
7.8
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.2
8.2 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.8 | 7.7
7.6
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7 | JUN 7.8 7.7 7.9 7.8 7.7 7.5 7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 | 7.4
7.4
7.5
7.7
7.5
7.4
7.2
7.4
7.3
7.4
7.5
7.6
7.5
7.5 | JUL 8.1 8.1 8.1 8.0 7.9 7.9 8.0 7.9 8.0 7.7 7.7 7.7 7.7 7.7 9 8.0 8.0 | 7.8
7.8
7.9
7.8
7.7
7.7
7.7
7.4
7.7
7.6
7.4
7.6 | 7.8
7.7
7.7
7.8
7.7
7.8
7.7
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7 | 7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.3
7.4
7.4
7.3
7.3 | SEPTE 7.6 7.5 7.5 7.6 7.8 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.2 7.3 7.2 7.6 7.6 7.6 | 7.4
7.4
7.3
7.3
7.5
7.4
7.2
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | 7.9 7.9 7.8 7.8 7.8 7.8 7.9 8.0 8.0 8.0 8.0 8.0 8.1 8.2 8.2 8.1 8.2 8.3 8.4 8.3 7.8 7.9 8.0 8.0 8.0 8.0 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7
7.7
7.7
7.8
7.8
7.8
7.9
7.7
7.7
7.7
7.8
7.8
7.7
7.7
8.0
8.0
7.9
7.7
7.8
8.0
8.0
8.1
8.1
8.1
8.1 | 7.7
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8 7.7 7.9 7.8 7.7 7.5 7.4 7.5 7.6 7.6 7.6 7.6 7.7 7.8 8.0 8.0 7.7 7.7 7.8 7.7 7.8 7.9 | 7.4
7.4
7.5
7.7
7.5
7.4
7.2
7.4
7.3
7.4
7.5
7.6
7.5
7.5
7.5
7.5
7.7
7.8
7.7
7.8
7.7 | JUL 8.1 8.1 8.1 8.0 7.9 7.9 8.0 7.9 8.0 8.0 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | 7.8
7.8
7.8
7.8
7.8
7.7
7.7
7.4
7.4
7.4
7.6
7.5
7.44
7.7
7.76
7.6
7.5
7.64
7.5
7.64
7.5 | 7.8 7.7 7.8 7.7 7.8 7.7 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 | 7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.3
7.3
7.2
7.4
7.4
7.3
7.3
7.4
7.2
7.3
7.2
7.3
7.5
7.5 | SEPTE 7.6 7.5 7.6 7.8 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.2 7.3 7.2 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 | 7.4
7.4
7.3
7.3
7.5
7.4
7.2
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7.9 7.9 7.8 7.8 7.8 7.8 7.9 8.0 8.0 8.0 8.0 8.0 8.1 8.2 8.2 8.1 8.2 8.3 7.8 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.8 | 7.7
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | JUN 7.8 7.7 7.9 7.8 7.7 7.5 7.4 7.5 7.4 7.5 7.6 7.6 7.6 7.6 7.7 7.8 8.0 8.0 7.9 7.8 7.7 7.8 | 7.4
7.4
7.5
7.7
7.5
7.4
7.2
7.4
7.3
7.4
7.5
7.6
7.5
7.5
7.5
7.5
7.5
7.7 | JUL 8.1 8.1 8.1 8.0 7.9 8.0 7.9 8.0 8.0 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | 7.8
7.8
7.9
7.8
7.7
7.7
7.4
7.4
7.6
7.5
7.4
7.7
7.6
7.5
7.6
7.5
7.6
7.5
7.5
7.4
7.7 | AUGU 7.8 7.7 7.8 7.7 7.8 7.7 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 | 7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.3
7.3
7.4
7.4
7.3
7.4
7.4
7.2
7.4
7.2
7.3
7.5
7.5 | SEPTE 7.6 7.5 7.6 7.8 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.2 7.4 7.7 7.6 7.8 7.7 7.6 7.8 7.7 7.6 7.7 7.6 7.7 7.6 | 7.4
7.4
7.3
7.3
7.5
7.4
7.2
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | CUMBERLAND RIVER BASIN 141 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | , - | | | | | 10 SEFIEMBE | | | | |--|--|--|---|---|--|--|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | | | | | | DE | | | | | | | 1 2 | | 20.2
19.8 | 20.4 | 15.6
16.1 | 15.4
15.3
15.6
15.1
15.5 | 15.5
15.3 | 13.8
13.6
13.4
13.4 | 13.6
13.4 | 13.7
13.5 | 7.7
7.4 | 7.1
7.1
6.4
6.1
6.0 | 7.4
7.2 | | 3
4 | 20.6
20.4 | 20.0 | 20.2
20.2
20.2 | 15.9
16.0 | 15.6
15.1 | 15.6
15.7 | 13.6
13.4
13.4 | 13.1
13.2 | 13.2
13.3 | 7.1
6.7 | 6.4
6.1 | 6.8 | | 5 | 20.4 | 20.1 | | | | | | | | | | | | 6
7 | 20.1
19.6 | 19.6
19.1 | 19.8
19.4 | 16.0
15.8 | 15.4
15.4 | 15.7
15.6 | 13.6
13.7
13.9
13.6
13.5 | 13.4
13.6 | 13.5
13.7
13.8
13.6 | 6.1
6.0 | 6.0
5.5
5.5
5.6
6.0 | 6.1
5.8 | | 8
9 | 19.4
19.3 | 19.0
18.8 | 19.4
19.2
19.1 | 15.9
16.1 | 15.3
15.3 | 15.6
15.7 | 13.9
13.6 | 13.6
13.5 | 13.8
13.6 | 5.9
6.0 | 5.5
5.6 | 5.7 | | 10 | 19.4 | 18.8 | | | | |
13.3 | 13.1 | 13.3 | | | | | 11
12 | 19.0
18.9
19.0
19.2
19.1 | 18.7
18.6 | 18.9
18.8
18.9 | 15.3
15.1 | 14.8
14.6
14.6
14.6
14.7 | 15.0
14.9 | 13.1
12.5
13.0
13.4
13.4 | 12.5
12.3 | 12.8
12.4
12.6
13.2
13.2 | 6.2
6.5 | 6.1
6.1 | 6.2
6.3
6.3 | | 13
14 | 19.0
19.2 | 18.9 | 18.9
19.0 | 15.1
15.1 | 14.6
14.6 | 14.8
14.8 | 13.0
13.4 | 12.3
13.0 | 12.6
13.2 | 6.4
6.9 | 6.1
6.4 | 6.3
6.5 | | | | 18.9 | | | | | | | | | | | | 16
17 | 18.9
18.2
17.6
17.4
17.4 | 18.2
17.6 | 18.5
17.9
17.4
17.2 | 14.9
14.9 | 14.5
14.4
14.4
14.4
14.1 | 14.6
14.7 | 13.0
13.1
13.1
13.0
12.6 | 12.9
12.9 | 12.9
13.0
13.0
12.8 | 6.8
6.8 | 6.6
6.3
6.5
6.6 | 6.7
6.7 | | 18
19 | 17.6
17.4 | 17.3
17.1 | 17.4
17.2 | 14.8
14.8 | $14.4 \\ 14.4$ | 14.7
14.7 | 13.1
13.0 | 13.0
12.6 | 13.0
12.8 | 6.9
6.9 | 6.5
6.6 | 6.7
6.7
6.8
6.7 | | | | 1/.1 | 17.3 | | | | 12.0 | 12.0 | 12.2 | | | | | 21
22 | 17.4
17.5
17.9
18.1
18.2 | 17.0
17.0 | 17.2
17.3
17.5
17.9 | 14.3
13.9 | 13.8
13.5
13.6
13.9 | 14.0
13.7 | 12.0
11.7
11.3
10.7
10.3 | 11.6
11.2 | 11.8
11.4 | 7.1
7.1 | 6.8
6.9
7.1
8.0
8.2 | 6.9
7.0 | | 23
24 | 17.9
18.1 | 17.3
17.7 | 17.5
17.9 | 14.0
14.2 | 13.6
13.9 | 13.8
14.0 | 11.3
10.7 | 10.7
10.2 | 11.1
10.5 | 8.0
9.6 | 7.1
8.0 | 7.5 | | | | | | | | | | | | | | | | 26
27 | 17.8
17.1
16.9
16.6
16.4 | 17.1
16.6 | 17.5
16.9 | 14.0
14.1 | 13.8
13.9 | 13.9
14.0 | 10.0
9.6 | 9.6
8.9 | 9.8
9.2 | 8.9
9.1 | 8.2
8.9 | 8.5
9.0 | | 28
29 | 16.9
16.6 | 16.3
16.3 | 16.6
16.4 | $14.1 \\ 14.1$ | 13.8
13.6 | 14.0
13.9 | 9.1
8.9 | 8.6
8.2 | 8.8
8.6 | 9.3
10.0 | 8.9
9.3 | 9.1
9.7 | | 30
31 | 16.4
15.9 | 15.8
15.5 | 17.5
16.9
16.6
16.4
16.1
15.8 | 14.0
14.1
14.1
14.1
14.0 | 13.8 | 13.9 | 10.0
9.6
9.1
8.9
8.4
7.9 | 7.7
7.3 | 8.1
7.6 | 10.6
11.1 | 10.0
10.6 | 10.3
10.8 | | MONTH | 21.0 | | 18.3 | | | | 13.9 | | | | | 7.3 | | DAY | MAX | MIN | MEAN | MAX | MTN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | | | | 11111 | MEMIN | 1.17.77 | LITIA | MEAN | 1.17.777 | 11114 | THEFT | | | | FEBRUARY | | | MARCH | MEAN | PHY | | MEAN | INAX | MAY | HISAN | | | 11.4 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | 18.3 | | 2 | 11.4
11.3
10.8 | FEBRUARY
11.1
10.8
10.3 | | | MARCH | | | APRIL | | | MAY | 18.3
18.2
17.7 | | 2 | 11.4
11.3
10.8 | FEBRUARY
11.1
10.8
10.3 | 11.2
11.0
10.5
9.9
9.4 | 8.4
8.4
8.2
8.0
7.9 | MARCH
8.0
8.1
7.7
7.4
7.1 | 8.2
8.2
8.0
7.6
7.6 | 11.7
12.1
12.1
12.1
11.9 | APRIL
11.3
11.4
11.9
11.8
11.5 | 11.5
11.7
12.0
11.9 | 18.4
18.4
18.0
17.6
17.8 | MAY 18.1 18.0 17.5 17.2 17.2 | 18.3
18.2
17.7
17.4 | | 2
3
4
5 | 11.4
11.3
10.8
10.3
9.6 | 11.1
10.8
10.3
9.6
9.2 | 11.2
11.0
10.5
9.9
9.4 | 8.4
8.4
8.2
8.0
7.9 | MARCH
8.0
8.1
7.7
7.4
7.1 | 8.2
8.2
8.0
7.6
7.6 | 11.7
12.1
12.1
12.1
11.9 | APRIL
11.3
11.4
11.9
11.8
11.5 | 11.5
11.7
12.0
11.9 | 18.4
18.4
18.0
17.6
17.8 | MAY 18.1 18.0 17.5 17.2 17.2 | 18.3
18.2
17.7
17.4
17.5 | | 2
3
4
5
6
7
8 | 11.4
11.3
10.8
10.3
9.6 | 11.1
10.8
10.3
9.6
9.2 | 11.2
11.0
10.5
9.9
9.4 | 8.4
8.4
8.2
8.0
7.9 | MARCH
8.0
8.1
7.7
7.4
7.1 | 8.2
8.2
8.0
7.6
7.6 | 11.7
12.1
12.1
12.1
11.9 | APRIL
11.3
11.4
11.9
11.8
11.5 | 11.5
11.7
12.0
11.9 | 18.4
18.4
18.0
17.6
17.8 | MAY 18.1 18.0 17.5 17.2 17.2 | 18.3
18.2
17.7
17.4
17.5 | | 2
3
4
5 | 11.4
11.3
10.8
10.3
9.6 | FEBRUARY
11.1
10.8
10.3 | 11.2
11.0
10.5
9.9
9.4 | 8.4
8.4
8.2
8.0
7.9 | MARCH
8.0
8.1
7.7
7.4
7.1 | 8.2
8.2
8.0
7.6
7.6 | 11.7
12.1
12.1
12.1
11.9 | APRIL
11.3
11.4
11.9
11.8
11.5 | | 18.4
18.4
18.0
17.6
17.8 | MAY 18.1 18.0 17.5 17.2 17.2 | 18.3
18.2
17.7
17.4
17.5 | | 2
3
4
5
6
7
8
9
10 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5 | 8.0
8.1
7.7
7.4
7.1
7.8
8.2
8.5
9.2
9.1 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3 | 11.7
12.1
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 12.0 12.3 12.4 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4 | | 2
3
4
5
6
7
8
9
10
11
12
13 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
10.1
9.7
10.0 | MARCH
8.0
8.1
7.7
7.4
7.1
7.8
8.2
8.5
9.2
9.1
9.2
9.6
9.6 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.3
9.6
9.7 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4 | 11.3
11.4
11.9
11.8
11.5
11.5
12.0
12.3
12.4
12.7
13.2
13.7 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.5 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4 | | 2
3
4
5
6
7
8
9
10 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5 | MARCH
8.0
8.1
7.7
7.4
7.1
7.8
8.2
8.5
9.2
9.1
9.2
9.6 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3 | 11.7
12.1
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8
8.9
9.0
8.9
9.0
8.8
8.7 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 8.6 8.6 8.6 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.8
8.7
8.7 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
10.5
11.0 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.4
9.3
9.6
9.7
9.7
10.1
10.7 | 11.7
12.1
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4 | 11.3
11.4
11.9
11.8
11.5
11.5
12.0
12.3
12.4
12.7
13.2
13.7
14.3
14.6 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.6
17.7 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
18.5
18.4
17.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 11.4
11.3
10.8
10.3
9.2
8.6
8.3
8.5
8.8
9.0
8.9
8.9
8.8
8.7 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 8.6 8.6 8.6 8.7 8.7 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.8
8.7
8.7 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
10.5
11.0 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.2 9.6 9.6 9.8 10.5 11.0 10.9 11.9 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3
9.7
9.7
10.1
11.1
11.1
11.2 | 11.7
12.1
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4 | 11.3
11.4
11.9
11.5
11.5
11.5
12.0
12.3
12.4
12.7
13.2
13.7
14.3
14.6
15.3
15.9
16.6 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0 | 18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.6
18.0
17.7 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.2 17.4 16.9 |
18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
17.8
17.4
17.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.5
8.8
8.9
9.0
8.9
8.8
8.7 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 8.6 8.6 8.6 8.6 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.8
8.7
8.7 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
10.5
11.0 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3
9.7
9.7
10.1
10.7 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 13.7 14.3 14.6 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.7
17.7 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
18.5
18.4
17.4
17.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8
8.9
9.0
9.2
9.5
9.7 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.6 8.6 8.7 8.7 8.8 9.1 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.7
8.7
8.7 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.0
11.2
11.9
12.4
12.2
12.4 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 11.0 10.9 11.9 12.0 12.2 11.8 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.4
9.3
9.6
9.7
9.7
10.1
11.4
12.2
12.1
12.3 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8 | 11.3
11.4
11.9
11.8
11.5
11.5
11.6
12.0
12.3
12.4
12.7
13.2
14.3
14.6
15.3
15.9
16.6
17.6 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.5
17.6 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.6
17.7
17.5
17.6
17.4
17.0
16.5 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.4 16.9 16.5 16.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.6
18.4
18.5
17.4
17.5
17.1
16.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 11.4
11.3
10.8
10.3
9.2
8.6
8.3
8.5
8.8
9.0
8.9
8.9
8.9
8.9
9.0
9.2
9.5
9.7
9.7 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 8.6 8.6 8.7 8.7 8.8 9.1 9.3 9.4 9.2 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.8
8.7
8.7
8.7
8.7
8.7
8.9
9.0
9.3 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.0
11.2
11.9
12.4
12.2
12.4
12.3
11.8 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.6 9.6 9.8 10.5 11.0 10.9 11.9 12.0 12.0 11.8 11.3 10.9 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
9.3
9.7
9.7
10.1
11.1
11.4
12.2
12.1
12.3
12.1
11.5 | 11.7
12.1
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 13.7 14.6 15.3 14.6 17.9 16.6 17.9 17.6 17.9 18.2 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.5
17.6 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.6
17.7
17.5
17.4
17.0
16.5 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.2 17.4 16.9 16.5 16.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
17.4
17.5
17.1
16.7
16.7
16.3
16.2 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8
8.9
9.0
8.9
9.0
8.9
9.2
9.2
9.5 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.8 8.6 8.6 8.6 8.7 8.7 8.7 8.9 9.1 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.7
8.7
8.7
8.7
8.7
8.9
9.3 | 8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.2
11.9
12.4
12.4
12.3
11.8 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 11.0 10.9 11.9 12.0 12.2 11.8 11.3 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.7
9.7
10.1
10.7
11.4
12.2
12.1
12.3 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 13.7 14.6 15.3 14.6 15.3 17.4 17.6 17.9 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.6 | 18.4
18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.0
17.7
17.5
17.6
17.4
17.0
16.5 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.4 16.9 16.5 16.2 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.6
18.4
18.5
17.4
17.5
17.4
17.5
17.1
16.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8
8.9
9.0
9.2
9.5
9.7
9.7
9.5
9.9 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.6 8.6 8.7 8.7 8.8 9.1 9.3 9.4 9.2 9.5 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.3
8.6
8.8
8.7
8.7
8.7
8.7
8.7
8.7
8.9
9.3
9.6
9.4
9.6 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.2
11.0
11.2
11.3
11.4
11.5
11.4 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 11.0 11.9 12.0 12.2 11.8 11.3 10.9 11.0 11.2 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3
9.6
9.7
9.7
10.1
11.4
12.2
12.1
12.3
12.1
11.5
11.5
11.3 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8
18.6
18.5
18.5
18.5
17.4 | 11.3
11.4
11.9
11.8
11.5
11.5
11.6
12.0
12.3
12.4
12.7
13.2
14.3
14.6
15.3
15.9
16.6
17.2
17.4
17.6
17.9
18.2
17.9
18.2
17.9
18.2
17.9 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.5
17.6 | 18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.0
17.7
17.5
17.6
17.4
17.0
16.5 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.2 17.4 16.9 16.5 16.2 15.9 16.0 16.4 16.8 17.3 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.6
18.4
17.8
17.4
17.5
17.1
16.3
16.2
16.3
16.2
17.6
17.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 11.4
11.3
10.8
10.3
9.2
8.6
8.3
8.5
8.8
9.0
8.9
8.9
8.9
9.0
9.2
9.5
9.7
9.7
9.5
9.9
9.8
9.9 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.6 8.6 8.6 8.7 8.7 8.7 8.8 9.1 9.3 9.4 9.2 9.5 9.0 8.6 8.4 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.9
8.8
8.7
8.7
8.7
8.7
8.7
8.9
9.3
9.4
9.4
9.9
9.4
9.9
9.9
9.9
9.9
9.9
9.9 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.2
11.9
12.4
12.2
12.4
12.3
11.8
11.3
11.4
11.5 | MARCH 8.0 8.17 7.4 7.1 7.8 8.2 8.5 9.2 9.1 9.2 9.6 9.6 9.6 9.8 10.5 11.0 10.9 11.9 12.0 11.3 10.9 11.10 11.2 11.18 10.6 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.7
9.7
10.1
11.4
12.2
12.1
11.5
11.1
11.2
11.3
11.3
11.0
10.8 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8
18.5
18.5
18.5
18.5
17.4 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 13.7 14.6 15.3 14.6 17.2 17.6 17.9 18.2 17.4 17.6 17.9 18.2 17.9 16.8 17.1 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.5
17.6
18.0
18.3
18.4
17.9 | 18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.6
17.7
17.5
17.6
17.4
17.0
16.5
16.4
16.7
16.9
17.4
17.9 | MAY 18.1
18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.2 17.2 17.4 16.9 16.5 16.2 15.9 16.0 16.4 16.8 17.3 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
17.4
17.5
17.1
16.3
16.7
17.1
17.6
17.1
17.6
17.1
17.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 11.4
11.3
10.8
10.3
9.6
9.2
8.6
8.3
8.5
8.8
8.9
9.0
9.2
9.5
9.7
9.7
9.5
9.7
9.7
9.6
9.2
9.5 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.6 8.6 8.7 8.7 8.7 8.7 8.9 1 9.3 9.4 9.2 9.5 9.0 8.6 8.4 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.2
8.3
8.6
8.8
8.7
8.7
8.7
8.7
8.7
8.7
8.9
9.3
9.4
9.4
9.6
9.4
9.6 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
11.0
11.2
11.9
12.4
12.3
11.8
11.3
11.4
11.5
11.6
11.1 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 9.1 9.2 9.6 9.6 9.8 10.5 11.0 10.9 11.9 11.9 11.0 11.2 11.1 10.8 10.6 10.8 11.4 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.7
9.7
10.1
110.7
11.1
12.2
12.1
11.5
11.2
11.3
11.3
11.3
11.3
11.3
11.3 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
13.8
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 13.7 14.6 15.3 14.6 15.3 17.4 17.6 17.9 18.2 17.2 17.2 17.2 17.2 17.2 17.3 17.6 17.5 17.7 18.0 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.5
17.6
18.3
18.4
17.9
17.1 | 18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.0
17.7
17.5
17.6
17.4
17.0
16.5
16.4
17.9
18.2
18.7
18.9 | MAY 18.1 18.0 17.5 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.3 18.0 17.6 17.2 17.4 16.9 16.0 16.4 16.8 17.3 17.6 18.0 18.6 17.3 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.4
18.6
18.4
17.8
17.4
17.5
17.1
16.3
16.2
16.3
16.7
17.1
17.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.4
11.3
10.8
10.3
9.6
8.6
8.3
8.5
8.8
8.9
9.0
9.2
9.5
9.7
9.7
9.5
9.6
9.9
9.8
9.0
8.6 | FEBRUARY 11.1 10.8 10.3 9.6 9.2 8.6 8.3 8.1 8.0 8.4 8.7 8.6 8.6 8.6 8.7 8.7 8.8 9.1 9.3 9.4 9.2 9.2 9.5 9.0 8.6 8.4 | 11.2
11.0
10.5
9.9
9.4
8.8
8.4
8.3
8.6
8.8
8.7
8.7
8.7
8.7
8.7
8.7
8.9
9.3
9.5
9.4
9.6
9.5
8.8
8.6 | 8.4
8.4
8.2
8.0
7.9
8.2
8.8
9.1
9.5
9.5
10.1
9.7
10.0
11.2
11.0
11.2
11.3
11.4
11.5
11.4
11.1
11.0 | MARCH 8.0 8.1 7.7 7.4 7.1 7.8 8.2 9.1 9.2 9.6 9.6 9.8 10.5 11.0 11.9 11.9 12.0 12.2 11.8 11.3 10.9 11.0 11.2 11.1 10.8 10.8 | 8.2
8.2
8.0
7.6
7.6
8.0
8.4
8.8
9.4
9.3
9.6
9.7
10.1
10.7
11.1
11.4
12.2
12.1
11.5
11.1
11.5
11.1
11.2
11.3
11.3
11.3
11.0
10.1 | 11.7
12.1
12.1
11.9
12.0
12.1
12.4
12.6
13.1
13.3
14.4
14.7
15.4
16.0
16.6
17.5
17.9
17.8
18.6
18.5
18.5
18.5
17.4 | APRIL 11.3 11.4 11.9 11.8 11.5 11.5 11.6 12.0 12.3 12.4 12.7 13.2 14.3 14.6 15.3 15.9 16.6 17.2 17.4 17.6 17.9 18.2 17.2 16.9 16.8 17.4 17.5 17.7 | 11.5
11.7
12.0
11.9
11.7
11.8
11.9
12.2
12.5
12.7
13.0
13.4
13.9
14.5
15.0
15.7
16.2
17.1
17.5
17.6
18.3
18.4
17.9
17.1 | 18.4
18.0
17.6
17.8
18.0
18.4
18.8
18.7
18.5
18.8
18.0
17.7
17.5
17.6
17.4
17.0
16.5
16.4
16.7
17.4
17.9
18.2
18.7
18.2 | MAY 18.1 18.0 17.5 17.2 17.2 17.5 17.8 18.1 18.4 18.2 17.8 18.0 17.6 17.2 17.2 17.2 17.6 17.6 17.6 17.7 16.5 16.9 16.0 16.4 16.8 17.3 17.6 18.0 18.0 17.6 18.0 18.0 | 18.3
18.2
17.7
17.4
17.5
17.8
18.1
18.6
18.4
18.5
17.4
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.7
16.7
16.7
16.7
17.6 | # 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WATER | TEMPERATURE, | in (DEG | GREES C), | WATER | YEAR OCTO | DBER 2001 | TO SEPTE | EMBER 2002 | | | |----------------------------------|--------------------------------------|--------------------------------------|------------------------------|--|--|--|--------------------------------------|------------------------------------|------------------------------|--|--|--| | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | K MIN | I MEAN | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | 1 | | SEPTEMBI | ER | | 1
2
3
4
5 | 21.2
21.6
22.3
22.9
22.9 | 20.4
20.8
21.6
22.1
22.5 | 21.1
21.8
22.4 | 27.4
27.4
27.4
27.8
27.9 | 26.7
27.1
27.2
27.3
27.6 | 27.1
27.2
27.3
27.5
27.7 | 28.2
28.0
27.8
28.1
28.2 | 27.3
27.4
L 27.4 | 27.6
27.5
27.6 | 27.4
27.4
27.6
27.8
27.9 | | 27.1
27.2
27.3
27.5
27.7 | | 6
7
8
9
10 | 22.8
23.1
23.1
23.6
23.9 | 22.5
22.7
22.6
22.9
23.3 | 22.8
22.8
23.2 | 28.0
28.2
28.2
28.1
28.4 | 27.5
27.7
27.9
27.7
28.0 | 27.7
27.9
28.0
28.0
28.1 | 28.6
28.4
27.8
27.6
27.0 | 27.7
3 27.3
5 27.0 | 28.0
27.6
27.3 | 27.6
27.2
26.7
26.4 | 27.1
27.0
26.7
26.2
25.8 | 27.3
27.2
26.9
26.4
26.1 | | 11
12
13
14
15 | 23.6
24.4
25.3
25.1
24.9 | 23.3
23.2
24.3
24.6
24.2 | 23.6
24.7
24.9 | 28.1
27.7
26.8
27.1
27.3 | 27.7
26.8
26.6
26.5
27.0 | 27.9
27.4
26.7
26.8
27.1 | 27.1
27.5
27.8
27.7
27.6 | 5 26.9
3 27.3
7 27.4 | 27.2
27.5
27.5 | 26.4
26.6
26.1
26.1
25.9 | 26.1
26.0
25.8
25.8
25.6 | 26.3
26.3
25.9
25.9
25.8 | | 16
17
18
19
20 | 24.8
24.8
24.7
25.0
25.2 | 24.4
24.3
24.3
24.3 | 24.5
24.5
24.6 | 27.3
27.5
27.8
27.5
27.7 | 26.8
27.2
27.2
27.0
27.2 | 27.1
27.3
27.5
27.3
27.5 | 27.6
27.1
27.1
27.2
27.3 | L 26.7
L 26.8
2 26.7 | 26.9
26.9
26.9 | 26.4
26.3
26.3
26.5
26.6 | | 25.8
25.9
26.2
26.3
26.3 | | 21
22
23
24
25 | 26.1
26.7
26.7
27.0
27.2 | 25.1
25.8
26.2
26.4
26.6 | 26.2
26.4
26.6 | 27.8
27.7
27.5
27.6
27.9 | 27.6
27.4
27.2
27.1
27.4 | 27.7
27.5
27.3
27.3
27.6 | 27.8
28.0
27.9
27.9 | 27.5
27.6
27.6 | 27.7
27.7
27.7 | 26.1
25.6
25.5
25.2
24.8 | | 25.8
25.4
25.2
25.0
24.6 | | 26
27
28
29
30
31 | 26.7
26.6
26.5
26.8
27.0 | 26.4
26.2
26.0
26.3
26.5 | 26.4
26.3
26.5
26.7 | 27.8
27.8
28.2
28.4
28.3
28.0 | 27.5
27.4
27.6
27.9
27.8
27.6 | 27.7
27.5
27.9
28.1
28.1
27.8 | 27.6
27.3
27.0
26.8
27.0 | 3 27.0
26.7
3 26.5
5 26.2 | 27.1
26.9
26.6
26.4 | 24.4
22.9
22.5
22.5
22.6 | 21.5
21.6 | 23.7
21.8
22.1
22.3
22.5 | | MONTH | 27.2 | 20.4 | 24.4 | 28.4 | 26.5 | 27.5 | 28.6 | 26.2 | 27.3 | 27.9 | 21.5 | 25.7 | | | | OXY | GEN DISSOLVE | D, in (M | MG/L), WA | TER YEA | R OCTOBER | R 2001 TC |) SEPTEMBE | ER 2002 | | | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIM > | I MEAN | MAX | MIN | MEAN | | | | OCTOB | ER | N | OVEMBER | | | DECEMBE | IR. | | JANUAR | Y | | 1
2
3
4
5 | 10.0
8.9
9.1
9.3
8.9 | 8.2
7.8
8.0
8.5
7.1 | 8.4
8.7
8.8 | 9.5
9.9
9.6
9.9
9.5 | 9.0
8.8
8.7
9.1
9.0 | 9.2
9.3
9.2
9.4
9.2 | 9.0
9.3
9.6
9.7 | 8.7
5 9.1
7 9.4 | 9.1
9.4
9.6 | 12.2
12.3
12.4
12.4
12.5 | 11.5
11.7
11.5
11.5 | 11.9
11.9
12.0
12.0
12.2 | | 6
7
8
9
10 | 9.2
9.2
9.6
10.0 | 7.1
8.7
8.9
8.9 | 9.1
9.2 | 9.5
9.5
9.5
10.0
10.4 | 8.8
8.8
9.1
9.0
9.2 | 9.1
9.2
9.2
9.3
9.6 | 9.9
9.8
10.0
9.7
9.6 | 9.5
9.4
9.1 | 9.7
9.6
9.5 | 12.4
12.5
12.7
12.9
12.8 | 11.9
11.8
12.0
12.3
12.3 | 12.1
12.2
12.4
12.6
12.5 | | 11
12
13
14
15 | | | | 10.1
9.8
9.9
10.1
10.2 | 9.0
9.2
9.3
9.2
9.4 | 9.6
9.5
9.6
9.6 | 9.5
9.8
9.5
9.5 | 9.0
9.4
5 9.1 | 9.3
9.5
9.2 | 12.9
12.7
13.1
13.7
13.0 | 12.4
12.4
12.5
12.5 | 12.6
12.8
13.0
12.7 | | 16
17
18
19
20 | 10.3
10.7
10.7
11.0 | 9.8
10.0
10.0
9.9
9.8 | 10.1
10.3
10.3 | 10.0
10.6
11.3
10.3 | 9.1
9.4
9.5
9.3
9.7 | 9.5
9.9
9.9
9.7
9.9 | 9.5
9.8
9.8
10.0 | 9.4
9.6
9.5 | 9.6
9.8
9.6 | 13.8
13.5
14.0
13.6
13.2 | 12.6
13.0
13.0
13.0 | 13.2
13.3
13.5
13.2
12.9 | | 21
22
23
24
25 |
10.0
9.6
9.5
9.3
9.9 | 9.3
8.3
7.9
8.0
8.2 | 9.1
8.5
8.8 | 10.4
10.4
10.8
10.5
10.6 | 9.6
9.7
10.0
9.9
10.0 | 10
10.0
10.2
10.2 | 10.0
10.2
10.6
11.1 | 9.8
5 9.9
L 10.3 | 10.0
10.2
10.6 | 12.8
12.8
13.0
12.6
11.7 | 12.3
12.3
12.6
10.5 | 12.6
12.6
12.8
11.4
11.4 | | 26
27
28
29
30
31 | 10.7
10.0
9.9

9.4 | 8.2
8.4
8.3
8.8

9.0 | 9.5
9.1
 | 10.5
10.0
9.7
9.5
8.9 | 10.0
9.7
9.2
8.9
8.3 | 10.2
9.8
9.5
9.3
8.6 | 10.9
11.1
11.2
11.7
11.7 | 10.6
2 10.8
7 10.8
7 11.2 | 10.8
11.0
11.2
11.5 | 11.7
11.5
11.7
11.0
10.6
10.4 | 11.0
11.0
10.9
10.4
10.3
10.4 | 11.3
11.3
11.2
10.8
10.4
10.4 | MONTH 11.0 7.1 9.2 11.3 8.3 9.6 12.0 8.3 9.9 14.0 10.3 12.2 CUMBERLAND RIVER BASIN 143 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | The color of | | | | | | (110/11), | WIII III IIII | OCTOBER | 2001 10 | SEPTEMBER | R 2002 | | | |--|---|---|--|---|--|--|---|--|--|--|--|--|---| | 1 | DAY | MAX | MIN | MEAN | MAX | MIN | I MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | 6 10.8 10.7 10.8 14.3 13.5 13.9 12.1 11.9 12.0 10.0 8.5 4 7 10.9 10.8 10.8 10.8 14.9 13.9 14.4 12.1 12.0 12.1 2.0 12.1 8.3 8.5 1 8 1 10.1 10.8 10.8 10.8 14.9 13.9 14.4 12.1 12.0 12.1 8.3 8.5 1 10 11.1 10.8 10.8 10.8 14.9 13.9 14.4 12.1 12.0 12.1 8.3 8.5 2 1 10 11.1 10.8 11.0 10.8 10.9 11.0 14.6 14.0 14.3 12.1 12.0 12.1 8.3 8.5 2 1 10 11.1 11.0 11.1 10.9 11.0 14.6 14.0 14.3 12.1 12.0 12.1 8.3 8.2 2 1 11 11.3 11.1 11.3 11.3 14.9 14.1 14.5 12.1 12.0 12.0 9.2 8.4 11 11.1 11.3 11.1 11.3 14.9 14.1 14.5 12.1 12.0 12.0 9.2 8.4 11 11.1 11.2 11.2 11.2 11.2 11.2 11.1 11.3 14.9 14.1 14.5 11.2 11.1 10.8 11.0 9.5 8.5 1.5 11.1 11.1 11.5 15.0 14.0 14.4 11.1 11.0 8.1 10.9 9.9 9.0 9.1 7.8 14.1 11.6 11.5 11.6 15.0 14.0 14.4 11.1 11.0 10.8 11.0 9.5 9.9 9.0 9.0 15 11.1 11.1 11.1 11.1 11.1 11.1 10.8 11.0 9.1 12.0 9.9 9.0 9.0 15 11.1 11.1 11.1 11.1 11.1 11.1 11.1 | | | FEBRUARY | | | | | | APRIL | | | | | | 10 11.1 10.9 11.0 14.6 14.0 14.3 12.1 12.0 12.0 9.2 8.4 1 11 11.3 11.1 11.2 15.5 14.1 14.5 12.1 12.0 12.0 9.2 8.4 1 11 11.3 11.2 11.0 11.1 14.2 14.1 14.5 14.1 14.5 12.1 12.0 12.0 9.2 8.3 1 11 11.5 11.6 11.2 11.3 14.9 14.1 14.4 12.1 11.0 11.0 9.1 1.0 9.5 8.7 1 13 11.6 11.2 11.1 14.1 14.5 14.0 14.1 14.1 11.1 10.0 11.0 9.5 8.7 1 15 11.6 11.5 11.6 15.0 14.1 14.5 11.2 10.8 11.0 9.9 9.5 8.8 1 15 11.6 11.7 14.3 13.5 14.7 14.5 11.2 10.8 11.0 9.9 9.0 9.0 1 16 11.8 11.6 11.7 14.3 13.5 11.7 12.6 11.5 10.9 11.2 10.2 9.1 1 17 11.9 11.6 11.1 11.9 11.0 11.0 11.0 11.0 11.5 10.9 11.2 10.2 9.1 1 18 12.1 11.8 11.9 11.6 11.7 14.3 13.5 11.7 12.6 11.5 11.9 11.5 11.2 10.8 11.0 9.9 1.8 4.1 1 19 12.1 11.8 12.9 11.0 10.8 10.5 10.6 11.2 10.4 10.8 9.3 8.8 1.2 1 20 12.0 11.7 11.9 10.8 10.5 10.6 11.2 10.4 10.8 9.3 8.8 8.8 1 21 22.1 11.8 12.9 11.1 10.9 11.0 11.1 10.1 11.1 10.5 10.8 9.3 8.8 8.8 1 22 12.1 11.8 11.9 11.1 10.9 11.1 10.9 11.0 11.1 10.5 10.8 9.8 8.4 1 22 12.1 11.8 12.9 11.3 11.9 11.3 11.1 14.4 10.7 11.1 10.9 5.0 8 8.4 1 24 12.5 12.1 12.3 11.9 11.3 11.5 11.1 14.4 10.7 11.0 9.5 10.8 8.4 1 22 12.1 12.3 12.3 11.9 11.3 11.5 11.1 14.4 10.7 11.0 9.7 10.4 9.5 8.6 1 25 12.8 12.2 12.5 12.1 11.9 12.0 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.0 9.2 9.5 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.5 9.7 9.0 9.2 9.3 10.5 9.7 9.3 9.7 9.2 9.3 | 2
3
4 | 10.4
10.7
10.6 | 10.2
10.4
10.4 | 10.3
10.3
10.6
10.5
10.6 | 12.9
12.9
12.9
13.9
13.7 | 12.3
12.8
12.6
12.7
12.9 | 12.7
12.8
12.8
13.1
13.4 | | 11.4
11.4
12.0 | 12.1 | ٥.٥ | 0.2 | 9.2
8.9
8.5
8.4
8.6 | | 15 | 7
8
9 | 10.9
11.0
11.1 | 10.7
10.8
10.8
11.0
10.9 | 10.8
10.8
10.9
11.0
11.0 | 14.3
14.9
15.0
14.7
14.6 | 13.5
13.9
14.3
14.2
14.0 | 13.9
14.4
14.7
14.4
14.3 | 12.1
12.1
12.1
12.1
12.1 | 11.9
12.0
12.0
12.0 | 12.0 | 9.2 | 8.4 | 8.9
8.8
8.5
8.7 | | 21 | 12
13
14 | 11.2
11.5
11.6 | 11.0
11.2
11.4 | 11.2
11.1
11.3
11.5
11.6 | 15.5
14.9
14.9
15.0 | 14.1
14.1
13.9
14.0
14.1 | 14.5
14.4
14.3
14.4
14.5 | 12.1
12.1
11.1
11.1
11.2 | 12.0
11.0
10.8
10.7
10.8 | | | | 8.7
9.2
9.0
8.2
9.5 | | 26 | 17
18
19 | 11.8
11.9
12.1 | 11.6
11.6
11.8 | 11.7
11.7
11.8
11.9 | 14.3
13.5
11.8
11.1
10.8 | 13.4
11.7
10.2
10.8
10.5 | 13.9
12.6
10.8
11.0
10.6 | 11.5
11.8
11.7
11.7 | 10.9
10.9
11.1
10.4
10.4 | 10.8 | 9.3 | 8.8 | 9.4
8.7
8.3
8.5
9.1 | | MONTH 12.9 10.2 11.5 15.5 10.2 12.8 12.3 8.6 11.0 10.2 7.8 8 10 10 10.2 7.8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | 22
23
24 | 12.1
12.3
12.5 | 12.1 | 12.0
11.9
12.1
12.3
12.5 | 10.9
11.1
11.5
11.9
12.1 | 10.6
10.9
11.1
11.3
11.9 | 10.8
11.0
11.4
11.5
12.0 | 11.3
11.1
11.4
11.0
9.7 | 10.4
10.5
10.7
9.7
9.3 | | | | 8.9
8.6
8.8
9.0
9.3 | | DAY MAX MIN MEAN MAX MIN MEAN
MAX MIN MEAN MAX MIN MEAN MIN MEAN MIN MIN MEAN MIN | 28
29
30 | 12.9 | 12.3 | | 12.3
12.3 | 11.8
12.2 | 12.2 | 10.8 | 9.1 | 8.8
9.1
9.3
9.6
9.8 | 9.9
9.9
9.7
10.1
9.7
9.3 | 8.7
9.2
9.0
9.2
9.2 | 9.2
9.6
9.4
9.7
9.4
9.0 | | JUNE JULY AUGUST SEPTEMBER | MONTH | 12.9 | 10.2 | 11.5 | 15.5 | 10.2 | 12.8 | 12.3 | 8.6 | 11.0 | 10.2 | 7.8 | 8.9 | | JUNE JULY AUGUST SEPTEMBER | DAY | MAX | MIN | MEAN | MAX | MIN | I MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | 6 8.7 7.6 8.2 7.2 5.2 6.4 9.4 7.9 8.5 8.8 7.7 8 7.9 7.9 7.1 7.5 8.2 4.6 6.6 8.9 7.6 8.3 8.7 7.3 8 7.6 6.4 7.2 7.8 5.5 7.2 8.9 6.8 8.2 8.2 7.2 7.2 10 7.6 6.8 7.3 8.1 1.4 6.4 8.6 7.6 8.1 7.4 5.7 6.1 7.4 5.7 6.1 7.5 6.2 8.1 6.0 7.2 8.1 6.7 7.7 7.5 6.2 8.1 7.4 5.7 6.1 7.5 7.5 6.2 8.1 7.4 6.8 7.2 8.1 6.0 7.2 8.1 6.7 7.7 7.5 6.2 8.1 7.4 6.8 7.1 7.3 6.2 6.6 6.6 8.2 6.0 7.2 7.5 6.4 6.9 13 8.2 7.2 7.5 6.2 3.0 5.4 7.7 5.4 6.8 8.0 7.0 7.1 14 7.3 6.6 6.9 6.6 4.8 5.7 7.3 5.0 6.5 8.2 6.5 7.1 6.2 6.5 6.5 15 7.1 6.2 6.6 5.6 3.2 4.6 7.2 5.1 6.4 7.5 6.5 15 7.1 6.2 6.6 6.6 8.2 7.2 7.2 7.5 6.5 7.8 5.7 7.3 5.0 6.5 8.2 6.5 7.8 5.7 7.3 6.6 7.2 8.4 6.9 9.2 7.2 8.3 6.6 6.5 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 5.7 7.3 6.5 7.8 6.5 7.8 5.7 7.3 6.5 7.8 6.5 7.8 5.7 7.3 6.5 7.8 7.9 6.8 7.9 7.9 8.4 7.4 6.0 6.6 6.7 6.1 6.8 6.5 6.1 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.5 6.2 6.2 6.2 6.5 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 11 7.4 6.8 7.1 7.2 5.6 6.6 8.2 6.0 7.2 7.5 6.4 6.1 12 7.8 7.0 7.3 6.2 5.4 5.8 7.7 6.6 7.2 8.4 6.9 13 8.2 7.2 7.5 6.2 3.0 5.4 7.7 5.4 6.8 8.0 7.0 14 7.3 6.6 6.9 6.6 4.8 5.7 7.3 5.0 6.5 8.2 6.5 15 7.1 6.2 6.6 5.6 3.2 4.6 7.2 5.1 6.4 7.5 6.5 16 6.9 6.5 6.7 6.1 0.2 4.4 7.2 5.3 6.5 7.8 5.7 17 8.3 6.6 6.8 8.7 5.2 7.2 7.2 5.1 6.4 7.5 6.5 18 6.9 6.6 6.7 9.3 8.0 8.6 6.6 4.1 5.5 6.8 6.0 19 7.2 | 2
3
4 | 8.9 | 8.0 | 0 5 | | | | | | | | | | | 11 7.4 6.8 7.1 7.2 5.6 6.6 8.2 6.0 7.2 7.5 6.4 6.1 12 7.8 7.0 7.3 6.2 5.4 5.8 7.7 6.6 7.2 8.4 6.9 13 8.2 7.2 7.5 6.2 3.0 5.4 7.7 5.4 6.8 8.0 7.0 14 7.3 6.6 6.9 6.6 4.8 5.7 7.3 5.0 6.5 8.2 6.5 15 7.1 6.2 6.6 5.6 3.2 4.6 7.2 5.1 6.4 7.5 6.5 16 6.9 6.5 6.7 6.1 0.2 4.4 7.2 5.3 6.5 7.8 5.7 17 8.3 6.6 6.8 8.7 5.2 7.2 7.2 5.1 6.4 7.5 6.5 18 6.9 6.6 6.7 9.3 8.0 8.6 6.6 4.1 5.5 6.8 6.0 19 7.2 | | 9.3 | 7.8
8.5
8.8
8.3 | 8.4
9.0
9.0
8.8 | 8.5
8.6
8.0
8.2
7.8 | 6.7 | 7.2
7.5
7.4
7.3
7.2 | 9.2
9.1
9.0
9.5
9.1 | 8.2
7.9
7.5
7.6
8.1 | 8.5
8.5
8.3
8.5 | 8.6
8.6
9.1
9.2 | 7.4
7.6
7.5
8.0
7.9 | 7.9
7.9
8.0
8.5
8.4 | | 17 8.3 6.6 6.8 8.7 5.2 7.2 6.6 2.2 5.2 7.4 6.0 6 18 6.9 6.6 6.7 9.3 8.0 8.6 6.6 4.1 5.5 6.8 6.0 6 19 7.2 6.6 6.8 9.2 7.2 8.3 6.6 5.3 6.0 6.5 6.1 6 20 7.4 6.7 7.0 9.2 7.9 8.4 7.4 6.0 6.6 6.7 6.1 6 21 7.3 6.2 6.6 9.0 7.8 8.5 7.5 6.1 6.8 6.5 6.1 6 21 7.3 6.2 6.6 9.0 7.8 8.5 7.5 6.1 6.8 6.5 6.1 6 21 7.3 6.2 6.6 9.0 7.8 8.5 7.5 6.1 6.8 6.5 6.1 6 21 7.3 8.2 6.8 7.6 7.8 7.9 6.8 7.3 7.0< | 7
8
9 | 9.3
9.1
8.7
7.9 | | | 8.0
8.2
7.8 | 6.7
6.7
5.8
6.0
5.2
4.6
5.5
1.4 | 6.4
6.6
7.2
6.4
7.2 | 9.4 | | | 8.6
9.1
9.2
8.8
8.7
8.2
7.4 | 7.5
8.0
7.9
7.7
7.3
7.2
5.7 | 7.9
8.0
8.5 | | 22 8.2 5.8 7.1 8.7 6.4 7.8 7.9 6.8 7.3 7.0 6.1 6.8 23 8.2 7.4 7.6 8.2 6.8 7.6 7.8 7.0 7.4 7.5 6.8 7.2 24 8.3 7.0 7.5 7.9 6.7 7.3 8.0 7.1 7.6 7.6 6.9 7.4 7.3 6.8 7.2 6.9 7.4 7.3 6.8 7.2 6.9 7.4 7.3 6.8 7.2 6.7 6.7 7.2 8.8 8.1 8.1 8.2 8.9 8.2 8.2 8.2 8.2 8.9 8.2 8.2 8.2 8.2 8.9 8.2 8.2 8.2 8.2 8.3 8.1 8.1 8.2< | 7
8
9
10
11
12
13
14 | 9.3
9.1
8.7
7.9
7.6
7.6
7.6
7.8
8.2
7.3 | 7.6
7.1
6.4
6.8
6.8
6.8
7.0
7.2
6.6 | 8.2
7.5
7.2
7.3
7.2
7.1
7.3
7.5
6.9 | 8.0
8.2
7.8
7.2
8.2
7.8
8.1
8.1
7.2
6.2
6.2
6.6 | 6.7
6.7
5.8
6.0
5.2
4.6
5.5
1.4
6.0
5.4
3.0 | 6.4
6.6
7.2
6.4
7.2
6.6
5.8
5.8
5.4
5.7 | 9.4
8.9
8.9
8.6
8.1
8.2
7.7
7.7 | 7.9
7.6
6.8
7.6
6.7
6.0
6.6
5.4
5.0 | 8.5
8.3
8.2
8.1
7.7
7.2
7.2
6.8
6.5 | 8.6
9.1
9.2
8.8
8.7
8.2
7.4
7.5
7.5
8.4
8.0
8.2 | 7.5
8.0
7.9
7.7
7.3
7.2
5.7
6.2
6.4
6.9
7.0
6.5 | 7.9
8.0
8.5
8.4
8.1
7.8
7.6
6.9
6.8 | | 27 6.7 5.7 6.3 7.4 5.9 6.6 7.2 6.5 6.9 8.9 8.2 8 28 6.2 5.0 5.8 7.3 5.3 6.6 7.3 6.6 6.9 8.7 8.1 8 29 7.0 4.8 5.9 8.2 5.9 7.0 7.8 7.1 7.3 8.7 7.7 8 30 7.2 6.0 6.6 8.4 6.8 7.9 8.0 7.1 7.5 10.6 7.5 8 31 8.7 7.5 8.0 7.9 7.3 7.6 | 7
8
9
10
11
12
13
14
15
16
17
18
19 | 9.3
9.1
8.7
7.9
7.6
7.6
7.6
7.8
8.2
7.3
7.1
6.9
8.3
6.9 | 7.6
7.1
6.4
6.8
6.8
7.0
7.2
6.6
6.2
6.5
6.6
6.6 | 8.2
7.5
7.2
7.3
7.2
7.1
7.3
7.5
6.6
6.6 | 8.0
8.2
7.8
7.2
8.2
7.8
8.1
8.1
7.2
6.2
6.6
6.6
6.6
6.1
8.7
9.3
9.2 | 6.7
6.7
5.8
6.0
5.2
4.6
5.5
1.4
6.0
5.4
3.0
4.8
3.2
0.2
5.2
8.0 | 6.4
6.6
7.2
6.4
7.2
6.4
7.2
6.6
5.8
5.7
4.6
4.4
7.2 | 9.4
8.9
8.9
8.6
8.1
8.2
7.7
7.7
7.3
7.2
6.6
6.6
6.6 | 7.9
7.6
6.8
7.6
6.7
6.0
6.6
5.4
5.0
5.1
5.3
2.2
4.1
5.3 | 8.5
8.3
8.2
8.1
7.7
7.2
6.8
6.5
6.4
6.5
5.2
5.0 | 8.6
9.1
9.2
8.8
8.7
8.2
7.4
7.5
7.5
8.4
8.0
8.2
7.5
7.8
7.4
6.8
6.5 | 7.5
8.0
7.9
7.7
7.3
7.2
5.7
6.2
6.4
6.9
7.0
6.5
6.5
6.5 | 7.9
8.0
8.5
8.4
8.1
7.8
7.69
6.8
6.9
7.66
7.5 | | | 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 9.3
9.1
8.7
7.9
7.6
7.6
7.6
7.8
8.2
7.3
7.1
6.9
8.3
7.2
7.4
7.3
8.2
8.2
8.3 | 7.6
7.1
6.4
6.8
6.8
7.0
7.2
6.6
6.2
6.5
6.6
6.6
6.7
6.2
5.8
7.0 | 8.2
7.5
7.2
7.3
7.2
7.1
7.5
6.9
6.6
6.7
6.8
7.0 | 8.0
8.2
7.8
7.2
8.2
7.8
8.1
8.1
7.2
6.2
6.6
6.6
5.6
6.1
8.7
9.2
9.2
9.2 | 6.7
6.7
5.8
6.0
5.2
4.6
5.5
1.4
6.0
5.4
3.0
4.8
3.2
7.2
7.9
7.8
6.4
6.7 | 6.4
6.6
7.2
6.4
7.2
6.6
6.6
6.6
6.5
8.3
7.4
6.6
8.3
8.4
8.5
7.8
8.5
7.8
8.7
7.8 | 9.4
8.9
8.9
8.6
8.1
8.2
7.7
7.3
7.2
7.2
6.6
6.6
6.6
7.4
7.5
7.9
7.8 | 7.9
7.6
6.8
7.6
6.7
6.0
6.6
5.4
5.0
5.1
5.3
2.2
4.1
5.3
6.0
6.1
6.8
7.0 | 8.5
8.3
8.2
8.1
7.7
7.2
7.2
6.8
6.5
6.4
6.5
5.2
5.6.0
6.6
6.8
7.3
7.4 | 8.6
9.1
9.2
8.8
8.7
7.5
7.5
7.5
8.4
8.0
8.2
7.5
7.8
7.4
6.5
6.7 | 7.5
8.0
7.9
7.7
7.3
7.2
5.7
6.2
6.4
6.9
7.0
6.5
6.5
6.5
6.1
6.1
6.1
6.1
6.1
6.1
6.8
6.9 | 7.9
8.0
8.5
8.4
8.1
7.6
6.9
6.8
6.9
7.6
7.5
7.1
6.9
6.5
6.3 | | | 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 9.3
9.1
8.7
7.9
7.6
7.6
7.6
7.8
8.2
7.3
7.1
6.9
8.3
7.1
6.9
8.3
7.2
7.4
7.3
8.2
8.2
8.3
7.5
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.6 | 7.6
7.1
6.4
6.8
6.8
7.0
7.2
6.6
6.2
6.6
6.6
6.6
6.7
6.2
5.8
7.4
7.0
4.1
6.1
5.7
5.0
4.1 | 8.2
7.5
7.2
7.3
7.5
6.6
6.7
6.8
6.7
6.8
7.0
6.6
7.5
6.8
7.0 | 8.0
8.2
7.8
7.2
8.2
7.8
8.1
7.2
6.2
6.6
6.6
5.6
6.1
8.7
9.2
9.2
9.2
9.2
7.9
8.1
7.4
7.3
8.2
8.1 | 6.7
6.7
5.8
6.0
5.2
4.6
5.5
4.6
5.4
4.3
3.2
0.2
5.2
8.0
7.2
7.9
7.8
6.4
6.8
6.4
6.5
6.4 | 6.4
6.6
7.2
6.4
7.2
6.4
7.2
6.6
6.5
8.5
8.5
7.8
8.4
7.8
8.3
8.4
7.8
7.4
7.4
6.6
6.6
7.3
7.4 | 9.4
8.9
8.9
8.6
8.1
8.2
7.7
7.7
7.3
7.2
7.2
6.6
6.6
6.6
7.4
7.5
7.9
7.8
8.0
7.7 | 7.9
7.6
6.8
7.6
6.7
6.0
6.6
5.4
5.0
5.1
5.3
2.2
4.1
5.3
6.0
7.1
6.8
7.0
7.1
6.9 | 8.5
8.3
8.2
8.1
7.7
7.2
6.5
6.5
6.6
6.5
5.2
5.0
6.6
6.8
7.4
6.9
7.4
7.2
6.9
7.5 | 8.6
9.1
9.2
8.8
8.7
8.2
7.4
7.5
7.5
8.4
8.0
8.2
7.5
7.8
7.4
6.5
6.7
7.6
7.3
8.9
8.7
8.7 |
7.5
8.0
7.9
7.7
7.3
7.2
5.7
6.2
6.4
6.9
6.5
6.5
6.5
6.1
6.1
6.1
6.1
6.8
8.1
8.2
8.1
7.5 | 7.9
8.0
8.5
8.4
8.1
7.8
7.6
6.9
7.6
7.5
7.1
6.9
6.3
6.3
6.3
6.3
7.1 | ### 03435305 RED RIVER BELOW HIGHWAY 161 NEAR BARREN PLAINS, TN LOCATION.--Lat 36°38'32", long 86°59'18", Robertson County, Hydrologic Unit 05130206, on left bank in pump house of Springfield water plant, 0.2 mi south of Kentucky-Tennessee state line, 0.7 mi below Highway 161 bridge, 4.8 mi northwest of Barren Plains. DRAINAGE AREA.--549 mi², includes 246 mi² without surface drainage. PERIOD OF RECORD.--October 1994 to current year. Occasional low-flow measurements, water years 1966-1967 at site 1.8 mi upstream. GAGE.-- Data collection platform. Datum of gage is 440.00 ft above NGVD of 1929 (levels based on information provided by City of Springfield). REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|------------------| | Nov 30 | 0915 | 10,700 | 16.57 | Mar 31 | 2315 | 5,050 | 11.30 | | Dec 13 | 1445 | 8,260 | 14.10 | Apr 25 | 1245 | 4,830 | 11.12 | | Jan 24 | 2100 | 10,800 | 16.69 | May 1 | 1745 | 6,600 | 12.66 | | Mar 18 | 0815 | 4,620 | 10.95 | May 18 | 0930 | *11,200 | *17.14 | | Mar 20 | 2115 | 9,960 | 15.79 | Sep 27 | 1500 | 9,450 | 15.25 | Minimum daily discharge, 34 $\mathrm{ft^3/s}$, Oct. 2, 4, 5. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER Y
LY MEAN V | EAR OCTOBI
ALUES | ER 2001 TO |) SEPTEMBE | ER 2002 | | | |-------|-------|--------|-----------|-----------|-------|----------------------|---------------------|------------|------------|---------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 36 | 107 | 3670 | 687 | 1930 | 354 | 3570 | 3520 | 821 | 187 | 147 | 93 | | 2 | 34 | 103 | 2340 | 631 | 1990 | 347 | 2410 | 3040 | 710 | 181 | 144 | 89 | | 2 | | | 1820 | | | | | 3040 | 617 | 217 | | 89 | | 3 | 35 | 101 | | 593 | 1570 | 343 | 1910 | 1980 | | | 127 | 86 | | 4 | 34 | 96 | 1500 | 555 | 1390 | 330 | 1550 | 1610 | 537 | 291 | 130 | 79 | | 5 | 34 | 91 | 1260 | 522 | 1200 | 315 | 1340 | 1510 | 475 | 212 | 122 | 80 | | 6 | 42 | 86 | 1110 | 511 | 1090 | 303 | 1200 | 1280 | 444 | 187 | 111 | 74 | | 7 | 43 | 88 | 1090 | 498 | 1040 | 298 | 1080 | 1190 | 552 | 168 | 108 | 72 | | 8 | 53 | 85 | 1750 | 464 | 968 | 292 | 1000 | 1070 | 458 | 170 | 102 | 70 | | 0 | | | | | | | | | | | | 70 | | 9 | 53 | 83 | 2070 | 438 | 880 | 294 | 955 | 968 | 399 | 177 | 100 | 69 | | 10 | 52 | 80 | 1480 | 424 | 818 | 305 | 873 | 921 | 364 | 263 | 95 | 71 | | 11 | 48 | 80 | 1260 | 421 | 758 | 325 | 796 | 819 | 340 | 224 | 93 | 62 | | 12 | 119 | 76 | 1150 | 424 | 703 | 317 | 836 | 748 | 328 | 212 | 159 | 66 | | 13 | 182 | 75 | 5150 | 400 | 661 | 314 | 1370 | 1140 | 333 | 283 | 154 | 58 | | 14 | 1140 | 77 | 3920 | 380 | 614 | 310 | 1500 | 2310 | 322 | 571 | 126 | 71 | | | | | | | | | | | | | | 74 | | 15 | 1160 | 71 | 2730 | 360 | 581 | 303 | 2610 | 1250 | 307 | 365 | 168 | 74 | | 16 | 552 | 68 | 2140 | 341 | 560 | 308 | 1610 | 994 | 281 | 262 | 193 | 79 | | 17 | 387 | 70 | 2220 | 330 | 531 | 1020 | 1280 | 2280 | 266 | 218 | 527 | 101 | | 18 | 301 | 69 | 2240 | 328 | 496 | 3660 | 1130 | 9380 | 254 | 200 | 339 | 112 | | 19 | 253 | 72 | 1830 | 326 | 471 | 2440 | 1010 | 4000 | 242 | 188 | 329 | 100 | | 20 | 215 | 73 | 1550 | 342 | 474 | 5610 | 907 | 2530 | 231 | 184 | 212 | 119 | | 20 | 213 | /3 | 1550 | 342 | 4/4 | 2010 | 907 | 2550 | 231 | 104 | 212 | 119 | | 21 | 189 | 71 | 1320 | 361 | 471 | 5400 | 827 | 1990 | 217 | 174 | 162 | 164 | | 22 | 167 | 72 | 1180 | 367 | 451 | 2780 | 771 | 1660 | 208 | 169 | 137 | 212 | | 23 | 154 | 74 | 1470 | 2240 | 416 | 2140 | 688 | 1440 | 206 | 254 | 125 | 143 | | 24 | 145 | 115 | 1710 | 6730 | 393 | 1770 | 740 | e1230 | 201 | 334 | 117 | 112 | | 25 | 150 | 159 | 1390 | 5660 | 380 | 1520 | 3300 | e970 | 201 | 353 | 113 | 100 | | 23 | 130 | 133 | 1330 | 3000 | 300 | 1320 | 3300 | 6570 | 201 | 333 | 113 | 100 | | 26 | 172 | 207 | 1220 | 2940 | 383 | 2540 | 1900 | e1120 | 197 | 247 | 143 | 351 | | 27 | 164 | 844 | 1110 | 2290 | 397 | 2770 | 1350 | e1380 | 196 | 211 | 167 | 7940 | | 28 | 139 | 1680 | 1020 | 1910 | 384 | 1980 | 1190 | e1020 | 194 | 185 | 114 | 4880 | | 29 | 124 | 3150 | 927 | 1660 | | 1700 | 1060 | 930 | 196 | 171 | 104 | 1750 | | 30 | | | | | | | | 926 | | | | | | | 115 | 8950 | 828 | 1500 | | 1640 | 897 | | 192 | 170 | 97 | 1250 | | 31 | 113 | | 743 | 1450 | | 2480 | | 905 | | 155 | 98 | | | TOTAL | 6405 | 16973 | 55198 | 36083 | 22000 | 44508 | 41660 | 56111 | 10289 | 7183 | 4863 | 18527 | | MEAN | 206.6 | 565.8 | 1781 | 1164 | 785.7 | 1436 | 1389 | 1810 | 343.0 | 231.7 | 156.9 | 617.6 | | MAX | 1160 | 8950 | 5150 | 6730 | 1990 | 5610 | 3570 | 9380 | 821 | 571 | 527 | 7940 | | MIN | 34 | 68 | 743 | 326 | 380 | 292 | 688 | 748 | 192 | 155 | 93 | 58 | | CFSM | 0.38 | 1.03 | 3.24 | 2.12 | 1.43 | 2.62 | 2.53 | 3.30 | 0.62 | 0.42 | 0.29 | 1.12 | | | | | | | | | | | | | | | | IN. | 0.43 | 1.15 | 3.74 | 2.44 | 1.49 | 3.02 | 2.82 | 3.80 | 0.70 | 0.49 | 0.33 | 1.26 | e Estimated ## 03435305 RED RIVER BELOW HIGHWAY 161 NEAR BARREN PLAINS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN
(WY) | 154.5
422
1997
47.3
2000 | 345.8
1073
1997
48.4
2000 | 763.2
2335
1997
166
2000 | 1049
2718
1999
121
2000 | 1090
1829
1997
525
2000 | 1461
4219
1997
406
2000 | 897.1
1594
1998
333
2001 | 1091
1810
2002
355
2001 | 821.8
3219
1998
200
1999 | 301.9
655
1998
110
2000 | 221.3
507
1998
77.1
1999 | 7 | 204.2
618
2002
42.3
1999 | |------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----|--------------------------------------| | SUMMARY | STATIST | ics | FOR 2 | 2001 CALEN | IDAR YEAR | F | OR 2002 WAT | ER YEAR | | WATER YEARS | 1994 | ļ - | 2002 | | ANNUAL
ANNUAL | | MEAN | | 182984
501.3 | | | 319800
876.2 | | | 698.6
1170 | | | 1997 | | | ANNUAL M | | | | | | | | | 286 | | | 2000 | | HIGHEST | DAILY M | IEAN | | 8950 | Nov 30 | | 9380 | May 18 | | 19800 | Mar | 3 | 1997 | | LOWEST | DAILY ME | AN | | 34 | Oct 2 | | 34 | Oct 2 | | 30 | Oct | 26 | 1999 | | ANNUAL | SEVEN-DA | MUMINIM Y | | 36 | Sep 29 | | 37 | Oct 1 | | 31 | Oct | 26 | 1999 | | MAXIMUM | 1 PEAK FL | WO | | | | | 11200 | May 18 | | 22100 | Mar | 2 | 1997 | | MAXIMUM | 1 PEAK ST | 'AGE | | | | | 17.15 | May 18 | | 28.49 | Mar | 2 | 1997 | | INSTANT | TANEOUS L | OW FLOW | | | | | 23 | Oct 5 | | 23 | Oct | 5 | 2001 | | ANNUAL | RUNOFF (| CFSM) | | 0.91 | - | | 1.60 | | | 1.27 | | | | | ANNUAL | RUNOFF (| INCHES) | | 12.40 |) | | 21.67 | | | 17.29 | | | | | 40 | | | | 1210 | | | 04.40 | | | 1.000 | | | | ## 03435970 MILLERS CREEK AT TURNERSVILLE, TN LOCATION.--Lat 36°29'16", long 87°02'22", Robertson County, Hydrologic Unit 05130206, on Maxie road, at the confluence of Honey Run Creek and Millers Creek, at Turnersville. DRAINAGE AREA.--20.5 mi². PERIOD OF RECORD. -- March 2000 to current year. ${\tt GAGE.--Data}$ collection platform and crest-stage gage. REMARKS.--Records good except for discharges above 800 ft^3/s , which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,100 ft}^3/s \ \hbox{\it and maximum} \ \ (*):$ | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Nov 29 | 2145 | 1,190 | 5.87 | Mar 20 | 0715 | 1,280 | 6.02 | | Dec 13 | 0015 | undetermined | *8.89 | Sep 27 | 0215 | 1,820 | 6.75 | Minimum daily discharge, 0.47 ft^3/s , Oct. 4. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|---|--|---|--|---|--|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.52
0.49
0.49
0.47
0.79 | 4.4
4.7
4.9
4.5 | 144
92
81
46
48 | 17
15
14
13 |
93
69
56
44
34 | 12
13
13
11
9.9 | 172
99
56
54
40 | 125
92
70
114
106 | 12
11
10
9.5
9.0 | 4.0
4.0
4.6
4.1
3.8 | 2.6
2.5
2.4
2.3
2.2 | 1.9
2.0
2.0
2.0
1.9 | | 6
7
8
9
10 | 2.0
1.8
1.6
1.6 | 4.2
4.2
4.1
4.0
3.1 | 49
55
130
126
126 | 13
12
11
10 | 32
29
26
25
24 | 9.7
9.6
9.4
10
9.7 | 33
29
28
26
21 | 88
84
59
63
74 | 47
28
16
12 | 3.6
3.5
3.6
4.3
4.0 | 2.4
2.3
2.4
2.1
2.0 | 2.0
2.1
1.7
1.9
2.0 | | 11
12
13
14
15 | 1.9
50
19
128
45 | 2.5
2.3
2.4
2.5
2.5 | 172
336
825
392
201 | 11
10
10
9.8
9.3 | 20
20
20
23
27 | 9.7
10
11
10
11 | 19
23
28
48
43 | 70
63
232
135
88 | 10
10
11
11 | 3.7
3.6
4.9
4.1
3.6 | 2.5
2.1
2.0
3.1
2.9 | 2.0
2.1
1.9
2.5
3.5 | | 16
17
18
19
20 | 22
13
8.9
7.0
5.7 | 2.5
2.5
2.5
2.8
3.0 | 150
115
136
113
82 | 8.6
8.7
8.9
11 | 30
20
18
16
16 | 11
265
241
148
455 | 33
28
26
23
21 | 66
174
190
115
79 | 10
11
12
13
12 | 3.4
3.3
3.6
3.8
3.3 | 3.4
3.8
3.0
3.1
3.5 | 4.2
4.6
5.1
4.7
6.0 | | 21
22
23
24
25 | 4.8
4.6
5.0
5.7
7.6 | 2.8
2.7
2.7
11
7.4 | 63
72
138
82
34 | 17
25
117
367
144 | 13
12
11
11 | 182
122
104
97
79 | 19
18
17
158
157 | 60
41
33
27
22 | 7.2
6.3
6.3
6.4
5.7 | 3.2
3.1
4.1
4.8
3.4 | 3.0
2.7
3.5
3.4
3.2 | 7.1
4.2
3.6
3.3 | | 26
27
28
29
30
31 | 6.0
5.3
4.9
4.6
4.4 | 4.9
56
47
539
309 | 19
14
15
21
24
20 | 94
70
55
44
39
36 | 14
13
13
 | 179
150
157
96
94
241 | 102
74
64
53
44 | 25
19
18
16
14
13 | 4.9
4.9
5.1
4.5
4.2 | 3.2
3.0
2.8
2.7
2.7
2.8 | 3.2
2.9
2.6
2.4
2.1
1.9 | 81
310
59
32
19 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 368.96
11.90
128
0.47
0.58
0.67 | 1050.6
35.02
539
2.3
1.71
1.91 | 3921
126.5
825
14
6.17
7.12 | 1238.3
39.95
367
8.6
1.95
2.25 | 739
26.39
93
10
1.29
1.34 | 2780.0
89.68
455
9.4
4.37
5.04 | 1556
51.87
172
17
2.53
2.82 | 2375
76.61
232
13
3.74
4.31 | 332.0
11.07
47
4.2
0.54
0.60 | 112.6
3.632
4.9
2.7
0.18
0.20 | 83.5
2.694
3.8
1.9
0.13
0.15 | 579.0
19.30
310
1.7
0.94
1.05 | # 03435970 MILLERS CREEK AT TURNERSVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000 - 2002, BY WATER YEAR (WY) | MEAN 7.941 19.86
MAX 11.9 35.0
(WY) 2002 2002
MIN 3.98 4.71
(WY) 2001 2001 | 66.71
126
2002
6.93
2001 | 24.33
39.9
2002
8.71
2001 | 38.81
51.2
2001
26.4
2002 | 40.75
89.7
2002
10.1
2000 | 33.53
51.9
2002
12.3
2001 | 40.89
76.6
2002
5.82
2001 | 8.039
11.1
2002
5.58
2001 | 3.246
3.63
2002
2.75
2001 | 2.275
2.87
2000
1.26
2001 | 7.476
19.3
2002
0.78
2001 | |--|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---|---|---------------------------------------| | SUMMARY STATISTICS | | | FOR 2 | 002 WATER | YEAR | | | WATER YEAR | RS 2000 - | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 8
un
1 | 0.47 0
0.94 0
determine | ec 13
ct 4
ct 1
d
ec 13 | | | 23.33
41.5
10.3
825
0.41
0.54
undeter
8.88
1.14
15.46
58
5.6 | Dec 13
Sep 15
Sep 28
mined
Dec 13 | 5 2001
3 2001 | Diaghares 3.39 3.91 484.3 0.52 0.60 TOTAL MEAN MAX MTN IN. CFSM 1.14 1.27 2.10 2.42 ### 03436100 RED RIVER AT PORT ROYAL, TN $\label{location.--Lat 36°33'17", long 87°08'31", Montgomery County, Hydrologic Unit 05130206, on left bank at county road bridge at Port Royal, 250 ft downstream from Sulphur Fork, and at mile 25.5.$ DRAINAGE AREA. -- 935 mi² includes 437 mi² without surface drainage. PERIOD OF RECORD.--July 1961 to September 1991. October 1991 to September 1996, crest-stage partial record station. October 1997 GAGE.--Water-stage encoder, crest-stage gage and satellite telemeter at station. Datum of gage is 376.25 ft above NGVD of 1929. July 13, 1961, to Oct. 9, 1963, nonrecording gage and crest-stage gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Jan. 23, 1937, reached a stage of 44.4 ft; from flood profile of U.S. Army Corps of Diagharas 382.9 0.41 0.47 0.21 0.24 192.6 827.1 0.88 0.99 Care height EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 11,000 ft³/s and maximum (*): Casa haisht --- 1.42 1.47 | Date | Time | (ft ³ /s) | (ft) | | Date | Time | (ft ³ /s) | (ft) | |------------------|---------------------------|----------------------|-----------------|----------------------------|------------------|------------------|----------------------|----------------| | Nov 30
Jan 25 | 1100
0230 | *17,400
14,700 | *28.74
25.90 | | lar 21
lay 18 | 0300
1630 | 14,200
15,100 | 25.40
26.38 | | Minimum discha | rge, 50 ft ³ / | s, Sept. 14. | | | | | | | | | DIS | CHARGE, CUBIC | • | WATER YEAR
Y MEAN VALUE | | 2001 TO SEPTEMBE | R 2002 | | | DAY | OCT NO | V DEC | JAN FEB | MAR | APR | MAY JUN | JUL | AUG SEP | 2.81 3.24 2.70 3.01 3.37 3.88 597.9 0.64 0.71 ## 03436100 RED RIVER AT PORT ROYAL, TN--Continued | STATISTICS (| OF MONTHLY | MEAN DATE | A FOR WATER | YEARS 196 | 51 - 2002. | BY WATER | YEAR (WY) | |--------------|------------|-----------|-------------|-----------|------------|----------|-----------| | MEAN 261.1 | 646.3 | 1734 | 1981 | 2425 | 2631 | 2040 | 1635 | 1056 | 584.3 | 305.3 | 380.2 | |-------------------|--------|-------|-----------|----------|------|------------|-----------|------|-------------|--------|-------| | MAX 855 | 3610 | 5054 | 5984 | 7429 | 9874 | 6482 | 7183 | 5467 | 2858 | 809 | 3939 | | (WY) 1980 | 1980 | 1991 | 1974 | 1989 | 1975 | 1979 | 1983 | 1998 | 1989 | 1998 | 1979 | | MIN 68.2 | 74.4 | 73.4 | 91.7 | 562 | 724 | 490 | 270 | 140 | 143 | 130 | 83.4 | | (WY) 1964 | 1964 | 1964 | 1981 | 1964 | 2000 | 1986 | 1988 | 1988 | 1988 | 1988 | 1999 | | SUMMARY STATISTIC | 70 | EOD 3 | 001 CALEN | מגשע מגת | т. | OR 2002 W | AMED VEAD | | WATER YEARS | 1061 | 2002 | | SUMMARY STATISTIC | .5 | FOR 2 | UUI CALEN | DAR YEAR | F | OR 2002 W. | ATEK YEAR | | WATER YEARS | 1901 - | 2002 | | ANNUAL TOTAL | | | 328046 | | | 558400 | | | | | | | ANNUAL MEAN | | | 898.8 | | | 1530 | | | 1311 | | | | HIGHEST ANNUAL ME | EAN | | | | | | | | 2594 | | 1979 | | LOWEST ANNUAL MEA | M | | | | | | | | 514 | | 2000 | | HIGHEST DAILY MEA | | | 16100 | Nov 30 | | 16100 | Nov 30 | | 56600 | Mar 13 | | | LOWEST DAILY MEAN | | | 68 | Oct 4 | | 52 | Sep 14 | | 52 | Sep 14 | | | ANNUAL SEVEN-DAY | | | 72 | Sep 30 | | 61 | Sep 8 | | 58 | Sep 12 | | | MAXIMUM PEAK FLOW | | | 12 | peb 20 | | 17400 | Nov 30 | | 60300 | Mar 13 | | | | | | | | | | | | | | | | MAXIMUM PEAK STAG | | | | | | 28.7 | | | 48.26 | Mar 13 | | | INSTANTANEOUS LOW | | | | | | 50 | Sep 14 | | 50 | Sep 14 | 2002 | | ANNUAL RUNOFF (CF | FSM) | | 0.96 | | | 1.6 | 4 | | 1.40 | | | | ANNUAL RUNOFF (IN | ICHES) | | 13.05 | | | 22.2 | 2 | | 19.06 | | | | | | | | | | | | | | | | ### 03436690 YELLOW CREEK AT ELLIS MILLS, TN LOCATION.--Lat 36°18'39", long 87°33'15", Houston County, Hydrologic Unit 05130205, on right bank at downstream end of bridge on county road, 0.3 mi northeast of Ellis Mills, 1.0 mi upstream from Leatherwood Creek, 1.0 mi downstream from Williamson Branch DRAINAGE AREA. -- 103 mi². PERIOD OF RECORD.--October 1980 to September 1991. October 1991 to September 1997, crest-stage partial record station. October 2000 to current year. GAGE.--Water-stage encoder, crest-stage gage and satellite telemeter at station. Elevation of gage is 417 ft above NGVD of 1929, from topographic map. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $14,400 \text{ ft}^3/\text{s}$ May 6, 1984, gage height, 18.47 ft recorded, 18.95 ft, from floodmarks, from rating curve extended above $9,500 \text{ ft}^3/\text{s}$ on basis of regression formula and peak discharge at Station No. 03436700 Yellow Creek near Shiloh, TN; minimum, $7.2 \text{ ft}^3/\text{s}$ Oct. 14, 1986, result of upstream regulation. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,800 ${\rm
ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 0230 | 2,830 | 9.85 | Mar 18 | 0200 | 5,030 | 12.34 | | Nov 29 | 2330 | *7,000 | *14.09 | Mar 20 | 1100 | 2,900 | 9.94 | | Dec 13 | 0230 | 2,110 | 8.82 | Sep 27 | 0200 | 2,460 | 9.34 | | Jan 24 | 1200 | 4,620 | 11.91 | | | | | Minimum discharge, 17 ft³/s, Oct. 2, 3, 4, 5. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO |) SEPTEMBE | ER 2002 | | | |----------------------------------|----------------------------------|----------------------------------|--|--|-----------------------|---|---------------------------------|-------------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 18 | 54 | 783 | 133 | 459 | 102 | 934 | 424 | 80 | 47 | 36 | 26 | | 2 | 18 | 53 | 481 | 122 | 428 | 105 | 676 | 301 | 76 | 45 | 34 | 25 | | 3 | 18 | 53 | 357 | 115 | 363 | 105 | 528 | 216 | 72 | 45 | 32 | 24 | | 4 | 17 | 48 | 283 | 106 | 310 | 97 | 385 | 198 | 69 | 44 | 31 | 24 | | 5 | 21 | 46 | 216 | 102 | 262 | 92 | 292 | 184 | 66 | 42 | 30 | 23 | | 6 | 31 | 44 | 185 | 101 | 233 | 89 | 236 | 173 | 69 | 40 | 29 | 22 | | 7 | 28 | 43 | 170 | 98 | 220 | 89 | 198 | 161 | 66 | 39 | 28 | 24 | | 8 | 25 | 41 | 240 | 93 | 200 | 88 | 187 | 147 | 63 | 41 | 26 | 22 | | 9 | 23 | 40 | 329 | 90 | 184 | 93 | 181 | 143 | 61 | 41 | 26 | 22 | | 10 | 22 | 39 | 294 | 89 | 178 | 90 | 160 | 137 | 58 | 43 | 25 | 21 | | 11 | 27 | 38 | 240 | 89 | 163 | 87 | 149 | 124 | 57 | 45 | 25 | 20 | | 12 | 46 | 36 | 296 | 87 | 154 | 94 | 144 | 115 | 56 | 43 | 25 | 19 | | 13 | 391 | 35 | 1410 | 85 | 145 | 98 | 139 | 865 | 57 | 46 | 24 | 19 | | 14 | 1570 | 34 | 749 | 83 | 135 | 99 | 137 | 744 | 55 | 43 | 26 | 19 | | 15 | 523 | 34 | 506 | 81 | 129 | 101 | 133 | 510 | 53 | 40 | 34 | 22 | | 16 | 324 | 33 | 401 | 78 | 126 | 101 | 127 | 340 | 52 | 38 | 36 | 23 | | 17 | 217 | 32 | 366 | 78 | 117 | 956 | 122 | 361 | 51 | 37 | 50 | 23 | | 18 | 168 | 31 | 356 | 81 | 107 | 2250 | 117 | 413 | 49 | 42 | 39 | 22 | | 19 | 143 | 33 | 322 | 96 | 103 | 951 | 112 | 277 | 48 | 43 | 35 | 22 | | 20 | 124 | 33 | 278 | 130 | 119 | 1720 | 107 | 206 | 47 | 39 | 32 | 28 | | 21 | 108 | 31 | 228 | 138 | 117 | 1050 | 103 | 176 | 45 | 37 | 31 | 35 | | 22 | 97 | 30 | 204 | 134 | 108 | 699 | 101 | 155 | 44 | 40 | 30 | 30 | | 23 | 87 | 30 | 466 | 250 | 105 | 560 | 95 | 139 | 44 | 39 | 30 | 25 | | 24 | 84 | 51 | 450 | 2130 | 104 | 447 | 173 | 127 | 44 | 46 | 32 | 24 | | 25 | 84 | 80 | 361 | 889 | 103 | 340 | 242 | 118 | 54 | 42 | 31 | 24 | | 26
27
28
29
30
31 | 74
68
64
61
59
56 | 73
349
425
3670
2610 | 305
261
218
190
164
146 | 536
407
335
291
261
232 | 112
106
103
 | 601
593
499
409
377
1030 | 185
167
162
142
130 | 128
111
101
95
89
85 | 63
50
71
55
50 | 39
36
35
34
34
40 | 30
29
28
27
26
25 | 293
1400
461
217
152 | | TOTAL | 4596 | 8149 | 11255 | 7540 | 4993 | 14012 | 6564 | 7363 | 1725 | 1265 | 942 | 3111 | | MEAN | 148.3 | 271.6 | 363.1 | 243.2 | 178.3 | 452.0 | 218.8 | 237.5 | 57.50 | 40.81 | 30.39 | 103.7 | | MAX | 1570 | 3670 | 1410 | 2130 | 459 | 2250 | 934 | 865 | 80 | 47 | 50 | 1400 | | MIN | 17 | 30 | 146 | 78 | 103 | 87 | 95 | 85 | 44 | 34 | 24 | 19 | | CFSM | 1.44 | 2.64 | 3.52 | 2.36 | 1.73 | 4.39 | 2.12 | 2.31 | 0.56 | 0.40 | 0.30 | 1.01 | | IN. | 1.66 | 2.94 | 4.06 | 2.72 | 1.80 | 5.06 | 2.37 | 2.66 | 0.62 | 0.46 | 0.34 | 1.12 | ## 03436690 YELLOW CREEK AT ELLIS MILLS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1981 - 2002, BY WATER YEAR (WY) | MEAN 43.86 96.92
MAX 148 272
(WY) 2002 2002
MIN 16.2 27.2
(WY) 1988 1988 | 223.1 185.9 342.4
499 490 845
1991 1989 1989
34.1 22.9 101
1981 1981 1984 | 253.9 236.6 233.1
477 609 795
1989 1983 1984
124 78.5 46.8
1981 1986 1986 | 125.8 59.20 32.88 37.75 437 173 47.8 104 1981 1989 1989 2002 30.0 26.1 19.2 16.4 1988 1988 1987 1987 | |--|--|---|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1981 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 51083
140.0
3670 Nov 29
17 Oct 4
18 Sep 28
1.36
18.45
289
67
24 | | 154.8
270 1989
82.1 2001
5530 Feb 3 1990
14 Aug 24 1987
14 Oct 2 1987
14400 May 6 1984
18.47 May 6 1984
7.2 Oct 14 1986
1.50
20.43
311
68
23 | a Also occurred Oct. 3, 4, 5. ### RESERVOIRS IN CUMBERLAND RIVER BASIN 03413500 LAKE CUMBERLAND.--Lat 36°52'09", long 85°08'45", Russell County, KY, Hydrologic Unit 05130103, in pylon of Wolf Creek Dam on Cumberland River and 10 mi southwest of Jamestown, Ky. DRAINAGE AREA, 5,789 mi². PERIOD OF RECORD, April 1950 to current year. Prior to October 1954, published as Wolf Creek Reservoir. April to June 1950, published in WSP 1726. GAGE, water-stage recorder. Datum of gage is Sandy Hook datum. Prior to Dec. 6, 1950, nonrecording gage at same site at datum 545.0 ft higher. REVISIONS.--WSP 1556: Drainage area. REMARKS.--Reservoir is formed by earth embankment and concrete gravity dam surmounted by 10 taintor gates, each 37 high by 50 ft wide. Final closure of dam made Aug. 7, 1950. Total capacity at elevation 760.00 ft top of gates, is 3,070,000 cfs-days, of which 1,056,000 cfs-days above elevation 723.00 ft, crest of spillway, are reserved for flood control and 1,080,000 cfs-days between elevation 673.00 ft, minimum power pool, and 723.00 ft are used for power production. Figures given herein represent total contents, of which 934,000 cfs-days below elevation 673.00 ft is dead storage. Reservoir is used for flood control, power, navigation, and recreation. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 2,811,000 cfs-days, May 13, 1984, elevation, 751.70 ft; minimum, first filling, 934,400 cfs-days, Jan. 1, 1956, elevation, 673.01 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 2,198,800 cfs-days, Apr. 3, elevation, 730.14 ft; minimum, 1,276,300 cfs-days, Dec. 6, elevation, 690.76 ft. 03416500 DALE HOLLOW LAKE.--Lat 36°32'19", long 85°27'05", Clay County, Hydrologic Unit 05130105, at Dale Hollow Dam on Obey River, 3.0 mi east of Celina, and 7.3 mi upstream from mouth. DRAINAGE AREA, 936 mi². PERIOD OF RECORD, August 1943 to current year. Prior to October 1965, published as Dale Hollow Reservoir. GAGE, water-stage recorder. Datum of gage is Sandy Hook datum. Prior to June 25, 1946, nonrecording gage at same site and datum. REVISIONS.--WSP 1306: 1944. WSP 2110: Drainage area. REMARKS.--Reservoir is formed by concrete gravity dam. Spillway is equipped with six taintor gates, each 12 ft high by 60 ft wide. Closure of dam was made Aug. 30, 1943; water in reservoir first reached minimum pool elevation May 7, 1944. Revised capacity table used after Sept. 30, 1970. Total capacity at elevation 663.0 ft, top of gates, is 859,800 cfs-days of which 177,500 cfs-days between elevations 663.00 ft and 651.00 ft, crest of spillway, are reserved for flood control, and 250,200 cfs-days between elevations 651.00 ft and 631.00 ft, ordinary minimum pool, are used for power production. Contents of 432,100 cfs-days below elevation 631.00 ft is dead storage. Reservoir is used for flood control, navigation, and power. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 828,600 cfs-days, Mar. 15, 1975, elevation, 660.98 ft; minimum, first filling, 428,000 cfs-days, Sept. 11, 1944, elevation, 630.63 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 711,700 cfs-days, Apr. 1, elevation, 653.08 ft; minimum, 497,800 cfs-days, Nov. 13, elevation, 636.73 ft. 03418400 CORDELL HULL RESERVOIR.--Lat 36°17'23", long 85°56'39", Smith County, Hydrologic Unit 05130108, at Cordell Hull Dam Cumberland River, 2.7 mi north of Carthage, and at mile 313.5. DRAINAGE AREA, 8,095 mi². PERIOD OF RECORD, October 1972 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete gravity dam with earth embankment. Spillway is equipped with five gates, each 41 ft high and 45 ft wide. Closure of dam was made Oct. 4, 1967; water in reservoir first reached ordinary minimum pool Mar. 13, 1973. Total capacity at elevation 508.0 ft, maximum surcharge pool, is 156,700 cfs-days, of which 53,400 cfs-days is controlled storage between elevations 508.0 ft and 499.0 ft, ordinary minimum pool. Contents of 5,000 cfs-days between elevation of 499.0 ft and 500.0 ft full winter pool, is available for power production.
Contents of 48,400 cfs-days above 500.0 ft is available for flood control during the winter, and 26,100 cfs-days above 504.0 ft, full pool during spring to fall season, is available for flood control the rest of the year. Contents of 103,300 cfs-days below elevation 499.0 ft is dead storage. Reservoir is used for navigation, power, and flood control. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 156,700 cfs-days, Mar. 13, 1975, May 8, 1984, elevation, 508.00 ft; minimum, after first filling to ordinary minimum pool, 96,700 cfs-days, Apr. 18, 1974, elevation, 497.65 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 136,800 cfs-days, May 6, elevation, 505.00 ft; minimum, 103,500 cfs-days, Feb. 11, elevation, 499.05 ft. ### MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | Elevation Conte | Change in
nts contents
lays)(cfs-days) | Elevation (feet) | Contents | Change in
contents
(cfs-days) | | Contents
(cfs-days) | Change in
contents
(cfs-days) | |---|--|---|--|---|--|--|---|--| | | 03413500 LAKE CU | MBERLAND | 03416500 І | DALE HOLLOW | LAKE | 03418400 COR | DELL HULL F | RESERVOIR | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 699.40 1,458
694.81 1,360
690.86 1,278
697.10 1,409 | ,400 -98,400
,300 -82,100 | 639.15
637.99
637.06
639.75 | 530,500
512,900
501,800
534,400 | -47,400
-17,600
-11,100
+32,600 | 504.02
502.37
500.91
500.38 | 130,800
121,100
113,100
110,300 | -2,300
-9,700
-8,000
-2,800 | | CAL YR 2001 | - | - +185,800 | - | - | +39,700 | - | - | +1,700 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 716.35 1,848
712.02 1,745
727.34 2,125
724.74 2,058
722.30 1,996
717.98 1,888
711.55 1,734
703.21 1,542
697.45 1,416 | .100 -103,800
.300 +380,200
.200 -67,100
.200 -62,000
.700 -107,500
.100 -154,600
.800 -191,300 | 647.10
645.13
652.65
651.41
650.18
648.25
644.54
640.62
638.38 | 628,900
602,800
705,500
688,100
670,900
644,400
595,100
545,200
517,600 | +94,500
-26,100
+102,700
-17,400
-17,200
-26,500
-49,300
-49,900
-27,600 | 500.22
500.42
501.86
504.18
504.25
504.05
504.33
504.36
503.45 | 109,500
110,500
118,300
131,700
132,200
131,000
132,700
132,800
127,400 | -800
+1,000
+7,800
+13,400
+500
-1,200
+1,700
100
-5,400 | | WTR YR 2002 | - | 42,200 | - | _ | -12,900 | _ | - | -3,400 | ### RESERVOIRS IN CUMBERLAND RIVER BASIN--CONTINUED 03422000 GREAT FALLS LAKE.--Lat 35°48'21", long 85°38'09", Warren County, Hydrologic Unit 05130108, at pen-stock inlet on Collins River, 700 ft southwest of powerhouse of Tennessee Valley Authority, 1.5 mi northwest of Rock Island, 1.8 mi upstream from mouth of Collins River, and 2.0 mi upstream from Great Falls Dam on Caney Fork. DRAINAGE AREA, 1,677 mi². PERIOD OF RECORD, January 1917 to current year. GAGE, remote indicator gage. Datum of gage is sea level. REVISIONS.--WSP 2110: Drainage area. REMARKS.--Reservoir is formed by concrete gravity dam. Spillway is equipped with 18 taintor gates, each 14 ft high by 25 ft wide. Closure of dam was made in 1916; dam redesigned and crest raised 35 ft in 1925. Revised capacity table used after Sept. 30, 1970. Total capacity at elevation 805.3 ft top of gates, is 25,900 cfs-days, of which 18,700 cfs-days are controlled storage above elevation 780.0 ft, normal minimum pool. Contents of 1,500 cfs-days below elevation 762.0 ft is dead storage. Reservoir is used primarily for power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum midnight elevation, 817.48 ft, Mar. 23, 1929, contents not determined; minimum midnight contents, 1,700 cfs-days, Aug. 19, 1918, elevation, 756.3 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 28,000 cfs-days, Jan. 24, elevation, 807.66 ft; minimum, 9,880 cfs-days, Nov. 21, elevation, 784.91 ft. 03424000 CENTER HILL LAKE.--Lat 36°05'48", long 85°49'38", DeKalb County, Hydrologic Unit 05130108, at Center Hill Dam on Caney Fork, 10 mi north of Smithville, 14 mi southeast of Carthage, and at mile 26.6. DRAINAGE AREA, 2,174 mi². PERIOD OF RECORD, October 1948 to current year. Prior to October 1965, published as Center Hill Reservoir. GAGE, water-stage recorder. Datum of gage is Sandy Hook datum. Prior to Mar. 14, 1949, nonrecording gage at site 1,320 ft upstream at same datum. REVISIONS.--WSP 1910: Drainage area. REMARKS.--Reservoir is formed by earth embankment and concrete gravity dam. Spillway is equipped with eight taintor gates, each 37 ft high by 50 ft wide. Closure of dam was made Nov. 27, 1948; water in reservoir first reached minimum pool elevation Jan. 11, 1949. Revised capacity table used after Sept. 30, 1970. Total capacity at elevation 685.0 ft, top of gates, is 1,054,800 cfs-days, of which 384,500 cfs-days between 685.0 ft and 648.0 ft, crest of spillway, are reserved for flood control, and 248,000 cfs-days between elevations 648.0 ft and 618.0 ft, ordinary minimum pool, are used for power production. Contents of 422,300 cfs-days below 618.0 ft is dead storage. Reservoir is used for flood control, navigation, and power. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,014,600 cfs-days, May 10, 1984, elevation, 681.52 ft; minimum, after first filling, 171,000 cfs-days, Dec. 1, 2, 1949, elevation, 576.1 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 807,300 cfs-days, Jan. 15, elevation, 662.19 ft; minimum, 497,600 cfs-days, Nov. 1, elevation, 627.83 ft. 03426300 OLD HICKORY LAKE.--Lat 36°17'50", long 86°39'20", Sumner County, Hydrologic Unit 05130201, at Old Hickory Dam on Cumberland River, 2.0 mi west of Hendersonville, 10 mi northeast of the State Capitol in Nashville, and at mile 216.2. DRAINAGE AREA, 11,673 mi². PERIOD OF RECORD, June 1954 to current year. GAGE, water-stage recorder. Datum of gage is sea level; gage readings have been reduced to elevations NGVD. Prior to Apr. 4, 1957, nonrecording gage at same site and datum. REVISIONS.--WSP 2110: Drainage area. REMARKS.--Reservoir is formed by concrete gravity dam with earth embankment. Spillway is equipped with six taintor gates, each 41 ft high and 45 ft wide. Closure of dam was made in June 1954 and water in reservoir was raised sufficiently to maintain navigation through the lock. Water in reservoir first reached ordinary minimum pool elevation Dec. 30, 1956. Revised capacity table used after Sept. 30, 1970. Total capacity at elevation 450.0 ft, maximum surcharge pool, 274,600 cfs-days of which 63,000 cfs-days between elevations 450.0 ft and 445.0 ft, normal pool, are induced surcharge storage provided to compensate for loss of natural valley storage incurred by construction of the project, and 31,800 cfs-days between elevations 445.0 ft and 442.0 ft, ordinary minimum pool, are used for power production. Contents of 179,800 cfs-days below elevation 442.0 ft, is dead storage. Reservoir is used for navigation and power. ${\tt COOPERATION.--Records\ furnished\ by\ U.S.\ Army\ Corps\ of\ Engineers.}$ EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 277,200 cfs-days, May 9, 1984, elevation, 450.18 ft; minimum, after first filling to ordinary minimum pool, 179,400 cfs-days, Oct. 22, 1957, Oct. 28, 1969, elevation, 441.96 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 237,800 cfs-days, Jan. 21, elevation, 447.20 ft, minimum, 200,000 cfs-days, Sept. 16, elevation, 443.95 ft. MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | Elevation
(feet) | Contents
(cfs-days | Change in
contents
)(cfs-days) | Elevation
(feet) | Contents
(cfs-days) | Change in
contents
(cfs-days) | | Contents
(cfs-days) | Change in
contents
(cfs-days) | |---|--|--|--|--|---|--|--|---|--| | | 03422000 GR | EAT FALLS | LAKE | 03424000 C | ENTER HILL | LAKE | 03426300 OI | D HICKORY | LAKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 800.36
785.73
789.18
795.80 |
20,800
10,400
12,400
17,100 | +200
-10,400
+2,000
+4,700 | 632.25
629.88
629.64
634.47 | 533,300
514,000
512,000
551,700 | -44,500
-19,300
-2,000
+39,700 | 444.50
444.75
445.60
444.80 | 206,000
208,800
218,500
209,400 | -1,600
+2,800
+9,700
-9,100 | | CAL YEAR 2001 | - | - | +1,700 | - | - | +36,300 | - | - | -600 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 805.25
785.90
804.92
800.70
795.33
794.74
799.72
799.93
801.16 | 25,300
10,500
24,900
21,100
16,700
16,200
20,200
20,400
21,500 | +8,200
-14,800
+14,400
-3,800
-4,400
-500
+4,000
+200
+1,100 | 655.64
641.92
654.89
648.09
646.95
645.09
640.44
634.92
632.22 | 742,400
615,600
735,200
671,100
660,700
643,800
602,600
555,400
533,000 | +190,700
-126,800
+119,600
-64,100
-10,400
-16,900
-41,200
-47,200
-22,400 | 444.66
445.20
445.15
444.13
444.70
445.10
444.88
444.95
444.36 | 207,800
213,900
213,300
201,900
208,200
212,800
210,300
211,100
204,500 | -1,600
+6,100
-600
-11,400
+6,300
+4,600
-2,500
800
-6,600 | | WTR YR 2002 | _ | - | +700 | - | - | -300 | - | - | -1,500 | ### RESERVOIRS IN CUMBERLAND RIVER BASIN--CONTINUED 03430050 J. PERCY PRIEST RESERVOIR.--Lat 36°09'23", long 86°37'07", Davidson County, Hydrologic Unit 05130203, on upstream face of J. Percy Priest Dam on Stones River, 2.6 mi east of Donelson, and 6.8 mi above mouth. DRAINAGE AREA, 892 mi². PERIOD OF RECORD, September 1967 to current year. GAGE, water-stage recorder. Datum of gage is sea level. Prior to Dec. 15, 1967, nonrecording gage at same site and datum. REMARKS.--Reservoir is formed by concrete gravity dam with earth embankments. Spillway is equipped with four taintor gates, each 41 ft high by 45 ft wide. Closure of dam was made Sept. 18, 1967; water in reservoir first reached ordinary minimum pool May 15, 1968. Revised capacity table used after Sept. 30, 1970. Total capacity at elevation 504.5 ft, maximum controlled pool, is 328,700 cfs-days of which 193,600 cfs-days is controlled storage between elevations 504.5 ft and 480.0 ft, ordinary minimum pool. Contents of 17,200 cfs-days between elevations 480.0 ft and 483.0 ft, full winter pool, is available for power production. Contents of 176,400 cfs-days above 483.0 ft is available for flood control during the winter, and 131,100 cfs-days above 490.0 ft, full pool during spring-to-fall season, is available for flood control the rest of the year. Contents of 135,100 cfs-days below elevation 480.0 ft is dead storage. Reservoir is used for flood control, power, recreation, and wildlife. COOPERATION.--Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 336,600 cfs-days, May 9, 1984, elevation, 505.18 ft; minimum, after first filling to ordinary minimum pool, 109,500 cfs-days, Dec. 5, 1968, elevation, 474.75 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 245,000 cfs-days, Jan. 23, elevation, 496.10 ft, minimum, 147,300 cfs-days, Mar. 23, elevation, 482.16 ft. 03434900 CHEATHAM LAKE.--Lat 36°18'56", long 87°13'10", Cheatham County, Hydrologic Unit 05130202, at Cheatham Dam on Cumberland River, 9.4 mi west of Ashland City, 16 mi southeast of the courthouse in Clarksville, and at mile 148.7. DRAINAGE AREA, 14,159 mi². REMARKS.--Reservoir is formed by concrete gravity dam. Spillway is equipped with seven semi-submersible taintor gates, each 27 ft high by 60 ft wide. Total capacity at elevation 385.0 ft, normal pool, is 52,200 cfs-days, of which 9,800 cfs-days are controlled storage. Records of contents not published herein. 03438210 LAKE BARKLEY.--Lat 37°01'17", long 88°13'16", Lyon County, KY, Hydrologic Unit 05130205, in powerhouse of Barkley Dam on Cumberland River, 1.4 mi northeast of Grand Rivers, KY, and at mile 30.6. DRAINAGE AREA, 17,598 mi². PERIOD OF RECORD, July 1964 to current year. GAGE, water-stage recorder. Datum of gage is sea level, (levels by U.S. Army Corps of Engineers). Prior to Jan. 1, 1966, nonrecording gage, 1,200 ft upstream from Barkley Dam at same datum. REMARKS.--Reservoir is formed by concrete gravity dam with earth embankments. Spillway is equipped with 12 taintor gates, each 50 ft high by 55 ft wide. Construction cofferdam was closed and limited storage began July 1, 1964; reservoir reached ordinary minimum pool elevation of 354.0 ft Feb. 16, 1966. Total level pool capacity at elevation 375.0 ft, top of gates, is 1,049,600 cfs-days, of which 742,000 cfs-days is controlled storage above 354.0 ft, ordinary minimum pool. Contents of 130,500 cfs-days between ordinary minimum pool elevation, 354.0 ft, and full pool elevation, 359.0 ft, is available for power during the spring-to-fall season. Minimum pool elevation in advance of floods is 346.0 ft, contents 171,000 cfs-days. Reservoir is used for navigation, flood control, power, and recreation. Barkley-Kentucky Canal opened June 13, 1966, for navigation and power use. Canal is 1.75 mi long and interconnects Lake Barkley and Kentucky Lake at a point 2.2 mi upstream from Barkley Dam. For daily discharges through the canal, see station 03438190, Kentucky reports. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 370.04 ft, May 13, 1984; minimum after reaching permanent pool elevation, 353.20 ft, Dec. 20, 1976. EXTREMES FOR CURRENT YEAR.--Maximum contents, 646,400 cfs-days, May 10, elevation, 365.35 ft; minimum content, 294,300 cfs-days, Feb. 7, minimum, 353.40 ft. Contents based on backwater profile. ## MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Elevation
(feet) | Contents
(cfs-days) | Change in
contents
(cfs-day) | Elevation
(feet) | Contents
(cfs-days) | Change in
contents
(cfs-days) | |---|--|---|---|--|---|---| | | 03430050 | J. PERCY PRI | EST LAKE | *03438 | 3210 LAKE BA | RKLEY | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 490.27
487.85
486.73
482.85 | 199,600
182,700
175,300
151,400 | +2,100
-16,900
-7,400
-23,900 | 355.45
354.60
360.25
354.10 | 342,000
321,500
475,400
309,900 | +7,400
-20,500
+153,900
-165,500 | | CAL YR 2001 | - | - | -1,500 | - | - | -32,100 | | Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 486.70
482.45
489.75
490.63
490.25
490.15
490.74
490.54 | 175,100
149,000
195,800
202,200
199,500
198,700
203,300
201,600
206,500 | +23,700
-26,100
+46,800
+6,400
-2,700
-800
+4,600
-1,700
+4,900 | 354.35
354.65
355.85
359.25
361.45
359.15
357.75
356.25
357.15 | 315,700
322,700
352,100
445,400
513,000
442,500
402,600
362,300
386,100 | +5,800
+7,000
+29,400
+93,300
+67,600
-70,500
-39,900
-40,300
+23,800 | | WTR YR 2002 | _ | _ | +6,900 | - | _ | +44,100 | ^{*} Contents based on backwater profile. THIS PAGE IS INTENTIONALLY BLANK 156 TENNESSEE RIVER BASIN ### 03455000 FRENCH BROAD RIVER NEAR NEWPORT, TN LOCATION.--Lat 35°58'54", long 83°09'40", Cocke County, Hydrologic Unit 06010105, on left bank, 200 ft upstream from bridge on U.S. Highway 321, 1.0 mi northeast of Newport city limits, 3.7 mi upstream from Pigeon River, and at mile 77.5. DRAINAGE AREA. -- 1,858 mi². PERIOD OF RECORD.--September to December 1900, February to August 1901, October to November 1901, November 1902 to December 1905, September to December 1907, October 1920 to September 1994, October 1996 to September 1997. Monthly discharge only October to November 1920, published in WSP 1306. REVISED RECORDS.--WSP 783: 1933-34, WSP 823: Drainage area. WSP 893: 1928(M), WSP 1306: 1900-1908. WSP 1336: 1903(M), 1921-22(M), 1923, 1925(M), 1927(M), 1928, 1932. WSP 1706: 1901(M). GAGE.--Water-stage recorder. Datum of gage is 1,011.61 ft above NGVD of 1929. See WSP 1910 for history of changes prior to Mar. 31, 1934. REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuation during low flow caused by powerplants above station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--From reports of Tennessee Valley Authority, the flood of Mar. 7, 1867, gage height, 24 ft, present datum, discharge estimated, 110,000 ft³/s, has not been exceeded since that date. From the same reports, other outstanding floods occurred Feb. 28, 1902, gage height, 23.0 ft present datum, discharge estimated, 101,000 ft³/s; and July 17, 1916, gage height, 22.5 ft present datum, discharge estimated 97,000 ft³/s. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $16,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 2145 | 18.100 | 8 73 | Mar 17 | 2115 | *33.900 | *12.86 | Minimum discharge, 359
ft^3/s , Aug. 11, 13. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1080 | 823 | 1050 | 1010 | 2540 | 1530 | 5690 | 2030 | 1030 | 1040 | 630 | 612 | | 2 | 1020 | 836 | 1080 | 944 | 2380 | 1470 | 4850 | 3040 | 1140 | 946 | 606 | 600 | | 3 | 986 | 843 | 1070 | 1020 | 2240 | 1720 | 4110 | 3460 | 1230 | 1080 | 645 | 546 | | 4 | 938 | 794 | 957 | 975 | 2130 | 3210 | 3480 | 3550 | 1050 | 1300 | 563 | 551 | | 5 | 912 | 771 | 911 | 890 | 2020 | 2490 | 2940 | 4460 | 1180 | 1050 | 544 | 525 | | 6 | 913 | 747 | 856 | 982 | 1950 | 2090 | 2620 | 3820 | 1970 | 974 | 490 | 487 | | 7 | 898 | 734 | 848 | 1260 | 2020 | 1890 | 2450 | 2770 | 2820 | 845 | 423 | 469 | | 8 | 872 | 750 | 866 | 1610 | 2870 | 1790 | 2310 | 2260 | 1930 | 783 | 406 | 458 | | 9 | 914 | 743 | 901 | 1330 | 3170 | 1720 | 2280 | 1950 | 1370 | 737 | 384 | 386 | | 10 | 858 | 766 | 921 | 1230 | 2710 | 1710 | 2400 | 1850 | 1260 | 668 | 369 | 384 | | 11 | 831 | 740 | 1280 | 1310 | 2550 | 1690 | 2910 | 1770 | 1070 | 951 | 372 | 391 | | 12 | 837 | 717 | 1860 | 1360 | 2400 | 1750 | 2580 | 1760 | 1010 | 1160 | 366 | 384 | | 13 | 864 | 707 | 1700 | 1260 | 2300 | 1820 | 2360 | 1710 | 934 | 937 | 366 | 386 | | 14 | 930 | 704 | 1610 | 1180 | 2150 | 2610 | 2400 | 2220 | 1050 | 1290 | 376 | 384 | | 15 | 1310 | 742 | 1480 | 1130 | 2060 | 2910 | 2480 | 2010 | 1070 | 1270 | 512 | 383 | | 16 | 2270 | 728 | 1390 | 1090 | 2050 | 2460 | 2400 | 1710 | 949 | 1300 | 531 | 757 | | 17 | 1570 | 718 | 1310 | 1040 | 1940 | 11700 | 2250 | 1480 | 881 | 1200 | 473 | 1260 | | 18 | 1200 | 706 | 1910 | 1040 | 1880 | 18200 | 2050 | 1490 | 834 | 994 | 709 | 1010 | | 19 | 1070 | 661 | 2460 | 1490 | 1820 | 8500 | 2190 | 1730 | 791 | 893 | 826 | 710 | | 20 | 1010 | 655 | 2080 | 5550 | 1780 | 5250 | 2080 | 1550 | 762 | 877 | 678 | 580 | | 21 | 963 | 693 | 1690 | 4150 | 1780 | 4370 | 2070 | 1370 | 772 | 772 | 764 | 546 | | 22 | 946 | 672 | 1480 | 3300 | 1800 | 4060 | 2000 | 1310 | 780 | 738 | 627 | 789 | | 23 | 919 | 665 | 1360 | 7070 | 1770 | 3700 | 1980 | 1240 | 746 | 674 | 558 | 1860 | | 24 | 896 | 683 | 1310 | 11400 | 1700 | 3190 | 1780 | 1220 | 702 | 952 | 486 | 1690 | | 25 | 888 | 1010 | 1340 | 10400 | 1640 | 2940 | 2090 | 1160 | 704 | 902 | 474 | 1210 | | 26
27
28
29
30
31 | 894
814
844
806
810
797 | 1700
1550
1280
1090
1040 | 1430
1270
1220
1180
1120
1060 | 7110
5010
4070
3510
3000
2720 | 1560
1590
1570
 | 2790
3090
3060
2780
3230
5460 | 2440
2140
1960
1800
1710 | 1130
1090
1230
1690
1270
1110 | 782
893
2300
1790
1230 | 958
1110
867
972
917
742 | 515
989
1500
1140
863
711 | 1260
2870
5650
4790
3670 | | TOTAL | 30860 | 25268 | 41000 | 89441 | 58370 | 115180 | 76800 | 60440 | 35030 | 29899 | 18896 | 35598 | | MEAN | 995.5 | 842.3 | 1323 | 2885 | 2085 | 3715 | 2560 | 1950 | 1168 | 964.5 | 609.5 | 1187 | | MAX | 2270 | 1700 | 2460 | 11400 | 3170 | 18200 | 5690 | 4460 | 2820 | 1300 | 1500 | 5650 | | MIN | 797 | 655 | 848 | 890 | 1560 | 1470 | 1710 | 1090 | 702 | 668 | 366 | 383 | | CFSM | 0.54 | 0.45 | 0.71 | 1.55 | 1.12 | 2.00 | 1.38 | 1.05 | 0.63 | 0.52 | 0.33 | 0.64 | | IN. | 0.62 | 0.51 | 0.82 | 1.79 | 1.17 | 2.31 | 1.54 | 1.21 | 0.70 | 0.60 | 0.38 | 0.71 | # 03455000 FRENCH BROAD RIVER NEAR NEWPORT, TN--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA : | FOR WATER | YEARS 1901 | - 2002, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|--------|-----------|------------|---------|----------|-----------|------|------|-------|------| | MEAN | 1858 | 2111 | 2818 | 3537 | 4195 | 4817 | 4311 | 3328 | 2577 | 2209 | 2266 | 1730 | | MAX | 9875 | 7249 | 7478 | 9533 | 8814 | 12710 | 11650 | 9448 | 6148 | 7620 | 14640 | 6358 | | (WY) | 1965 | 1980 | 1962 | 1937 | 1990 | 1903 | 1903 | 1901 | 1901 | 1905 | 1901 | 1928 | | MIN | 508 | 713 | 819 | 968 | 1450 | 1399 | 1362 | 1252 | 722 | 711 | 380 | 421 | | (WY) | 1955 | 1932 | 1940 | 1956 | 1941 | 1988 | 1986 | 1941 | 1988 | 1986 | 1925 | 1925 | | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1901 - 2002 | |--------------------------|----------------|-----------|--------------|---------|-------------|-------------| | ANNUAL TOTAL | 636976 | | 616782 | | | | | ANNUAL MEAN | 1745 | | 1690 | | 2969 | | | HIGHEST ANNUAL MEAN | | | | | 7671 | 1901 | | LOWEST ANNUAL MEAN | | | | | 1348 | 1988 | | HIGHEST DAILY MEAN | 10700 | Jul 30 | 18200 | Mar 18 | 62200 | Apr 8 1903 | | LOWEST DAILY MEAN | 655 | Nov 20 | 366 | Aug 12 | 240 | Sep 9 1925 | | ANNUAL SEVEN-DAY MINIMUM | 676 | Nov 18 | 377 | Aug 8 | 276 | Aug 25 1925 | | MAXIMUM PEAK FLOW | | | 33900 | Mar 17 | 76300 | Aug 30 1940 | | MAXIMUM PEAK STAGE | | | 12.88 | Mar 17 | 19.25 | Aug 30 1940 | | INSTANTANEOUS LOW FLOW | | | a359 | Aug 11 | 208 | Oct 23 1952 | | ANNUAL RUNOFF (CFSM) | 0.94 | | 0.91 | | 1.60 | | | ANNUAL RUNOFF (INCHES) | 12.75 | , | 12.35 | | 21.71 | | | 10 PERCENT EXCEEDS | 2930 | | 3020 | | 5420 | | | 50 PERCENT EXCEEDS | 1340 | | 1210 | | 2250 | | | 90 PERCENT EXCEEDS | 853 | | 621 | | 956 | | ### a Also occurred Aug. 13. ### 03461500 PIGEON RIVER AT NEWPORT, TN LOCATION.--Lat $35^{\circ}57'38$ ", long $83^{\circ}10'28$ ", Cocke County, Hydrologic Unit 06010106, on left bank 100 ft upstream from bridge on U.S. Highway 25 and 70 at Newport, 0.6 mi downstream from Morell Branch, and at mile 6.8 DRAINAGE AREA. -- 666 mi². WATER-DISCHARGE RECORD PERIOD OF RECORD.-- September 1900 to September 1929, October 1944 to September 1946, August 1948 to February 1982, October 1996 to current year. Monthly discharge only for some peiods, published in WSP 1306. Published as "near Newport" 1945-46. REVISED RECORDS.--WSP 1143: Drainage area. WSP 1306: 1901, 1904-10. WSP 1336: 1903, 1917(M), 1919-20(M), 1921, 1924(M), 1927-29(M), 1948-52 (monthly runoff). GAGE.--Water-stage recorder. Datum of gage is 1,038.76 ft NGVD of 1929. Prior to Oct. 1, 1929, nonrecording gage at present site at datum 2.00 ft higher. May 8, 1945, to July 22, 1946, water-stage recorder at site 4.8 mi downstream at datum 35.85 ft lower. August 13, 1948, to Sept. 30, 1970, at present site at datum 2.00 ft higher. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. Considerable regulation by Lakes Junaluska, Logan, and Walters for periods of low flow, combined usable capacity of reservoirs about 12,500 cfs-days. The largest of these, Lake Walters, usable capacity, 10,400 cfs-days was completed in 1929. EXTREMES OUTSIDE PERIOD OF RECORD.—Floods of Mar. 7, 1867, and June 17, 1876, reached a stage of 23 ft present datum, under present conditions about 21.1 ft, due to removal of mill dam in 1945, discharge, 48,000 ft³/s, and flood of August 30, 1940, reached a stage of 19.3 ft present datum, discharge 36,000 ft³/s, from reports of Tennessee Valley Authority. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23
Mar 17 | 1830
1745 | 8,510
*15,900 | 8.18
*11.06 | Mar 18 | 1030 | 10,300 | 8.91 | Minimum discharge, 143 ft³/s, June 24. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO | SEPTEMBE | R 2002 | | | |----------------------------------|--|---------------------------------|--|---|-----------------------|--|----------------------------------|--|---------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 237 | 233 | 466 | 363 | 1370 | 770 | 2640 | 1420 | 553 | 217 | 547 | 284 | | 2 | 260 | 238 | 483 | 739 | 1540 | 796 | 2350 | 2090 | 338 | 576 | 280 | 354 | | 3 | 225 | 206 | 443 | 629 | 1040 | 303 | 1760 | 1700 | 502 | 626 | 456 | 437 | | 4 | 261 | 202 | 588 | 355 | 945 | 381 | 1820 | 2120 | 706 | 628 | 271 | 270 | | 5 | 282 | 231 | 250 | 516 | 1440 | 808 | 1030 | 2770 | 1210 | 358 | 192 | 323 | | 6 | 600 | 524 | 293 | 448 | 1080 | 815 | 1110 | 1970 | 908 | 584 | 437 | 263 | | 7 | 268 | 404 | 294 | 550 | 1210 | 360 | 1250 | 1600 | 371 | 278 | 537 | 187 | | 8 | 386 | 178 | 369 | 836 | 1240 | 449 | 1560 | 1280 | 736 | 198 | 538 | 179 | | 9 | 572 | 179 | 427 | 398 | 510 | 219 | 1500 | 1240 | 546 | 445 | 258 | 180 | | 10 | 273 | 205 | 532 | 189 | 412 | 254 | 1470 | 1060 | 437 | 677 | 330 | 288 | | 11 | 200 | 178 | 880 | 378 | 646 | 651 | 1420 | 905 | 507 | 773 | 239 | 255 | | 12 | 196 | 499 | 648 | 642 | 1230 | 658 | 1520 | 749 | 771 | 391 | 173 | 284 | | 13 |
336 | 489 | 806 | 330 | 799 | 441 | 743 | 1540 | 701 | 595 | 316 | 388 | | 14 | 228 | 412 | 732 | 432 | 992 | 276 | 822 | 1150 | 534 | 396 | 241 | 264 | | 15 | 1000 | 385 | 563 | 425 | 877 | 1320 | 740 | 964 | 581 | 265 | 200 | 187 | | 16 | 554 | 388 | 747 | 481 | 315 | 1250 | 914 | 1260 | 309 | 543 | 193 | 191 | | 17 | 344 | 349 | 828 | 387 | 285 | 7040 | 996 | 690 | 232 | 558 | 376 | 191 | | 18 | 878 | 191 | 1430 | 273 | 720 | 7640 | 907 | 645 | 437 | 540 | 259 | 188 | | 19 | 348 | 312 | 1050 | 1860 | 648 | 4010 | 842 | 514 | 507 | 397 | 189 | 176 | | 20 | 234 | 362 | 554 | 3880 | 919 | 1570 | 1010 | 997 | 489 | 503 | 417 | 168 | | 21 | 243 | 200 | 803 | 2060 | 847 | 1860 | 1020 | 812 | 268 | 302 | 286 | 193 | | 22 | 332 | 241 | 606 | 1030 | 1000 | 1830 | 890 | 773 | 446 | 225 | 211 | 288 | | 23 | 399 | 187 | 297 | 4810 | 620 | 1410 | 769 | 718 | 299 | 538 | 199 | 359 | | 24 | 387 | 203 | 706 | 5470 | 404 | 894 | 1270 | 713 | 270 | 651 | 322 | 277 | | 25 | 472 | 245 | 760 | 5590 | 747 | 1330 | 928 | 864 | 460 | 632 | 258 | 669 | | 26
27
28
29
30
31 | 481
225
251
431
388
329 | 499
378
328
381
417 | 788
990
643
337
326
299 | 3760
3070
2440
1290
1110
902 | 632
626
839
 | 1240
1410
1200
1010
1640
2430 | 653
390
434
1020
604 | 542
675
945
814
789
437 | 540
573
324
475
295 | 437
717
296
204
437
534 | 204
608
660
571
299
473 | 858
2530
3090
1300
1110 | | TOTAL | 11620 | 9244 | 18938 | 45643 | 23933 | 46265 | 34382 | 34746 | 15325 | 14521 | 10540 | 15731 | | MEAN | 374.8 | 308.1 | 610.9 | 1472 | 854.8 | 1492 | 1146 | 1121 | 510.8 | 468.4 | 340.0 | 524.4 | | MAX | 1000 | 524 | 1430 | 5590 | 1540 | 7640 | 2640 | 2770 | 1210 | 773 | 660 | 3090 | | MIN | 196 | 178 | 250 | 189 | 285 | 219 | 390 | 437 | 232 | 198 | 173 | 168 | | CFSM | 0.56 | 0.46 | 0.92 | 2.21 | 1.28 | 2.24 | 1.72 | 1.68 | 0.77 | 0.70 | 0.51 | 0.79 | | IN. | 0.65 | 0.52 | 1.06 | 2.55 | 1.34 | 2.58 | 1.92 | 1.94 | 0.86 | 0.81 | 0.59 | 0.88 | ### 03461500 PIGEON RIVER AT NEWPORT, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1901 - 2002, BY WATER YEAR (WY) | MEAN 624.3 756.0
MAX 2263 2265
(WY) 1965 1980
MIN 148 234
(WY) 1979 1954 | 1227 1594 1814
3271 3407 4762
1962 1974 1957
391 369 853
1904 1981 1904 | 2174 1803 1314 5136 4270 2693 1963 1903 1929 907 716 651 1915 1967 1914 | 1062 894.8 765.8 605.0 2436 2498 2229 2182 1967 1916 1928 1928 457 328 158 145 1925 1925 1925 1953 | |--|--|---|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEA | FOR 2002 WATER YEAR | WATER YEARS 1901 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 305961
838.2
4870 Jan 2
178 Nov
242 Nov 1
1.26
17.09
1610
648
266 | 3 168 Sep 20 | 1221 1787 1903 531 1948 31000 Apr 2 1920 48 Sep 21 1953 65 Nov 7 1980 50000 Feb 28 1902 a23.40 Feb 28 1902 38 Oct 5 1952 1.83 24.91 2410 916 326 | a Present datum, under present conditions the stage for this flood would be about 1.9 ft lower, due to removal of dam 1.3 mi downstream in 1945, from reports of Tennessee Valley Authority. ### 03465500 NOLICHUCKY RIVER AT EMBREEVILLE, TN LOCATION.--Lat 36°10'35", long 82°27'27", Washington County, Hydrologic Unit 06010108, on left bank, at Embreeville, 1,000 ft upstream from bridge on State Highway 81, 3 mi northwest of Erwin, 5.2 mi downstream from North Indian Creek, and at mile 89.0. DRAINAGE AREA. -- 805 mi². PERIOD OF RECORD.--September 1900 to May 1901 (published as "near Chucky Valley"), October 1919 to current year. Monthly discharge only October 1919 to June 1920, published in WSP 1306. REVISED RECORDS.--WSP 803: 1935(M). WSP 823: Drainage area. WSP 1336: 1921-24, 1931(M). GAGE.--Data collection platform. Datum of gage is 1,519.30 ft above NGVD of 1929. Sept. 1, 1900 to May 21, 1901, nonrecording gage at site 3 mi downstream at different datum, destroyed by flood of May 21, 1901. July 1, 1920 to Sept. 30, 1931, nonrecording gage at bridge 2,000 ft downstream at datum 6.33 ft lower. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 21, 1901, reached a stage of 24 ft, discharge, 120,000 ft³/s, present site and datum, from reports of Tennessee Valley Authority. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 9,500 and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23
Jan 25 | 2200
0815 | 14,800
9,510 | 6.29
5.03 | Mar 17 | 2345 | *15,000 | *6.34 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge, 109 ft³/s, Sept. 13, 14. | | | DIDCIL | INOL, CODI | C ILLI IL | | Y MEAN VA | | 1001 10 | ODI ILIDE | 11 2002 | | | |---|--|---|--|--|--|---|----------------------------------|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 370 | 322 | 433 | 401 | 1280 | 555 | 3800 | 906 | 521 | 466 | 243 | 233 | | 2 | 360 | 323 | 458 | 379 | 1150 | 597 | 2960 | 1040 | 491 | 402 | 230 | 221 | | 3 | 351 | 325 | 393 | 450 | 1050 | 861 | 2310 | 1210 | 475 | 712 | 235 | 230 | | 4 | 335 | 321 | 372 | 424 | 994 | 915 | 1910 | 1340 | 464 | 1020 | 263 | 221 | | 5 | 330 | 312 | 358 | 349 | 893 | 671 | 1640 | 1520 | 596 | 685 | 238 | 207 | | 6 | 332 | 304 | 350 | 447 | 865 | 651 | 1470 | 1300 | 1160 | 580 | 205 | 201 | | 7 | 328 | 298 | 352 | 588 | 1140 | 649 | 1330 | 1120 | 1180 | 448 | 187 | 171 | | 8 | 319 | 295 | 365 | 499 | 1600 | 628 | 1230 | 1020 | 917 | 389 | 175 | 154 | | 9 | 308 | 295 | 390 | 386 | 1350 | 621 | 1200 | 932 | 669 | 404 | 164 | 144 | | 10 | 304 | 292 | 411 | 534 | 1220 | 626 | 1480 | 863 | 585 | 368 | 158 | 135 | | 11 | 305 | 290 | 1110 | 719 | 1180 | 610 | 1360 | 809 | 526 | 348 | 153 | 124 | | 12 | 314 | 290 | 1170 | 772 | 1090 | 596 | 1180 | 754 | 481 | 374 | 153 | 116 | | 13 | 339 | 287 | 845 | 654 | 1010 | 766 | 1140 | 794 | 457 | 362 | 152 | 111 | | 14 | 389 | 284 | 971 | 571 | 943 | 1120 | 1190 | 1190 | 568 | 434 | 149 | 110 | | 15 | 1090 | 283 | 828 | 528 | 890 | 916 | 1140 | 970 | 602 | 528 | 145 | 143 | | 16 | 672 | 283 | 690 | 503 | 860 | 869 | 1060 | 789 | 495 | 457 | 245 | 276 | | 17 | 475 | 284 | 634 | 476 | 822 | 5720 | 997 | 722 | 441 | 374 | 299 | 389 | | 18 | 413 | 285 | 1370 | 477 | 775 | 11900 | 1130 | 785 | 409 | 361 | 272 | 293 | | 19 | 394 | 285 | 1460 | 1030 | 738 | 5890 | 1110 | 950 | 388 | e360 | 233 | 231 | | 20 | 383 | 293 | 1030 | 4610 | 733 | 3550 | 1020 | 781 | 375 | e340 | 251 | 210 | | 21 | 378 | 289 | 843 | 2510 | 756 | 2870 | 957 | 711 | 395 | e320 | 253 | 225 | | 22 | 372 | 280 | 731 | 1790 | 727 | 2320 | 927 | 683 | 358 | e300 | 219 | 294 | | 23 | 364 | 280 | 672 | 6170 | 680 | 1900 | 872 | 658 | 337 | e400 | 181 | 794 | | 24 | 357 | 299 | 718 | 9290 | 652 | 1660 | 812 | 627 | 332 | 487 | 179 | 665 | | 25 | 358 | 489 | 751 | 8330 | 632 | 1480 | 1020 | 596 | 342 | 532 | 202 | 390 | | 26
27
28
29
30
31 | 351
331
321
322
323
323 | 907
539
426
391
377 | 634
581
532
565
506
439 | 4860
3110
2320
1880
1610
1420 | 633
628
591
 | 1370
1550
1370
1220
1470
3240 | 1100
940
897
888
824 | 565
564
806
711
576
546 | 345
486
729
783
584 | 539
415
368
315
283
258 | 279
418
479
353
284
240 | 757
3810
3090
1250
801 | | TOTAL
MEAN
MAX
MIN
MED
CFSM
IN. | 11911
384.2
1090
304
351
0.48
0.55 | 10228
340.9
907
280
295
0.42
0.47 | 1460 | 349
654 | 25882
924.4
1600
591
877
1.15 | 59161
1908
11900
555
1120
2.37
2.73 | 010 | 26838
865.7
1520
546
794
1.08
1.24 | 16491
549.7
1180
332
489
0.68
0.76 | 13629
439.6
1020
258
400
0.55
0.63 | 7237
233.5
479
145
233
0.29
0.33 | 15996
533.2
3810
110
227
0.66
0.74 | e Estimated ### 03465500 NOLICHUCKY RIVER AT
EMBREEVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN
(WY) | 801.4
2630
1930
246
1954 | 996.8
4720
1978
294
1940 | 1268
3073
1962
353
1940 | 1706
4020
1995
382
1940 | 2035
4494
1957
635
1941 | 2339
5102
1963
649
1988 | 2008
4169
1983
699
1986 | 1560
3171
1984
586
2001 | 1116
3196
1992
376
1988 | 933.9
2525
1949
351
1988 | 912.9
4876
1940
182
1925 | | 754.3
2648
1928
187
1925 | |------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------| | SUMMARY | STATIST | ICS | FOR 2 | 2001 CALE | IDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1920 | - | 2002 | | | | | | 340194
932.0 | | | 306316
839.2 | | | 1364
1948
694 | | | 1974
1988 | | HIGHEST | DAILY M | EAN | | 9750 | Aug 13 | | 11900 | Mar 18 | | 50800 | Nov | 6 | 1977 | | | DAILY ME | AN
Y MINIMUM | | 280
284 | Nov 22
Nov 13 | | 110
126 | Sep 14
Sep 9 | | 88
121 | Sep
Sep | | 1925
1925 | | | SEVEN-DA
1 PEAK FL | | | 204 | NOV 13 | | 15000 | Mar 17 | | a110000 | Nov | | 1977 | | | 1 PEAK ST | | | | | | 6.34 | | | 21.52 | Nov | | 1977 | | | TANEOUS L | | | | | | b109 | Sep 13 | | c85 | Sep | 8 | 1925 | | | RUNOFF (| | | 1.16 | | | 1.04 | | | 1.70 | | | | | | RUNOFF (| | | 15.72 | 2 | | 14.16 | | | 23.03 | | | | | | CENT EXCE | | | 1720 | | | 1390 | | | 2550 | | | | | | CENT EXCE | | | 636
329 | | | 539
239 | | | 992
393 | | | | | JU PERC | PENI FYCE | 正 いっ | | 329 | | | 439 | | | 293 | | | | From rating curve extended above $48,000 \text{ ft}^3/\text{s}$ on basis of contracted opening and slope-area measurements of peak flow. Also occurred on Sept. 14. Also occurred on Sept. 9, 1925. ### 03466208 BIG LIMESTONE CREEK NEAR LIMESTONE, TN LOCATION.--Lat $36^{\circ}12^{\circ}21^{\circ}$, long $82^{\circ}39^{\circ}02^{\circ}$, Greene County, Hydrologic Unit 06010108, on right bank, 0.6 mi above confluence with Nolichucky River, 1.8 mi southwest of Limestone, and at mile 0.6. DRAINAGE AREA.--79.0 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1996 to February 2000, August 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,340 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR PERIOD.--Maximum discharge, 10,400 ft³/s, Aug. 4, 2001, gage height, 12.33 ft minimum, 8.6 ft³/s, Sept. 18, 2002. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,540 ft³/s, Mar. 18, gage height, 5.20 ft; minimum discharge, 8.6 ft³/s, Sept. 18. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | DAII | LY MEAN V | ALUES | | | | | | |--|---|--|---|--|--|---|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
52
52
49
46 | 36
36
35
35
34 | 28
27
27
27
27 | 29
37
26
25
25 | 114
107
103
99
93 | 52
53
54
51
49 | 135
115
108
102
98 | 70
67
76
64
57 | 36
35
38
37
39 | 26
22
23
28
22 | 13
13
13
12
12 | 14
14
13
13 | | 6
7
8
9
10 | 49
49
46
46
45 | 34
34
33
33
32 | 27
29
31
34
36 | 26
27
25
25
25 | 92
103
110
98
93 | 49
48
47
47
46 | 94
92
90
91
91 | 50
48
65
52
51 | 40
42
36
38
37 | 21
20
19
19 | 12
11
11
11
11 | 12
12
12
12
11 | | 11
12
13
14
15 | 43
43
43
40
42 | 32
32
31
31
31 | 65
40
74
69
44 | 27
25
24
24
24 | 88
83
81
80
77 | 45
46
48
47
45 | 83
82
82
81
79 | 51
46
53
58
48 | 27
33
30
36
32 | 19
18
20
23
22 | 10
10
9.9
10 | 11
10
9.7
9.9 | | 16
17
18
19
20 | 41
40
41
40
40 | 31
31
32
31
31 | 38
40
68
50
42 | 23
23
24
79
144 | 75
73
71
70
70 | 48
329
1080
294
203 | 78
75
75
74
72 | 45
43
47
43
41 | 31
26
25
24
23 | 20
18
18
19
26 | 14
14
13
13 | 11
11
9.8
9.6 | | 21
22
23
24
25 | 39
39
38
37
38 | 30
29
30
32
32 | 37
36
35
37
33 | 88
72
338
295
310 | 69
66
65
59
58 | 183
164
155
149
142 | 73
74
73
72
84 | 40
39
38
37
36 | 23
22
22
22
22 | 19
16
16
16
18 | 13
12
12
14
14 | 12
17
20
15
13 | | 26
27
28
29
30
31 | 37
35
36
36
36
36 | 30
29
29
28
33 | 32
31
30
29
28
27 | 184
160
148
136
127
119 | 57
54
53
 | 142
136
129
123
122
137 | 72
66
70
69
58 | 34
33
34
33
33
32 | 22
29
53
35
26 | 19
15
14
14
13
13 | 28
48
18
16
15 | 28
28
20
17
16 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1306
42.13
52
35
0.53
0.61 | 957
31.90
36
28
0.40
0.45 | 1178
38.00
74
27
0.48
0.55 | 2664
85.94
338
23
1.09
1.25 | 2261
80.75
114
53
1.02
1.06 | 4263
137.5
1080
45
1.74
2.01 | 2508
83.60
135
58
1.06
1.18 | 1464
47.23
76
32
0.60
0.69 | 941
31.37
53
22
0.40
0.44 | 595
19.19
28
13
0.24
0.28 | 447.9
14.45
48
9.9
0.18
0.21 | 414.0
13.80
28
9.6
0.17
0.19 | ### 03466208 BIG LIMESTONE CREEK NEAR LIMESTONE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2002, BY WATER YEAR (WY) | MEAN 27.37 31.31
MAX 42.1 67.5
(WY) 2002 1997
MIN 16.0 19.0
(WY) 2000 2000 | 45.29 78.23
127 172
1997 1997
17.1 26.7
2000 2000 | 100.2
175
1997
41.6
2000 | 133.6
264
1997
93.2
2001 | 108.0
165
1998
73.9
1999 | 85.30
137
1998
39.7
2001 | 61.21
104
1998
31.4
2002 | 57.80
93.0
1998
19.2
2002 | 69.95
242
2001
14.4
2002 | 35.17
82.2
2001
13.8
2002 | |--|---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---|--------------------------------------|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALE | NDAR YEAR | F | OR 2002 WAT | TER YEAR | | WATER YEARS | 1996 - | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 26145
71.6
3790
14
15
0.9
12.3
117
43
26 | Aug 4
Jan 6
Jan 12 | | 18998.9
52.05
1080
9.6
10
1540
5.20
8.6
0.66
8.95
98
36
13 | Mar 18
Sep 19
Sep 13
Mar 18
Mar 18
Sep 18 | | 68.88
106
29.0
3790
9.6
10
a10400
12.33
8.6
0.87
11.85
135
46
18 | Sep 1:
Sep 1:
Aug 4 | 3 2002
4 2001 | a From rating curve extended above $3,400~{\rm ft}^3/{\rm s}$ on basis of contracted-opening measurements of peak flow. ### 03466208 BIG LIMESTONE CREEK NEAR LIMESTONE, TN--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--March 1996 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
FIELD
WATER
UNFLTRD
(NTU)
(61028) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) |
CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | |---|--|---|--|--|--|--|---|---|--|---|--|--|--| | NOV 20 | 1445 | 21 | 434 | 8.2 | 11.5 | 726 | | 12.4 | 120 | 48 | | 250 | 205 | | DEC 11 | 1130 | 53 | 464 | 8.2 | 9.5 | 732 | 24 | 10.0 | 91 | E28000 | | 243 | 199 | | JAN
22 | 1500 | 50 | 464 | 8.3 | 7.0 | 732 | 10 | 12.2 | 104 | 390 | | 235 | 199 | | FEB | | | | | | | | | | | | | | | 22
MAR | 1430 | 43 | 455 | 8.4 | 8.0 | 728 | 4.1 | 11.6 | 103 | 380 | 5 | 244 | 210 | | 21
APR | 1315 | 155 | 431 | 8.2 | 13.5 | 727 | 36 | 10.8 | 109 | 2400 | | 215 | 176 | | 18
MAY | 1445 | 55 | 430 | 8.4 | 21.0 | 727 | 6.4 | 10.4 | 122 | 150 | 4 | 216 | 183 | | 29
JUN | 1330 | 24 | 449 | 8.2 | 20.5 | 725 | 23 | 10.2 | 120 | 700 | | 260 | 213 | | 20
JUL | 1430 | 16 | 420 | 8.4 | 22.5 | 733 | 20 | 9.3 | 112 | 470 | | 251 | 206 | | 25
AUG | 1500 | 12 | 427 | 8.3 | 24.0 | 734 | 32 | 8.2 | 101 | 700 | | 257 | 211 | | 08
SEP | 1230 | 8.6 | 442 | 8.3 | 22.5 | 728 | 22 | 8.9 | 108 | 530 | | 246 | 202 | | 04 | 1500 | 9.2 | 434 | 8.3 | 24.0 | 725 | 16 | 8.7 | 109 | 680 | | 248 | 204 | | | | | | | | | | | | | | | | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | | NOV 20 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P) | CHLOR,
WATER,
DISS,
REC,
(UG/L) | CHLOR,
WATER
FLTRD
REC
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | | NOV
20
DEC
11 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | | NOV
20
DEC
11
JAN
22 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | | NOV 20 DEC 111 JAN 22 FEB 22 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
1.34 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
1.35 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
<.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
1.34
1.66
2.26 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.35 1.69 2.27 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .12 E.03 | GEN, AM-
MONTA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.024
.076 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.13 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.026 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4
17.7
9.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87
11.2
7.64 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
1.34
1.66
2.26
2.19 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 .008 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
1.35
1.69
2.27 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .12 E.03 <.04 | GEN, AM-
MONTA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.23
.84
.42
.25 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5
2.7 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.024
.076
.051 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.13
.07 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002

<.004 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.026
 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4
17.7
9.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87
11.2
7.64
8.71 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
1.34
1.66
2.26
2.19 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 .008 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.35 1.69 2.27 2.20 2.75 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .12 E.03 <.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .23 .84 .42 .25 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5
2.7
2.4
3.2 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.024
.076
.051
.020 | PHOS-
PHATE,
DIS-
SOLVED (MG/L
AS P) (00671)
<.02
.13
.07 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002

<.004 | CHLOR, WATER FLTRD REC (UG/L) (49260) <.004 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.026

.022 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN 20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4
17.7
9.5
11.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87
11.2
7.64
8.71
6.00 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.34 1.66 2.26 2.19 2.74 1.82 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 .008 .010 .018 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.35 1.69 2.27 2.20 2.75 1.84 | GEN, AMMONIA DIS- SOLVED
(MG/L AS N) (00608) <.04 .12 E.03 <.04 E.03 <.04 | GEN, AM-
MONTA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.23
.84
.42
.25
.47 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5
2.7
2.4
3.2
2.1 | PHORUS TOTAL (MG/L AS P) (00665) .024 .076 .051 .020 .068 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.13
.07
.03
.07 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.026

.022

.025
.027 | | NOV 20 DEC 111 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4
17.7
9.5
11.3
8.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
6.32
8.87
11.2
7.64
8.71
6.00
6.65 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.34 1.66 2.26 2.19 2.74 1.82 1.68 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 .008 .010 .018 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.35 1.69 2.27 2.20 2.75 1.84 1.70 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .12 E.03 <.04 E.03 <.04 <.04 | GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) (00625) .23 .84 .42 .25 .47 .27 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5
2.7
2.4
3.2
2.1 | PHORUS TOTAL (MG/L AS P) (00665) .024 .076 .051 .020 .068 .058 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.13
.07
.03
.07 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.026

.022

.025
.027 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN 20 JUL | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
8.8
13.4
17.7
9.5
11.3
8.2
8.2
8.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.32
8.87
11.2
7.64
8.71
6.00
6.65
6.33 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.34 1.66 2.26 2.19 2.74 1.82 1.68 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .008 .026 .013 .008 .010 .018 .019 E.006 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.35 1.69 2.27 2.20 2.75 1.84 1.70 1.25 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .12 E.03 <.04 E.03 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .23 .84 .42 .25 .47 .27 .35 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.6
2.5
2.7
2.4
3.2
2.1
2.0 | PHORUS TOTAL (MG/L AS P) (00665) .024 .076 .051 .020 .068 .058 .097 | PHOS-
PHATE,
DIS-
SOLVED (MG/L
AS P) (00671)
<.02
.13
.07
.03
.07
.03 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (39632) .026022025 .027040 | ### 03466208 BIG LIMESTONE CREEK NEAR LIMESTONE, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | |---|--|---|---|---|--|---|--|---|--|--|--|--
--| | NOV | | | | | | | | | | | | | | | 20
DEC | <.005 | <.002 | <.005 | <.018 | E.035 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.004 | <.003 | | 11
JAN | | | | | | | | | | | | | | | 22 | <.005 | <.002 | <.005 | <.018 | E.031 | .009 | <.005 | <.003 | <.004 | <.027 | <.006 | .024 | <.003 | | FEB 22 | | | | | | | | | | | | | | | MAR
21 | <.005 | <.002 | <.005 | <.018 | E.015 | E.005 | <.005 | <.003 | <.004 | <.027 | <.006 | .013 | <.003 | | APR
18 | <.005 | <.002 | <.005 | <.018 | E.025 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.011 | <.003 | | MAY | | | | | | | | | | | | | | | 29
JUN | | | | | | | | | | | | | | | 20
JUL | <.005 | <.002 | <.005 | <.018 | E.049 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.011 | <.003 | | 25
AUG | <.005 | <.002 | <.005 | <.018 | E.026 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | .021 | <.003 | | 08
SEP | <.005 | <.002 | <.005 | <.018 | E.028 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | .019 | <.003 | | 04 | <.005 | <.002 | <.005 | <.018 | E.033 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | .015 | <.003 | | | | | | | | | | | | | | | | | Date | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV | THION,
DIS-
SOLVED
(UG/L)
(39542) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV
20
DEC | THION,
DIS-
SOLVED
(UG/L)
(39542) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV 20 | THION,
DIS-
SOLVED
(UG/L)
(39542) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV
20
DEC
11
JAN
22 | THION,
DIS-
SOLVED
(UG/L)
(39542) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV
20
DEC
11
JAN
22
FEB
22 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674)
<.020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007

<.010 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <-020 <.020 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ETHYL
ANTLINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)
<.002 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <-02 <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010

<.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01

<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010

<.010 | BARYL
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041

<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <020 <020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003

<.003 | ETHYL
ANTLINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)
<.002

<.006 | FOTON WATER FLTRD
0.7 U GF, REC (UG/L) (82677) <-02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009

<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005

<.005 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002

<.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007

<.010 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01

<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005

<.005 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010

<.010 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <-020 <-020 <-020 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003

<.003 | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <-02 <.02 <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009

<.009 | PROP
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82672)
<.005

<.005 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002

<.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005

<.005
<.005 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010

<.010

<.010 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) (.020 (. | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003

<.003

<.003
<.003 | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 <.006 <.006 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009

<.009

<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005

<.005

<.005
<.005 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002

<.002

<.002
<.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN 20 JUL | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005

<.005

E.004 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <-041 <-041 <-041 E.009 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) (.003 (. | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 <.006 <.006 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 | PROP
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82672)
<.005

<.005

<.005

<.005 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 | | NOV 20 DEC 11 JAN 22 FEB 22 MAR 21 APR 18 MAY 29 JUN 20 JUL 25 AUG | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 <.010 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005

<.005

E.004
<.005 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | BARYL WATER FITTED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041
<.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 - | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) (.003 (. | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 <.006 <.006 <.006 <.006 <.006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </002 </00</td | | NOV
20
DEC
11
JAN
22
FEB
22
MAR
21
APR
18
MAY
29
JUN
20
JUL
25 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011

<.005

<.005

E.004 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <-041 <-041 <-041 E.009 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 <- 020 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 <.006 <.006 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 | PROP
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82672)
<.005

<.005

<.005

<.005 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 | ### 03466208 BIG LIMESTONE CREEK NEAR LIMESTONE, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | |-----------|---|---|--|--|---|---|---|--|--|---|--|--|---| | NOV | | | | | | | | | | | | | | | 20
DEC | <.035 | <.050 | <.006 | <.002 | <.007 | <.002 | <.010 |
<.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | 11 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 22
FEB | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | 22 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 21 | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | | APR | | | | | | | | | | | | | | | 18
MAY | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | 29 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 20 | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | | JUL | 025 | 0.50 | 005 | 000 | 005 | 004 | 000 | 006 | 011 | 004 | 044 | 0.0 | 00 | | 25
AUG | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | 08 | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | SEP | 1.055 | | | | | | | | | 1.001 | | | | | 04 | <.035 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | | | | | | | | | | | | | | | | | Date | FLTRD
0.7 U
GF, REC
(UG/L) | FLTRD
0.7 U
GF, REC
(UG/L) | LATE WATER FLTRD 0.7 U GF, REC (UG/L) | ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U | SUS-
PENDED
(MG/L) | |-----------|-------------------------------------|-------------------------------------|---------------------------------------|---|-------------------------|--------------------------| | NOV 20 | <.034 | < 02 | < 002 | < 009 | < 005 | 6.2 | | DEC | √.034 | 1.02 | 1.002 | V.005 | 1.005 | 0.2 | | 11
JAN | | | | | | 15 | | 22 | <.034 | <.02 | <.002 | <.009 | <.005 | 13 | | FEB 22 | | | | | | 29 | | MAR
21 | <.034 | <.02 | <.002 | <.009 | <.005 | 111 | | | <.034 | <.02 | <.002 | <.009 | <.005 | 111 | | MAY
29 | | | | | | 80 | | JUN
20 | <.034 | <.02 | <.002 | <.009 | <.005 | 26 | | | <.034 | <.02 | <.002 | <.009 | <.005 | 31 | | AUG
08 | <.034 | <.02 | <.002 | <.009 | <.005 | 19 | | SEP
04 | <.034 | <.02 | <.002 | <.009 | <.005 | 20 | | | | | | | | | THIS PAGE IS INTENTIONALLY BLANK ### 03467609 NOLICHUCKY RIVER NEAR LOWLAND, TN $\label{location.--Lat 36^07^34", long 83^010^31", Cocke County, Hydrologic Unit 06010108, on left bank at Jones Bridge on Tennessee \\ {\tt Highway 160, 2.85 mi southeast of Lowland, and at river mile 10.3.}$ DRAINAGE AREA. -- 1,687 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --Operated by Tennessee Valley Authority as stage-discharge site from March 1990 to April 2001. Not published by the USGS. Re-established as stage discharge recording station by USGS personnel October 2001 to September 2002. Operated as a water-quality site from March 1996 to February 1998 (destroyed by flood of February 1998). Re-established November 1998, discontinued as water quality site October 2000. GAGE.--Electronic data logger. REMARKS.--Records good except for estimated daily discharges for October 1 and Jan. 10-23, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26,500 ft³/s, Mar. 18, gage height 21.72 ft; minimum discharge, 208 ft³/s, Sept. 13 15-16 | | | DISCHA | RGE, CUBI | C FEET PE | | , WATER ' | YEAR OCTOBER
VALUES | 2001 TO | SEPTEMBER | 2002 | | | |----------------------------------|--|----------------------------------|--|---|--------------------------------------|--|------------------------------|--|------------------------------------|--|---|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e720
701
681
666
650 | 534
546
552
536
527 | 614
580
658
628
580 | 760
681
656
706
727 | 2610
2410
2180
2050
1920 | 1140
1100
1100
1250
1470 | 5350
4030
3250 | 1440
1530
2110
2060
2080 | 848
807
768
750
732 | 867
707
610
678
1220 | 414
390
372
339
331 | 455
391
372
346
330 | | 6
7
8
9
10 | 660
642
622
617
598 | 530
515
511
510
519 | 557
560
579
585
635 | 661
672
819
831
e700 | 1800
1840
2270
2750
2380 | 1220
1130
1150
1130
1090 | 2230
2070
1970 | 2080
1810
1650
1680
1520 | 752
1320
1490
1260
965 | 968
783
669
599
590 | 363
339
305
289
294 | 320
311
292
272
259 | | 11
12
13
14
15 | 586
584
588
583
600 | 504
502
504
498
494 | 816
1220
1970
1720
1560 | e900
e1200
e1300
e1000
e900 | 2180
2070
1950
1830
1740 | 1080
1080
1070
1180
1540 | 2000
1820
1760 | 1420
1320
1360
1760
1810 | 855
767
732
738
762 | 625
547
538
601
603 | 308
281
280
259
297 | 242
234
225
226
225 | | 16
17
18
19
20 | 1110
1030
771
682
649 | 497
504
486
482
500 | 1280
1120
1390
1930
2080 | e800
e700
e600
e1000
e2500 | 1660
1570
1510
1460
1430 | 1450
4700
20400
22300
11800 | 1650
1560
1640 | 1490
1260
1220
1200
1340 | 833
764
689
641
609 | 687
702
601
525
540 | 316
318
363
434
445 | 212
252
389
468
384 | | 21
22
23
24
25 | 627
609
594
584
606 | 500
496
496
506
503 | 1560
1310
1130
1090
1110 | e4500
e6000
e8000
17200
17600 | 1420
1420
1390
1280
1250 | 6820
4750
3680
3110
2780 | 1450
1380
1330 | 1220
1110
1070
1050
1010 | 575
560
559
522
508 | 509
476
485
1210
765 | 409
412
418
390
369 | 373
397
426
629
958 | | 26
27
28
29
30
31 | 598
582
544
530
540
537 | 521
1030
872
693
649 | 1120
1020
936
884
844
828 | 14100
7980
5110
3780
3310
2860 | 1220
1190
1160
 | 2540
2420
2480
2270
2200
3360 | 1560
1370
1410
1350 | 960
917
884
1050
1020
893 | 500
517
575
898
966 | 972
848
647
535
501
445 | 406
681
917
1040
730
561 | 893
981
3810
2860
1480 | | TOTAL
MEAN
MAX
MIN | 20091
648.1
1110
530 | 16517
550.6
1030
482 | 32894
1061
2080
557 | 108553
3502
17600
600 | 49940
1784
2750
1160 | 114790
3703
22300
1070 | 2118
5350 | 43324
1398
2110
884 | 23262
775.4
1490
500 | 21053
679.1
1220
445 | 13070
421.6
1040
259 | 19012
633.7
3810
212 | e Estimated TENNESSEE RIVER BASIN 03467609 NOLICHUCKY RIVER NEAR LOWLAND, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2002, BY WATER YEAR (WY) | MEAN
MAX | 651.3
944
1997 | 895.1
1787
1997 | 1372
3191
1997 | 2813
4077
1998 | 3057
5804
1998 | 3656
6211
1997 | 3128
5946
1998 | 2551
4148
1998 | 1623
2405
1998 | 1388
2094
1999 | 1063
1900
1996 |) | 684.9
1005
1996 | |-------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----|-----------------------| | (WY)
MIN | 458 | 535 | 653 | 1268 | 1784 | 2515 | 1673 | 1398 | 775 | 679 | 422 | | 477 | | (WY) | 2001 | 1999 | 2001 | 2001 | 2002 | 2000 | 1999 | 2002 | 2002 | 2002 | 2002 | | 1999 | | (**±) | 2001 | 1000 | 2001 | 2001 | 2002 | 2000 | 1000 | 2002 | 2002 | 2002 | 2002 | • | 1000 | | SUMMARY | STATIST | ICS | FOR 2 | 2001 CALE | NDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1996 | 5 - | 2002 | | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 332566 | | | 526056 | | | | | | | | ANNUAL | MEAN | | | 1576 | | | 1441 | | | 1952 | | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 2643 | | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | 1441 | | | 2002 | | HIGHEST | DAILY M | EAN | | 9270 | Feb 17 | | 22300 | Mar 19 | | 22900 | Jan | 9 | 1998 | | LOWEST | DAILY ME | AN | | 471 | Jan 12 | | 212 | Sep 16 | | 212 | Sep | 16 | 2002 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 494 | Nov 14 | | 231 | Sep 11 | | 231 | Sep | 11 | 2002 | | MAXIMUM | I PEAK FL | WO | | | | | 26500 | Mar 18 | | 26500 | Mar | 18 | 2002 | | MAXIMUM | I PEAK ST | 'AGE | | | | | 21.72 | Mar 18 | | 21.72 | Mar | 18 | 2002 | | INSTANT | ANEOUS L | OW FLOW | | | | | a208 | Sep 13 | | a208 | Sep | 13 | 2002 | | 10 PERC | ENT EXCE | EDS | | 3410 | | | 2390 | = | | 3910 | _ | | | | 50 PERC | ENT EXCE | EDS | | 986 | | | 844 | | | 1310 | | | | | 90 PERC | ENT EXCE | EDS | | 516 | | | 390 | | | 517 | | | | a Also occurred Sept. 15, 16, 2002. ### 03467609 NOLICHUCKY RIVER NEAR LOWLAND, TN ### WATER-QUALITY RECORDS DRAINAGE AREA.--1,687 mi². PERIOD OF RECORD.--March 1996 to February 1998 (destroyed by flood of February 1998). Re-established November 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) |
PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
FIELD
WATER
UNFLTRD
(NTU)
(61028) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | |---|--|---|---|--|--|---|---|--|--|--|---|--|--| | NOV 20 | 1130 | 484 | 235 | 8.1 | 16.0 | 739 | | 10.8 | 113 | E11 | | 114 | 93 | | JAN 22 | 1100 | 3350 | 141 | 7.6 | 5.5 | 745 | 75 | 11.5 | 93 | 1400 | | 45 | 37 | | FEB 22 | 1045 | 1300 | 220 | 8.2 | 8.0 | 739 | 2.0 | 10.7 | 93 | E15 | | 98 | 80 | | MAR | | | | | | | | | | | | | | | 20
APR | 1300 | 11300 | 142 | 7.6 | 13.5 | 730 | 94 | 9.0 | 90 | 1800 | | 55 | 45 | | 18
MAY | 1030 | 1600 | 191 | 8.4 | 20.5 | 738 | 9.2 | 8.0 | 92 | E19 | | 85 | 70 | | 30
JUN | 1400 | 1080 | 194 | 8.7 | 24.0 | 731 | 7.2 | 11.1 | 138 | E11 | 2 | 100 | 86 | | 20 | 1100 | 601 | 199 | 8.1 | 24.5 | 739 | 14 | 7.8 | 96 | E32 | | 96 | 79 | | JUL
25 | 1115 | 746 | 239 | 7.8 | 26.0 | 735 | 120 | 7.4 | 95 | 2400 | | 106 | 87 | | SEP
04 | 1030 | 352 | 207 | 8.2 | 27.0 | 736 | 15 | 6.9 | 90 | 42 | | 87 | 71 | | | | | | | | | | | | | | | | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | | NOV | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | | NOV
20
JAN | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | | NOV
20
JAN
22
FEB | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | | NOV
20
JAN
22
FEB
22 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | | NOV
20
JAN
22
FEB
22
MAR
20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7.61
6.82 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 E.006 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.012 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
E.007 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
10.8
13.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7.61
6.82
6.28 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 E.006 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.22
.77 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.54
1.7 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.012
.081 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 .03 <.02 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002
<.004 | CHLOR,
WATER
FLTR
REC
(UG/L)
(49260)
<.004
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
E.007 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005
<.005 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18
MAY
30 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
10.8
13.2
12.7 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7.61
6.82
6.28
3.47 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 E.006 E.004 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .32 .96 .76 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .04 <.04 E.02 | GEN, AM-
MONITA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.22
.77
.16 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.54
1.7
.92 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.012
.081
.005 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.03
<.02 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002
<.004 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)
<.004
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
E.007
.008 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005
<.005 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18
MAY
30
JUN
20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
10.8
13.2
12.7
9.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7.61
6.82
6.28
3.47
4.06 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 E.006 E.004 E.006 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .32 .96 .76 .65 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .04 <.04 E.02 <.04 | GEN, AM-
MONITA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.22
.77
.16
.80 |
GEN,
TOTAL
(MG/L
AS N)
(00600)
.54
1.7
.92
1.5 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.012
.081
.005
.112 | PHOS-
PHATE,
DIS-
SOLVED (MG/L
AS P)
(00671)
<.02
.03
<.02
.09
<.02 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 | CHLOR, WATER FLTRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
E.007
.008 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005
<.005

<.005
<.005 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18
MAY
30
JUN | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
10.8
13.2
12.7
9.8
10.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7.61
6.82
6.28
3.47
4.06
4.28 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.008 E.006 E.004 E.004 E.004 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .32 .96 .76 .65 .40 .29 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .04 <.04 E.02 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.22
.77
.16
.80
.24 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.54
1.7
.92
1.5
.64 | PHORUS TOTAL (MG/L AS P) (00665) .012 .081 .005 .112 .029 .030 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
.03
<.02
.09
<.02
<.02 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 | CHLOR, WATER FLTRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
E.007
.008

<.007 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005

<.005
<.005 | 03467609 NOLICHUCKY RIVER NEAR LOWLAND, TN--Continued 171 WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | |---|---|---|---|--|--|--|---|---|--|--|--|--|---| | NOV | | | | | | | | | | | | | | | 20
JAN | <.002 | <.005 | <.018 | E.007 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.002 | <.003 | <.007 | | 22 | <.002 | <.005 | <.018 | E.005 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.005 | <.003 | <.010 | | FEB 22 | | | | | | | | | | | | | | | MAR
20 | <.002 | <.005 | <.018 | <.006 | .007 | <.005 | <.003 | <.004 | <.027 | <.006 | E.005 | <.003 | <.010 | | APR
18 | <.002 | <.005 | <.018 | E.007 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.011 | <.003 | <.010 | | MAY
30 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 20
JUL | <.002 | <.005 | <.018 | E.011 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.009 | <.003 | <.010 | | 25
SEP | <.002 | <.005 | <.018 | E.027 | <.005 | <.005 | <.003 | <.004 | <.027 | .018 | .034 | <.003 | <.010 | | 04 | <.002 | <.005 | <.018 | E.008 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | .017 | <.003 | <.010 | | | | | | | | | | | | | | | | | Date | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | | NOV | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | | NOV 20 | CHLOR,
WATER,
DISS,
REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | URON WATER FLTRD 0.7 U GF, REC (UG/L) | | NOV
20
JAN
22 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | | NOV
20
JAN
22
FEB
22 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | | NOV
20
JAN
22
FEB
22
MAR
20 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
E.007 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18 |
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010
<.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01
<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
E.007 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005
<.005 | WATER
FLURD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.002 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | | NOV 20 JAN 22 FEB 22 MAR 20 APR 18 MAY 30 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01
<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011
.009
 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
E.007 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <-020 <-020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) < .002 < .006 < .006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <02 <02 <02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005
<.005 | WATER
FLIRD 0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.002 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18
MAY
30
JUN
20 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01

<.01
<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011
.009

.013 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010

<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
E.007

<.041
<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003

<.003
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) < .002 < .006 < .006 < .006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <-02 <-02 <-02 <-02 <-02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009

<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005
<.005

<.005 | WATER
FLURD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.002

<.002
<.002 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | | NOV
20
JAN
22
FEB
22
MAR
20
APR
18
MAY
30
JUN | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01
<.01

<.01 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.011
.009

.013
.013 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010

<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
E.007

<.041
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 < .020 < .020 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003

<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) < .002 < .006 < .006 < .006 < .006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <-02 <-02 <-02 <-02 <-02 <-02 <-02 <-02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009

<.009
<.009 | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) < .005 < .005 < .005 < .005 < .005 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.002

<.002
<.002 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | ### 03467609 NOLICHUCKY RIVER NEAR LOWLAND, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | WATER- | ·QUALITY D | ATA, WATE | R YEAR OC | TOBER 200 | I TO SEPI | EMBER 200 | 2 | | | | |------------------|---|--|--|---|---|---|--|--|---|--|--|---|---| | Date | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82665) | | NOV 20 | <.050 | <.006 | <.002 | <.007 | <.002 | <.010 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | <.034 | | JAN
22 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | .04 | <.034 | | FEB
22
MAR | | | | | | | | | | | | | | | 20
APR | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | .04 | <.034 | | 18 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | <.034 | | MAY
30 | | | | | | | | | | | | | | | JUN
20 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | <.034 | | JUL
25 | <.050 | <.006 | <.002 | .037 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | <.034 | | SEP
04 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | E.01 | <.034 | | | | | | | TER-
BUFOS
WATER
FLTRD | TRIAL-
LATE
WATER
FLTRD | TRI-
FLUR-
ALIN
WAT FLT | THIO-
BENCARB
WATER
FLTRD | SEDI-
MENT, | | | | | | Date | 0.7 U
GF, REC
(UG/L) | LATE WATER FLTRD 0.7 U GF, REC (UG/L) | WAT FLT
0.7 U
GF, REC
(UG/L) | | MENT,
SUS-
PENDED
(MG/L) | |------------------|----------------------------|---------------------------------------|---------------------------------------|-------|-----------------------------------| | NOV | | | | | | | 20 | <.02 | <.002 | <.009 | <.005 | 1.6 | | JAN
22
FEB | <.02 | <.002 | <.009 | <.005 | 72 | | 22 | | | | | 2.5 | | MAR
20
APR | <.02 | <.002 | <.009 | <.005 | 98 | | 18 | <.02 | <.002 | <.009 | <.005 | 10 | | MAY
30
JUN | | | | | 9.7 | | 20 | <.02 | <.002 | <.009 | <.005 | 9.5 | | JUL
25
SEP | <.02 | <.002 | <.009 | <.005 | 90 | | 04 | <.02 | <.002 | <.009 | <.005 | 16 | | | | | | | | THIS PAGE IS INTENTIONALLY BLANK ### 03469175 LITTLE PIGEON RIVER ABOVE SEVIERVILLE, TN LOCATION.--Lat $35^{\circ}51^{\circ}55^{\circ}$, long $83^{\circ}32^{\circ}01^{\circ}$, Sevier County, Hydrologic Unit 06010107, on left bank of county road, 1.2 mi downstream from East Fork, 1.2 mi upstream from West Prong, 0.8 mi east of Sevierville, and at mi 7.5. DRAINAGE AREA.-- 184 mi². PERIOD OF RECORD.--August 1988 to current year. REVISED RECORD. -- WDR TN-94-1: 1989-91 (M): 1992, 1993(P). GAGE.--Data collection platform. Datum of gage is 898.08 ft above NGVD of 1929. REMARKS.--Records good. The town of Sevierville diverts an average of about 1.5 ${\rm ft}^3/{\rm s}$ (1.0 MGD) for municipal supply above gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,600~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23
Mar 17 | 1700
1600 | 6,740
*12,200 | 10.41
*14.12 | Mar 18 | 1045 | 8,170 | 11.65 | Minimum discharge, 10 ft^3/s , Sept. 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 |
| | |----------------------------------|----------------------------------|-----------------------------|--------------------------------------|---|----------------------|---|---------------------------------|--|----------------------------|-------------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 90 | 42 | 113 | 78 | 277 | 90 | 1230 | 624 | 108 | 43 | 60 | 42 | | 2 | 83 | 42 | 83 | 83 | 247 | 93 | 778 | 536 | 102 | 50 | 57 | 39 | | 3 | 78 | 42 | 69 | 74 | 220 | 125 | 549 | 1180 | 96 | 64 | 51 | 35 | | 4 | 74 | 41 | 62 | 67 | 207 | 121 | 429 | 1520 | 94 | 92 | 45 | 34 | | 5 | 70 | 40 | 56 | 67 | 183 | 100 | 359 | 1170 | 151 | 101 | 43 | 33 | | 6 | 72 | 38 | 51 | 76 | 176 | 97 | 314 | 591 | 122 | 62 | 38 | 34 | | 7 | 77 | 38 | 52 | 85 | 245 | 93 | 282 | 418 | 119 | 47 | 36 | 28 | | 8 | 68 | 37 | 69 | 71 | 274 | 91 | 256 | 330 | 102 | 41 | 33 | 26 | | 9 | 64 | 36 | 134 | 65 | 239 | 90 | 276 | 275 | 91 | 60 | 30 | 25 | | 10 | 62 | 37 | 177 | 75 | 219 | 107 | 399 | 244 | 81 | 51 | 28 | 24 | | 11 | 59 | 40 | 405 | 119 | 213 | 96 | 311 | 218 | 75 | 60 | 27 | 21 | | 12 | 52 | 35 | 224 | 148 | 194 | 98 | 266 | 195 | 70 | 81 | 27 | 18 | | 13 | 48 | 33 | 475 | 123 | 179 | 137 | 242 | 269 | 68 | 87 | 25 | 18 | | 14 | 100 | 35 | 463 | 110 | 164 | 131 | 227 | 376 | 81 | 184 | 24 | 20 | | 15 | 140 | 35 | 323 | 103 | 152 | 120 | 218 | 240 | 85 | 168 | 28 | 30 | | 16 | 82 | 34 | 219 | 96 | 144 | 294 | 203 | 204 | 72 | 98 | 32 | 42 | | 17 | 68 | 34 | 192 | 92 | 136 | 6240 | 195 | 180 | 65 | 73 | 51 | 29 | | 18 | 60 | 35 | 607 | 96 | 126 | 6480 | 175 | 351 | 59 | 61 | 61 | 25 | | 19 | 56 | 35 | 361 | 1260 | 120 | 2000 | 181 | 329 | 56 | 62 | 52 | 28 | | 20 | 54 | 37 | 252 | 1780 | 121 | 1100 | 166 | 244 | 53 | 59 | 71 | 24 | | 21 | 54 | 43 | 196 | 729 | 141 | 1000 | 154 | 212 | 51 | 81 | 55 | 78 | | 22 | 50 | 40 | 161 | 483 | 124 | 676 | 171 | 190 | 45 | 65 | 43 | 204 | | 23 | 47 | 37 | 143 | 3410 | 115 | 519 | 159 | 171 | 43 | 103 | 37 | 256 | | 24 | 45 | 38 | 193 | 3300 | 109 | 433 | 141 | 156 | 46 | 119 | 35 | 117 | | 25 | 52 | 192 | 155 | 3350 | 105 | 370 | 311 | 143 | 50 | 266 | 41 | 80 | | 26
27
28
29
30
31 | 52
47
45
45
43
43 | 156
88
69
59
74 | 133
118
108
100
90
81 | 1490
818
544
421
350
302 | 103
102
93
 | 334
371
307
274
620
1550 | 265
210
194
219
179 | 150
186
165
140
125
116 | 62
60
54
50
47 | 255
146
106
94
81
70 | 58
74
94
71
55
47 | 245
595
482
247
148 | | TOTAL | 1980 | 1542 | 5865 | 19865 | 4728 | 24157 | 9059 | 11248 | 2258 | 2930 | 1429 | 3027 | | MEAN | 63.87 | 51.40 | 189.2 | 640.8 | 168.9 | 779.3 | 302.0 | 362.8 | 75.27 | 94.52 | 46.10 | 100.9 | | MAX | 140 | 192 | 607 | 3410 | 277 | 6480 | 1230 | 1520 | 151 | 266 | 94 | 595 | | MIN | 43 | 33 | 51 | 65 | 93 | 90 | 141 | 116 | 43 | 41 | 24 | 18 | | CFSM | 0.35 | 0.28 | 1.03 | 3.48 | 0.92 | 4.24 | 1.64 | 1.97 | 0.41 | 0.51 | 0.25 | 0.55 | | IN. | 0.40 | 0.31 | 1.19 | 4.02 | 0.96 | 4.88 | 1.83 | 2.27 | 0.46 | 0.59 | 0.29 | 0.61 | ### 03469175 LITTLE PIGEON RIVER ABOVE SEVIERVILLE, TN--Continued | STATISTICS OF | ' M∩NTTHT.V I | мрам рафа | FOR | MATA | VEVDC | 1999 _ | . 2002 | RV | TATA TYPE | VEVD | (TATV) | |---------------|---------------|-----------|-----|------|-------|--------|--------|----|-----------|------|--------| | MEAN 120.8 188.8
MAX 335 374
(WY) 1990 1990
MIN 32.5 51.4
(WY) 1999 2002 | 336.8 537.4 565.9
743 873 1024
1992 1994 1994
105 245 169
2001 2001 2002 | 678.3 467.9 365.6
1426 1141 576
1994 1994 1989
301 124 151
2001 1995 2001 | 309.6 231.5 178.2 141.6 635 510 477 530 1997 1999 1996 1989 75.3 90.7 46.1 29.8 2002 1993 2002 1998 | |--|--|--|---| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1988 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 80693
221.1
2930 Feb 17
33 Nov 13
34 Nov 12
1.20
16.31
449
132
52 | 88088
241.3
6480 Mar 18
a18 Sep 12
22 Sep 8
12200 Mar 17
14.12 Mar 17
10 Sep 14
1.31
17.81
419
96
36 | 340.4 573 123 1988 10900 Mar 28 1994 a18 Sep 12 2002 20 Sep 14 1998 19700 Mar 28 1994 17.50 Mar 28 1994 10 Sep 14 2002 1.85 25.14 733 194 54 | ### a Also occurred on Sept. 13, 2002. 53 3205.9 103.4 880 4.6 2.19 2.52 356.6 11.50 26 5.1 0.24 0.28 ### 03491000 BIG CREEK NEAR ROGERSVILLE, TN LOCATION.--Lat $36^{\circ}25^{\circ}34^{\circ}$, long $82^{\circ}57^{\circ}07^{\circ}$, Hawkins County, Hydrologic Unit 06010104, on left bank 300 ft upstream from county road bridge, 3 mi northeast of Rogersville, and at mile 2.0. DRAINAGE AREA. -- 47.3 mi². 8 PERIOD OF RECORD.--April 1941 to June 1949. Occasional low-flow measurements, water years 1950-55, 1957. Annual maximum, water years 1955-57; October 1957 to current year. REVISED RECORDS. -- WSP 1436: 1945. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 1,128.9 ft above NGVD of 1929 (levels based on City of Rogersville construction plans for pumping station). Dec. 7, 1954, to Sept. 30, 1957, crest-stage gage at same site and datum. REMARKS.--Records good except for periods of estimated daily values, Dec. 1, 2, 10-18, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | : | Discharge
(ft ³ /s) | Gage | height
(ft) | | Date | Time | Ι | Discharge
(ft ³ /s) | | height
ft) | |-----------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------|----------------------------|------------------------------|----------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------| | Jan 25
Mar 17 | 0330
1645 | | 1,890
1,980 | | 5.47
5.57 | | Mar 18 | 0945 | ι | ınknown | 11 | 1.20 | | Minimum disc | harge, 1.1 | ft ³ /s, | Sept. 8, | 9, 10, 11 | , 12. | | | | | | | | | | | DISCHA | RGE, CUBIC | FEET PEF | | WATER YEA
Y MEAN VAL | | 2001 TO S | EPTEMBEF | R 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.6
5.4
5.7
5.2
4.8 | 4.2
4.0
4.1
4.9
5.3 | e8.0
e7.0
6.4
5.9
5.4 | 5.2
5.1
4.9
4.7
4.6 | 46
39
34
31
27 | 11
12
14
14
12 | 199
124
94
74
61 | 17
20
53
37
29 | 9.8
9.5
9.5
9.4
8.4 | 6.8
8.2
6.6
7.6
9.9 | 7.0
5.0
4.0
3.3
2.8 | 2.0
2.0
1.9
1.8
1.5 | | 6
7 | 5.7
5.4 | 5.0
5.1 | 5.1
5.2 | 5.3
7.1 | 26
36 | 11
11 | 54
48 | 23
22 | 8.2
8.1 | 7.0
6.0 | 2.5
2.1 | 1.6
1.5 | 11 43 24 11 889 28.68 128 0.61 0.70 11 212.0 7.067 10 4.3 0.15 0.17 6.9 91.4 7.0 1.5 0.06 0.07 2.948 252.1 8.403 83 1.1 0.18 0.20 286.8 9.252 62 4.0 0.20 0.23 182 2710 90.33 10 1.91 2.13 1256 199 0.89 0.99 16 41.87 662 46 12 0.50 0.52 23.64 38 156.9 5.061 10 3.6 0.11 0.12 159.3 5.310 8.0 4.0 0.11 0.13 31 TOTAL MEAN MAX MTN CFSM IN. ^{5.8} 5.8 5.1 5.1 5.7 8.6 7.6 7.7 7.5 5.3 4.5 1.9 1.7 1.2 11 42 24 34 5.8 7.4 43 33 6.8 1.2 10 5.1 e12 31 11 4.3 1.8 9.3 11 5.6 4.9 e20 28 11 36 26 6.3 4.5 1.8 1.1 4.9 12 6.6 10 4.7 13 5.1 e25 13 23 11 32 49 5.8 4.6 1.8 1.4 14 4.8 e22 21 12 30 7.6 1.6 10 128 5.6 1.5 15 10 4.8 e15 9.2 20 11 29 56 8.8 6.2 1.8 1.8 e12 7.0 4.9 8.1 19 1.9 16 16 38 5.5 1.9 7.3 4.5 4.8 e19 18 798 25 31 6.8 4.6 2.3 1.9 4.4 3.9 6.4 5.7 1.9 18 4 8 e26 16 23 37 4.1 2.8 4.8 24 100 472 32 4.1 5.6 19 15 20 4.1 4.9 16 179 16 239 21 24 5.1 6.4 4.5 2.0 21 4.1 4.8 12 71 20 171 21 21 4.9 13 2.9 2.7 22 3.9 4.8 9.5 46 17 126 20 19 4.7 8.9 2.4 4.2 23 4.0 4.9 8.7 463 15 102 19 18 4.5 14 2.2 12 5.6 4.4 7.9 25 3.9 7.2 10 880 14 72 25 15 4.3 19 2.2 4.6 26 3.9 8.0 8.9 214 13 65 23 14 5.2 19 45 27 3.9 4.2 7.8 7.9 7.2 135 13 61 18 14 5.8 10 4.4 83 7.7 28 6.9 99 12 52 8.3 4.8 19 13 30 29 4.1 6.2 6.7 78 47 19 12 10 5.8 3.9 18 ---30 4.2 6.5 6.4 63 48 16 12 8.2 4.7 2.9 12 4.1 5.8 2.3 e Estimated ### 03491000 BIG CREEK NEAR ROGERSVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN | 14.04
109
1972
3.19 | 28.76
124
1974
4.43 | 69.12
258
1992
5.06 | 103.1
331
1974
9.33 | 128.9
472
1994
23.6 | 128.6
366
1963
27.4 | 88.37
342
1998
15.4 | 56.59
206
1958
10.7 | 29.03
150
1989
7.07 | 96.5
1960
4.35 |
16.63
67.1
1942
2.45 | 11.61
58.7
1989
2.60 | |----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|-------------------------------|-------------------------------| | (WY) | 2001 | 1988 | 1966 | 1981 | 2002 | 1983 | 1986 | 1985 | 2002 | 1988 | 1988 | 1999 | | SUMMARY | Y STATIST | ICS | FOR | 2001 CALEN | DAR YEAR | | FOR 2002 WA | TER YEAR | | WATER YEARS | 1941 - | 2002 | | ANNUAL
ANNUAL | MEAN | | | 9259.9
25.37 | | | 10238.0
28.13 | | | 57.77 | | | | | r annual
Annual M | | | | | | | | | 123
20.1 | | 1994
2000 | | | T DAILY M | | | 650 | Feb 17 | | 880 | Jan 25 | | 4000 | Feb 11 | | | | DAILY ME | | | 3.6 | Oct 24 | | 1.1 | Sep 11 | | 1.1 | Sep 11 | | | | | MUMINIM YA | | 3.9 | Oct 21 | | 1.3 | Sep 7 | | 1.3 | Sep 7 | | | | M PEAK FL | | | | | | unknown | Mar 18 | | a5760 | Mar 12 | | | | M PEAK ST | | | | | | 11.20 | | | b12.21 | Apr 17 | | | INSTAN | FANEOUS L | OW FLOW | | | | | c1.1 | Sep 8 | | c1.1 | Sep 8 | 2002 | | ANNUAL | RUNOFF (| CFSM) | | 0.54 | | | 0.59 | | | 1.22 | | | | ANNUAL | RUNOFF (| INCHES) | | 7.28 | | | 8.05 | | | 16.59 | | | | 10 PERG | CENT EXCE | EDS | | 58 | | | 48 | | | 124 | | | | 50 PERG | CENT EXCE | EDS | | 9.2 | | | 8.1 | | | 22 | | | | an prp | יטאים דינאיםי | יביהכי | | 16 | | | 2.5 | | | 5.2 | | | a From rating curve extended above $3,000~{\rm ft}^3/{\rm s}$ on basis of contracted-opening measurements of peak flow. b Due to backwater from debris. c Also occurred Sept. 9, 10, 11, 12. ### 03497300 LITTLE RIVER ABOVE TOWNSEND, TN LOCATION.--Lat 35°39'52", long 83°42'41", Blount County, Hydrologic Unit 06010201, in Great Smoky Mountains National Park, on left bank along Tennessee Highway 73, 0.3 mi upstream from Rush Branch, 0.4 mi southeast of Park entrance, 2.2 mi southeast of Townsend, and at mile 35.3. DRAINAGE AREA. -- 106 mi². PERIOD OF RECORD.--October 1963 to current year. GAGE.--Data logger and crest-stage gage. Datum of gage is 1,106.92 ft above NGVD of 1929. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,100 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23
Mar 17 | 0815
1300 | 3,700
*4,300 | 6.04
*6.47 | Mar 18 | 1145 | 3,270 | 5.72 | Minimum discharge, 33 ft³/s, Sept. 13, 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE | R 2001 TO | SEPTEMBE | R 2002 | | | |----------------------------------|----------------------------|------------------------------|--|---|-----------------------|---|---------------------------------|--|----------------------------|--------------------------------------|------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 96 | 57 | 111 | 123 | 313 | 119 | 842 | 319 | 172 | 80 | 80 | 89 | | 2 | 89 | 57 | 94 | 140 | 270 | 133 | 667 | 286 | 158 | 71 | 77 | 81 | | 3 | 84 | 56 | 86 | 116 | 245 | 175 | 534 | 497 | 146 | 113 | 71 | 70 | | 4 | 79 | 55 | 81 | 105 | 229 | 147 | 432 | 900 | 156 | 195 | 63 | 62 | | 5 | 75 | 53 | 77 | 130 | 204 | 135 | 365 | 766 | 142 | 96 | 68 | 56 | | 6 | 80 | 52 | 74 | 117 | 215 | 136 | 318 | 531 | 136 | 77 | 58 | 50 | | 7 | 77 | 51 | 76 | 113 | 322 | 132 | 285 | 408 | 142 | 66 | 54 | 46 | | 8 | 70 | 50 | 90 | 99 | 288 | 128 | 260 | 334 | 118 | 67 | 49 | 43 | | 9 | 67 | 50 | 143 | 98 | 280 | 133 | 293 | 295 | 109 | 124 | 47 | 41 | | 10 | 64 | 49 | 169 | 115 | 274 | 153 | 295 | 281 | 102 | 85 | 45 | 38 | | 11 | 62 | 48 | 394 | 173 | 266 | 128 | 251 | 241 | 95 | 83 | 43 | 35 | | 12 | 61 | 48 | 253 | 151 | 245 | 173 | 233 | 215 | 88 | 90 | 43 | 35 | | 13 | 66 | 47 | 498 | 138 | 228 | 217 | 223 | 299 | 88 | 116 | 41 | 34 | | 14 | 142 | 47 | 604 | 131 | 212 | 206 | 214 | 344 | 118 | 224 | 39 | 36 | | 15 | 131 | 46 | 472 | 128 | 199 | 194 | 209 | 262 | 95 | 142 | 49 | 45 | | 16 | 89 | 46 | 344 | 121 | 190 | 233 | 198 | 234 | 83 | 104 | 113 | 58 | | 17 | 79 | 46 | 346 | 119 | 177 | 1910 | 213 | 214 | 78 | 85 | 72 | 49 | | 18 | 74 | 46 | 649 | 127 | 165 | 2300 | 186 | 424 | 74 | 78 | 107 | 49 | | 19 | 71 | 45 | 503 | 1430 | 158 | 1300 | 211 | 343 | 71 | 77 | 62 | 52 | | 20 | 70 | 54 | 376 | 1090 | 171 | 849 | 188 | 299 | 102 | 145 | 59 | 42 | | 21 | 68 | 51 | 298 | 688 | 174 | 714 | 179 | 269 | 72 | 132 | 51 | 185 | | 22 | 66 | 46 | 249 | 506 | 154 | 574 | 182 | 243 | 65 | 105 | 54 | 337 | | 23 | 65 | 45 | 237 | 2300 | 146 | 479 | 164 | 222 | 63 | 145 | 46 | 205 | | 24 | 64 | 60 | 265 | 2310 | 140 | 406 | 156 | 203 | 68 | 133 | 44 | 132 | | 25 | 87 | 201 | 215 | 2100 | 135 | 351 | 245 | 185 | 84 | 193 | 44 | 116 | | 26
27
28
29
30
31 | 69
61
60
59
58 | 139
95
82
75
110 | 197
182
171
160
145
134 | 1090
725
542
451
377
325 | 142
133
119
 | 350
351
297
274
658
1030 | 192
179
177
172
156 | 197
288
258
214
194
193 | 78
66
64
90
82 | 153
127
107
97
108
96 | 60
203
128
84
77
75 | 286
498
419
274
201 | | TOTAL | 2341 | 1907 | 7693 | 16178 | 5794 | 14385 | 8219 | 9958 | 3005 | 3514 | 2106 | 3664 | | MEAN | 75.52 | 63.57 | 248.2 | 521.9 | 206.9 | 464.0 | 274.0 | 321.2 | 100.2 | 113.4 | 67.94 | 122.1 | | MAX | 142 | 201 | 649 | 2310 | 322 | 2300 | 842 | 900 | 172 | 224 | 203 | 498 | | MIN | 58 | 45 | 74 | 98 | 119 | 119 | 156 | 185 | 63 | 66 | 39 | 34 | | CFSM | 0.71 | 0.60 | 2.34 | 4.92 | 1.95 | 4.38 | 2.58 | 3.03 | 0.94 | 1.07 | 0.64 | 1.15 | | IN. | 0.82 | 0.67 | 2.70 | 5.68 | 2.03 | 5.05 | 2.88 | 3.49 | 1.05 | 1.23 | 0.74 | 1.29 | ### 03497300 LITTLE RIVER ABOVE TOWNSEND, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN
(WY) | 121.9
373
1973
28.9
1988 | 201.9
436
1967
36.0
1988 | 330.4
725
1992
58.8
1966 | 414.7
796
1996
72.7
1981 | 444.8
857
1990
191
1978 | 513.4
1195
1994
185
1988 | 388.3
818
1998
141
1995 | 280.7
774
1984
124
1986 | 221.3
648
1989
50.4
1988 | 192.8
815
1971
63.8
1993 | 165.9
530
1966
40.5
1987 | 116.8
492
1989
31.9
1998 | |------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | SUMMAR | Y STATIST | ics | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 W | ATER YEAR | | WATER YEARS | 1964 - | 2002 | | | | | | 77055
211.1 | | | 78764
215.8 | | | 282.1
460
141 | | 1994
1988 | | | T DAILY M | | | 1760 | Jan 19 | | 2310 | Jan 24 | | 9000 | Mar 28 | 1994 | | | DAILY ME | | | 45 | Nov 19 | | 34 | Sep 13 | | 22 | Sep 15 | | | | | MUMINIM YA | | 46 | Nov 13 | | 37 | Sep 8 | | 23 | Sep 12 | | | | M PEAK FL | | | | | | 4300 | Mar 17 | | 27100 | Mar 27 | | | | M PEAK ST | | | | | | 6.4 | | | a15.75 | Mar 27 | | | | TANEOUS L | | | 4 0 | • | | b33 | | | c21 | Jan 18 | 1981 | | | RUNOFF (| | | 1.9 | | | 2.0 | | | 2.66 | | | | | RUNOFF (| | | 27.0 | 4 | | 27.6 | 4 | | 36.16 | | | | | CENT EXCE | | | 404 | | | 412 | | | 554 | | | | | CENT EXCE | | | 151 | | | 132 | | | 193 | | | | 90 PER | CENT EXCE | EDS | | 65 | | | 50 | | | 60 | | | From flood marks in gage house. Also occurred on Sept. 14. Results of freeze-up. a b c Discharge 395.7 1.47 1.70 389.9 1.45 1.51 4.80 5.54 ### 03498500 LITTLE RIVER NEAR MARYVILLE, TN LOCATION.--Lat $35^{\circ}47^{\circ}10^{\circ}$, long $83^{\circ}53^{\circ}04^{\circ}$, Blount County, Hydrologic Unit 06010201, on left bank 200 ft above bridge on U.S. Highway 411, 0.8 mi downstream from Crooked Creek, 5.0 mi east of Maryville, and at mile 17.3. DRAINAGE AREA.--269 mi². PERIOD OF RECORD. -- July 1951 to current year. GAGE.--Data-collection platform and crest-stage gage. Datum of gage is 850.00 ft above NGVD of 1929. REMARKS.--Records good except for estimated daily discharges, which are fair. Diurnal fluctuations of flow caused by small mills above station. The town of Maryville diverted an average of about $4.0~{\rm ft}^3/{\rm s}$ (2.6 MGD) for municipal supply 100 ft upstream from gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water- quality data. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Feb. 25, 1875, reached a stage of 31 ft, discharge, $50,000 \text{ ft}^3/\text{s}$, and flood of April 1, 1896, reached a stage of 26 ft, discharge, $36,000 \text{ ft}^3/\text{s}$, from reports by Tennessee Valley Authority. Discharge 0.68 0.78 182.2 0.40 0.46 108.2 0.60 0.67 161.5 Gage height EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 6,000 ft³/s and maximum (*): Gage height | Date | Tim | ne |
(ft³/s) | | (ft) | | Date | Time | | (ft ³ /s) | (| ft) | |-----------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------| | Jan 25
Mar 17 | 121
153 | | 6,140
*22,800 | | 2.44
0.83 | | Mar 18 | 1315 | | 17,000 | 18 | 3.29 | | Minimum disc | charge, 56 | ft ³ /s, S | ept. 14. | | | | | | | | | | | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YEA
Y MEAN VAI | | R 2001 TO | SEPTEMBEI | R 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 143
135
129
123
118 | 92
90
91
89
87 | 158
130
120
114
109 | 184
177
181
166
151 | 589
527
459
433
390 | 223
227
268
256
229 | 1900
1260
952
794
687 | 540
487
908
2140
1740 | 259
241
227
219
256 | 143
150
150
241
175 | 137
128
126
116
110 | 100
110
100
89
81 | | 6 | 118 | 85 | 106 | 178 | 380 | 229 | 605 | 947 | 218 | 143 | 107 | 75 | 7 77 73 e7400 e8400 e6100 2.7 --- 5.24 6.05 496.6 1.85 2.06 0.69 0.77 186.7 568.1 2.11 2.44 TOTAL MEAN MAX MTN CFSM IN. 95.57 0.36 0.40 0.42 0.49 114.3 e Estimated ### 03498500 LITTLE RIVER NEAR MARYVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2002, BY WATER YEAR (WY) | 193.7
830
1973 | 331.9
1160
1958 | 605.8
1679
1962 | 806.7
1792
1974 | 932.9
2254
1957 | 1011
2517
1994 | 753.8
1701
1994 | 496.8
1782
1984 | 376.2
1261
1989 | 318.9
1391
1971 | 249.2
867
1971 | 176.3
1019
1989 | |----------------------|--|---|---|---|--|---|---|-----------------------|--|----------------------|--| | 50.7 | 65.4 | 103 | 121 | 308 | 385 | 224 | 208 | 86.1 | 100 | 78.1 | 55.6 | | 1988 | 1988 | 1966 | 1981 | 1954 | 1988 | 1986 | 1986 | 1988 | 1952 | 1987 | 1954 | | Y STATIST | ICS | FOR : | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEAR | S 1951 - | 2002 | | TOTAL | | | 143749 | | | 165317 | | | | | | | MEAN | | | | | | 452.9 | | | 517.9 | | | | T ANNUAL | MEAN | | | | | | | | 862 | | 1994 | | ANNUAL M | EAN | | | | | | | | 220 | | 1988 | | T DAILY M | EAN | | 5160 | Feb 17 | | 11100 | Mar 18 | | 23100 | Mar 28 | 1994 | | DAILY ME | AN | | 77 | Nov 18 | | 58 | Sep 12 | | 43 | Oct 19 | | | | | | 78 | Nov 14 | | 61 | Sep 9 | | 45 | Oct 14 | | | | | | | | | | Mar 17 | Aug 27 | 1956 | | | | | | | | | | | | | | | | | | | 8 | | | 5 | CENT EXCE | EDS | | 104 | | | 83 | | | 99 | | | | | 830 1973 50.7 1988 Y STATIST TOTAL MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS L RUNOFF (RUNOFF (RUNOFF (CENT EXCE | 830 1160
1973 1958
50.7 65.4
1988 1988
Y STATISTICS | 830 1160 1679 1973 1958 1962 50.7 65.4 103 1988 1988 1966 Y STATISTICS FOR TOTAL MEAN T DAILY MEAN ANNUAL MEAN T DAILY MEAN DAILY MEAN DAILY MEAN SEVEN-DAY MINIMUM M PEAK FLOW M PEAK STAGE TANEOUS LOW FLOW RUNOFF (CFSM) RUNOFF (INCHES) CENT EXCEEDS CENT EXCEEDS | 830 1160 1679 1792 1973 1958 1962 1974 50.7 65.4 103 121 1988 1988 1966 1981 Y STATISTICS FOR 2001 CALE TOTAL 143749 MEAN 393.8 T ANNUAL MEAN ANNUAL MEAN 5160 DAILY MEAN 77 SEVEN-DAY MINIMUM 78 M PEAK FLOW MPEAK STAGE FANEOUS LOW FLOW RUNOFF (CFSM) 1.4 RUNOFF (INCHES) 19.8 CENT EXCEEDS 735 CENT EXCEEDS 248 | 830 1160 1679 1792 2254 1973 1958 1962 1974 1957 50.7 65.4 103 121 308 1988 1988 1966 1981 1954 Y STATISTICS FOR 2001 CALENDAR YEAR TOTAL 143749 MEAN 393.8 T ANNUAL MEAN ANNUAL MEAN T DAILY MEAN 5160 Feb 17 DAILY MEAN 77 Nov 18 SEVEN-DAY MINIMUM 78 Nov 14 M PEAK FLOW M PEAK STAGE TANNEOUS LOW FLOW RUNOFF (CFSM) 1.46 RUNOFF (INCHES) 19.88 CENT EXCEEDS 735 CENT EXCEEDS 735 CENT EXCEEDS 248 | 830 1160 1679 1792 2254 2517 1973 1958 1962 1974 1957 1994 50.7 65.4 103 121 308 385 1988 1988 1966 1981 1954 1988 Y STATISTICS FOR 2001 CALENDAR YEAR F TOTAL 143749 MEAN 393.8 T ANNUAL MEAN ANNUAL MEAN T DAILY MEAN 5160 Feb 17 DAILY MEAN 77 Nov 18 SEVEN-DAY MINIMUM 78 Nov 14 M PEAK FLOW M PEAK STAGE TANNEOUS LOW FLOW RUNOFF (CFSM) 1.46 RUNOFF (INCHES) 19.88 CENT EXCEEDS 735 CENT EXCEEDS 735 CENT EXCEEDS 248 | 830 1160 1679 1792 2254 2517 1701 1973 1958 1962 1974 1957 1994 1994 50.7 65.4 103 121 308 385 224 1988 1988 1966 1981 1954 1988 1986 Y STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WA TOTAL 143749 165317 MEAN 393.8 452.9 T ANNUAL MEAN ANNUAL MEAN ANNUAL MEAN 5160 Feb 17 11100 DAILY MEAN 77 Nov 18 58 SEVEN-DAY MINIMUM 78 Nov 14 61 M PEAK FLOW 22800 M PEAK STAGE FANEOUS LOW FLOW RUNOFF (CFSM) 1.46 1.66 RUNOFF (CFSM) 1.46 1.66 RUNOFF (INCHES) 19.88 22.86 CENT EXCEEDS 735 723 CENT EXCEEDS 248 202 | 830 | 830 1160 1679 1792 2254 2517 1701 1782 1261 1973 1958 1962 1974 1957 1994 1994 1984 1989 50.7 65.4 103 121 308 385 224 208 86.1 1988 1988 1966 1981 1954 1988 1986 1986 1988 Y STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR TOTAL 143749 165317 MEAN 393.8 452.9 T ANNUAL MEAN ANNUAL MEAN T DAILLY MEAN 5160 Feb 17 11100 Mar 18 DAILLY MEAN 77 Nov 18 58 Sep 12 SEVEN-DAY MINIMUM 78 Nov 14 61 Sep 9 M PEAK FLOW 22800 Mar 17 TANEOUS LOW FLOW TANEOUS LOW FLOW RUNOFF (CFSM) 1.46 1.68 RUNOFF (CFSM) 1.46 1.68 RUNOFF (INCHES) 19.88 22.86 CENT EXCEEDS 735 723 CENT EXCEEDS 248 202 | 830 | 830 1160 1679 1792 2254 2517 1701 1782 1261 1391 867 1973 1958 1962 1974 1957 1994 1994 1984 1989 1971 1971 50.7 65.4 103 121 308 385 224 208 86.1 100 78.1 1988 1988 1966 1981 1954 1988 1986 1986 1988 1952 1987 Y STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1951 - TOTAL 143749 165317 MEAN 393.8 452.9 517.9 T ANNUAL MEAN 862 ANNUAL MEAN 220 T DAILY MEAN 5160 Feb 17 11100 Mar 18 23100 Mar 28 DAILY MEAN 77 Nov 18 58 Sep 12 43 Oct 19 DAILY MEAN 78 Nov 14 61 Sep 9 45 Oct 14 M PEAK FLOW 22800 Mar 17 a42100 Mar 28 M PEAK STAGE 20.83 Mar 17 27.95 Mar 28 RUNOFF (CFSM) 1.46 1.68 1.93 RUNOFF (CFSM) 1.46 1.68 1.93 RUNOFF (CFSM) 1.46 1.68 1.93 RUNOFF (INCHES) 19.88 22.86 26.16 CENT EXCEEDS 735 723 1030 CENT EXCEEDS 248 202 311 | a From rating curve extended above $14,800~{\rm ft}^3/{\rm s}$ on basis of a contracted opening measurement and road overflow computations. ### 03498850 LITTLE RIVER NEAR ALCOA, TN
LOCATION.--Lat $35^{\circ}48'32"$, long $83^{\circ}55'36"$, Blount County, Hydrologic Unit 06010201, at Singleton Bend on left bank, 3.0 mi northeast of Alcoa, and at mile 9.7. DRAINAGE AREA.--300 mi². PERIOD OF RECORD.--October 1986 to current year. GAGE.--Water-stage recorder. Datum of gage is 814.22 ft above NGVD of 1929. REMARKS.--Records good. Diurnal fluctuations at low flow caused by small mills above station. The town of Maryville diverts an average of about $4.0~{\rm ft}^3/{\rm s}$ ($2.6~{\rm MGD}$) for municipal supply $7.6~{\rm mi}$ upstream from gage and the town of Alcoa at the gage diverts about $17.2~{\rm ft}^3/{\rm s}$ ($11.1~{\rm MGD}$). Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Maximum discharge not determined, Mar. 17, gage height 19.24 ft; minimum 34 ft^3/s, Sept. 11, 12. } \\$ | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | R 2001 TO |) SEPTEMBE | R 2002 | | | |----------------------------------|-----------------------------------|---------------------------------|--|---|---------------------------------|--|------------------------------------|--|---------------------------------|--|---------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 144
135
126
117
112 | 86
84
84
91
86 | 152
130
116
109
102 | 210
193
200
185
164 | 636
597
522
498
450 | 228
231
269
287
255 | 2010
1330
1040
862
762 | 557
602
959
1990
1790 | 276
237
214
194
264 | 98
101
112
203
148 | 121
94
94
88
75 | 97
111
101
89
79 | | 6
7
8
9
10 | 112
120
111
102
100 | 79
78
78
76
76 | 99
100
121
159
230 | 188
203
182
164
174 | 428
585
670
594
569 | 240
225
220
220
255 | 695
639
601
578
618 | 1030
794
672
589
571 | 196
212
179
149
136 | 95
78
68
69
117 | 74
62
56
70
67 | 72
66
61
50
40 | | 11
12
13
14
15 | 97
95
93
98
206 | 75
73
73
73
71 | 664
437
876
1170
797 | 209
276
243
218
206 | 542
496
466
452
413 | 227
232
346
335
314 | 553
522
501
486
474 | 517
469
578
930
624 | 124
113
111
118
140 | 82
171
174
559
358 | 57
55
52
46
38 | 36
41
49
50
53 | | 16
17
18
19
20 | 138
105
96
94
97 | 70
70
71
70
85 | 572
513
1040
810
607 | 198
190
194
1530
3820 | 387
366
339
320
321 | 409

4680
2150 | 444
446
411
408
389 | 538
485
617
622
540 | 112
99
93
86
87 | 212
160
134
130
138 | 88
169
110
108
79 | 64
77
83
86
66 | | 21
22
23
24
25 | 90
86
82
88
110 | 76
77
71
73
125 | 482
418
394
477
389 | 1430
952

6150 | 361
313
292
280
285 | 1770
1300
1100
966
862 | 363
368
343
318
478 | 497
456
413
373
334 | 97
75
71
82
91 | 219
155
190
189
222 | 62
58
63
56
57 | 131
735
485
248
182 | | 26
27
28
29
30
31 | 129
98
90
88
88
87 | 295
156
120
107
107 | 347
314
292
287
268
234 | 2950
1620
1130
904
759
674 | 268
266
241
 | 794
801
717
675
1360
3450 | 426
358
342
351
300 | 304
409
437
357
314
298 | 212
212
377
168
144 | 265
187
156
138
128
150 | 57
148
218
139
108
100 | 386
598
637
451
321 | | TOTAL
MEAN
MAX
MIN | 3334
107.5
206
82 | 2756
91.87
295
70 | 12706
409.9
1170
99 | 25516
879.9
6150
164 | 11957
427.0
670
241 | 24918
859.2
4680
220 | 17416
580.5
2010
300 | 19666
634.4
1990
298 | 4669
155.6
377
71 | 5206
167.9
559
68 | 2669
86.10
218
38 | 5545
184.8
735
36 | ### 03498850 LITTLE RIVER NEAR ALCOA, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUC | 3 | SEP | |--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|--|--------------------------------------|-------------|---------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 177.0
779
1990
43.4
1988 | 288.6
783
1990
60.6
1988 | 580.6
1624
1992
176
1988 | 877.9
1410
1996
432
1988 | 966.9
1980
1994
427
2002 | 1059
2764
1994
403
1988 | 782.4
2008
1994
295
1995 | 532.3
989
1989
199
1988 | 456.1
1335
1989
73.6
1988 | 319.9
782
1999
106
1988 | 222.3
586
1994
69.0
1987 | 5
1
) | 207.5
1123
1989
59.8
1998 | | SUMMARY | STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | I | FOR 2002 | WATER YEAR | | WATER YEARS | 1987 | 7 – | 2002 | | LOWEST
HIGHEST | | EAN
EAN | | 143653
393.6
5290
70 | Feb 17
Nov 16 | | 136358
377.
6150
36 | 7
Jan 25
Sep 11 | | 536.8
953
220
28000
28 | | | 1994
1988
1994
1988 | | MAXIMUM
MAXIMUM
INSTANT
10 PERC | SEVEN-DA
I PEAK FL
I PEAK ST.
PANEOUS L
CENT EXCE
CENT EXCE | AGE
OW FLOW
EDS | | 71
721
238 | Nov 13 | | 46
19.
34
761
206 | Sep 9
24 Mar 17
Sep 11 | not | 35
determined
25.63
21
1060
326 | Mar
Mar | 28
28 | 1987
1994
1994
1998 | | 90 PERC | CENT EXCE | EDS | | 94 | | | 72 | | | 85 | | | | ### 03518500 TELLICO RIVER AT TELLICO PLAINS, TN LOCATION.--Lat $35^{\circ}21'42"$, long $84^{\circ}16'44"$, Monroe County, Hydrologic Unit 06010204, on right bank 1,300 ft upstream from birdge on Tellico Plains-Ballplay Road, 0.4 mi downstream from Laurel Creek, 0.8 mi east of Tellico Plains, and at mile 28.2. DRAINAGE AREA. -- 118 mi². PERIOD OF RECORD.--July 1925 to February 1982, December 2000 to current year. Published as "near Tellico Plains" October 1927 to September 1930. REVISED RECORDS.--WSP 1336: 1927-28(M), 1936, 1940, 1944. GAGE.--Water-stage recorder. Datum of gage is 846.64 ft NGVD of 1929. July 20, 1925 to Sept. 30, 1927, nonrecording gage at same site and datum. Oct. 1, 1927, to Sept. 30, 1930, nonrecording gage at site 0.5 mi upstream at datum 8.29 ft higher. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR OUTSIDE PERIOD OF RECORD.--Flood in May 1840 reached a stage of 15 ft, discharge, about $21,500 \text{ ft}^3/\text{s}$, from reports of Tennessee Valley Authority. EXTREMES FOR CURRENT PERIOD.--December 2000 to September 2002: Peak discharges greater than base discharge of $3,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------------|------|-----------------------------------|---------------------|-------------|------------|-----------------------------------|---------------------| | Jan 25, 2002 | 0115 | *3,740 | *7.64 | No other pe | eak greate | er than base disc | harge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR DECEMBER 2000 TO SEPTEMBER 2001 Minimum discharge, 38 ft³/s, Sept. 13. | | | | , | | DAIL | Y MEAN VA | LUES | | | | | | |--|--------------|----------|--|---|---|--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |

 | | 71
69
73
70
68 | 101
86
93
104
87 | 214
193
175
165
156 | 355
319
307
351
450 | 248
232
233
251
230 | 149
139
132
124
119 | 294
427
296
252
240 | 201
152
134
153
287 | 218
237
178
209
208 | 475
388
284
233
191 | | 6
7
8
9
10 |

 |

 | 66
64
62
61
61 | 85
79
123
111
105 | 146
139
132
130
278 | 392
337
310
294
266 | 219
211
199
191
183 | 122
154
125
131
178 | 206
227
829
617
380 | 171
141
130
124
127 | 392
216
190
200
176 | 165
141
127
117
108 | | 11
12
13
14
15 |

 |

 | 63
69
70
172
132 | 124
152
153
143
151 |
207
214
206
361
448 | 247
263
411
319
529 | 176
169
379
357
325 | 131
131
126
111
107 | 295
246
213
192
182 | 112
104
98
92
87 | 182
209
225
191
161 | 105
100
95
91
86 | | 16
17
18
19
20 |

 |

 | 139
523
271
204
146 | 144
129
346
1820
1010 | 808
1830
742
487
381 | 529
412
347
313
370 | 307
265
239
219
203 | 103
99
94
91
108 | 197
163
146
137
132 | 85
83
80
84
119 | 143
130
125
116
115 | 84
80
77
93
252 | | 21
22
23
24
25 |

 |

 | 146
120
112
136
112 | 502
351
286
244
212 | 364
482
476
403
746 | 390
362
337
313
286 | 190
178
170
166
162 | 100
113
143
108
595 | 127
145
169
125
117 | 146
103
90
97
133 | 106
99
94
101
138 | 126
99
88
239
265 | | 26
27
28
29
30
31 |

 | | 98
95
100
92
85
77 | 185
175
161
153
329
248 | 729
516
421
 | 259
239
224
237
279
255 | 150
145
140
135
148 | 286
192
218
332
233
189 | 130
122
146
153
297 | 149
106
92
321
486
257 | 99
113
123
100
94
230 | 161
130
113
104
96 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. |

 | | 3627
117.0
523
61
0.99
1.14 | 7992
257.8
1820
79
2.18
2.52 | 11549
412.5
1830
130
3.50
3.64 | 10302
332.3
529
224
2.82
3.25 | 6420
214.0
379
135
1.81
2.02 | 4983
160.7
595
91
1.36
1.57 | 7202
240.1
829
117
2.03
2.27 | 4544
146.6
486
80
1.24
1.43 | 5118
165.1
392
94
1.40
1.61 | 4713
157.1
475
77
1.33
1.49 | ### 03518500 TELLICO RIVER AT TELLICO PLAINS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2001, BY WATER YEAR (WY) | | | | | *** | • | | | | |--|--|--|---|-------------------------------------|--------------------------------------|---|--------------------------------------|--| | OCT NOV | DEC JAN | FEB | MAR APR | MAY | JUN | JUL | AUG | SEP | | MEAN 102.6 187.0 MAX 303 980 (WY) 1973 1930 MIN 28.4 37.7 (WY) 1955 1940 | 306.4 436.3
973 1033
1927 1947
60.8 67.7
1940 1981 | 972 1
1957 1
115 | 5.9 429.5
039 823
963 1964
206 161
981 1967 | 286.9
933
1929
106
1941 | 208.6
559
1957
75.0
1936 | 192.0
557
1949
61.0
1944 | 147.9
459
1938
28.6
1925 | 107.5
486
1928
22.4
1925 | | SUMMARY STATISTICS | | FOR 2001 | WATER YEAR | | | WATER YEAR | S 1925 - | - 2001 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMU MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | М | 66450
218.6
1830
61
64
3020
6.8
46
1.8
20.9
389
162
90 | Feb 17 Dec 9 Dec 5 Jan 19 4 Jan 19 Jan 3 | | | 283.6
474
25.5
9990
14
15
a19900
b14.18
13
2.40
32.65
560
188
60 | Sep 6
Mar 16
Mar 16
Sep | 1929
1925
6 1973
7 1925
6 1925
6 1973
6 1973
7 1925 | a From rating curve extended above 12,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. b From dross line in well. ### 03518500 TELLICO RIVER AT TELLICO PLAINS, TN--Continued # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | DAIL | LY MEAN VA | ALUES | | | | | | |----------------------------------|----------------------------------|------------------------------|--|--|-----------------------|--|---------------------------------|--|---------------------------------|-------------------------------------|------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 91 | 60 | 167 | 149 | 353 | 150 | 699 | 326 | 168 | 138 | 82 | 133 | | 2 | 87 | 61 | 128 | 156 | 312 | 167 | 495 | 265 | 158 | 125 | 78 | 81 | | 3 | 83 | 60 | 110 | 137 | 287 | 251 | 403 | 431 | 150 | 175 | 73 | 68 | | 4 | 79 | 60 | 100 | 127 | 272 | 195 | 339 | 1420 | 161 | 293 | 67 | 63 | | 5 | 77 | 58 | 92 | 144 | 246 | 172 | 307 | 743 | 216 | 153 | 64 | 58 | | 6 | 77 | 57 | 88 | 169 | 261 | 167 | 279 | 455 | 273 | 128 | 60 | 54 | | 7 | 77 | 55 | 90 | 158 | 375 | 162 | 256 | 353 | 311 | 111 | 57 | 50 | | 8 | 71 | 55 | 100 | 134 | 365 | 157 | 240 | 304 | 258 | 117 | 55 | 48 | | 9 | 70 | 55 | 163 | 129 | 337 | 163 | 278 | 277 | 187 | 103 | 52 | 46 | | 10 | 67 | 55 | 215 | 137 | 317 | 186 | 267 | 282 | 163 | 102 | 51 | 44 | | 11 | 66 | 54 | 463 | 172 | 297 | 157 | 239 | 239 | 147 | 151 | 50 | 41 | | 12 | 66 | 54 | 263 | 159 | 268 | 213 | 224 | 215 | 137 | 108 | 49 | 40 | | 13 | 76 | 54 | 502 | 147 | 249 | 241 | 221 | 381 | 133 | 157 | 47 | 40 | | 14 | 161 | 53 | 741 | 138 | 232 | 217 | 209 | 446 | 143 | 247 | 45 | 46 | | 15 | 115 | 53 | 489 | 136 | 219 | 201 | 200 | 319 | 151 | 152 | 45 | 55 | | 16 | 81 | 53 | 327 | 128 | 212 | 212 | 190 | 273 | 126 | 125 | 165 | 55 | | 17 | 73 | 52 | 413 | 126 | 200 | 264 | 186 | 244 | 119 | 109 | 85 | 48 | | 18 | 72 | 52 | 668 | 134 | 190 | 355 | 176 | 531 | 111 | 100 | 97 | 71 | | 19 | 71 | 51 | 421 | 1280 | 182 | 362 | 170 | 391 | 134 | 94 | 115 | 99 | | 20 | 70 | 54 | 318 | 1120 | 205 | 340 | 165 | 326 | 185 | 91 | 79 | 55 | | 21 | 69 | 53 | 260 | 593 | 200 | 375 | 158 | 290 | 125 | 88 | 64 | 643 | | 22 | 68 | 51 | 225 | 446 | 178 | 318 | 165 | 258 | 109 | 89 | 58 | 803 | | 23 | 66 | 52 | 239 | 1420 | 170 | 284 | 152 | 235 | 104 | 137 | 58 | 293 | | 24 | 66 | 71 | 325 | 2020 | 165 | 257 | 146 | 215 | 105 | 131 | 55 | 182 | | 25 | 76 | 301 | 250 | 2400 | 160 | 235 | 201 | 199 | 129 | 96 | 64 | 180 | | 26
27
28
29
30
31 | 71
63
62
62
62
61 | 136
97
85
78
238 | 226
205
191
179
163
154 | 995
671
519
436
377
337 | 175
163
151
 | 273
340
285
266
1030
1170 | 163
151
147
154
137 | 186
249
271
212
190
184 | 130
118
138
123
135 | 121
96
92
101
111
94 | 62
60
116
85
107
79 | 408
512
427
290
215 | | TOTAL | 2356 | 2268 | 8275 | 15194 | 6741 | 9165 | 7117 | 10710 | 4647 | 3935 | 2224 | 5148 | | MEAN | 76.00 | 75.60 | 266.9 | 490.1 | 240.8 | 295.6 | 237.2 | 345.5 | 154.9 | 126.9 | 71.74 | 171.6 | | MAX | 161 | 301 | 741 | 2400 | 375 | 1170 | 699 | 1420 | 311 | 293 | 165 | 803 | | MIN | 61 | 51 | 88 | 126 | 151 | 150 | 137 | 184 | 104 | 88 | 45 | 40 | | CFSM | 0.64 | 0.64 | 2.26 | 4.15 | 2.04 | 2.51 | 2.01 | 2.93 | 1.31 | 1.08 | 0.61 | 1.45 | | IN. | 0.74 | 0.71 | 2.61 | 4.79 | 2.13 | 2.89 | 2.24 | 3.38 | 1.46 | 1.24 | 0.70 | 1.62 | ### 03518500 TELLICO RIVER AT TELLICO PLAINS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002, BY WATER YEAR (WY) | (| OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|---------------------|--|-------------------------------------|--------------------------------------|-------------------------------------|---|--------------------------------------|---|--------------------------------------|---| | (WY) 19
MIN 28 | 2.2 185.1
803 980
973 1930
3.4 37.7
955 1940 | 973
1927
60.8 | 437.2
1033
1947
67.7
1981 | 478.2
972
1957
115
1941 | 522.0
1039
1963
206
1981 | 426.2
823
1964
161
1967 | 933
1929
106 | 207.7
559
1957
75.0
1936 | 190.9
557
1949
61.0
1944 | 146.7
459
1938
28.6
1925 | 108.6
486
1928
22.4
1925 | | SUMMARY STA | ATISTICS | FOI | R 2001 CAI | LENDAR YEAR | | FOR 2002 | WATER YEAR | | WATER YEARS | 1925 | - 2002 | | MAXIMUM PEZ
MAXIMUM PEZ
INSTANTANEO
ANNUAL RUNO | NUIAL MEAN JAL MEAN LLY MEAN LLY MEAN LY MEAN AK FLOW AK STAGE DUS LOW FLOW DFF (CFSM) DFF (INCHES) EXCEEDS | 1 | 75722
207.
1830
51
52
1.
23.
389
153
70 | 5
Feb 17
Nov 19
Nov 17 | | | Jan 25
Sep 12
Sep 8
Jan 25
.64 Jan 25
Sep 13 | | 282.4
474
25.5
9990
14
15
a19900
b14.18
13
2.39
32.51
558
187
60 | Sep
Sep
Mar 1
Mar 1 | 1929
1925
.6 1973
7 1925
6 1925
.6 1973
.6 1973
7 1925 | From rating curve extended above 12,000 ${\rm
ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. From dross line in well. a b ### 03528000 CLINCH RIVER ABOVE TAZEWELL, TN LOCATION.--Lat $36^{\circ}25'30"$, long $83^{\circ}23'54"$, Claiborne County, Hydrologic Unit 06010205, on right bank 0.4 mi upstream from Grissom Island, 4.6 mi downstream from Big War Creek, 10 mi east of Tazewell, and at mile 159.8. DRAINAGE AREA. -- 1,474 mi². Μi PERIOD OF RECORD.--October 1918 to current year. Published as "near Lone Mountain" October 1918 to September 1927; as "near Tazewell" August 1927 to December 1936; and as "above Tazewell" July 1935 to current year. Prior to April 1919, monthly discharge only, published in WSP 1306. Gage-height record "near Tazewell" January 1937 to July 1941. REVISED RECORDS.--WSP 803: Drainage area at site "near Tazewell". WSP 1306: Drainage area at site "near Lone Mountain". WSP 1336: 1928. GAGE.--Data collection platform. Datum of gage is 1,060.7 ft above NGVD of 1929. April 1, 1919, to Sept. 30, 1927, nonrecording gage on railroad bridge 23.3 mi downstream at datum 102.7 ft lower. Aug. 8, 1927, to July 16, 1941, water-stage recorder at site 8.0 mi downstream at datum 47.2 ft lower. Water-stage recorder at present site and datum since July 29, 1935. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in February 1862 reached a stage of about 24 ft, present site and datum, from information by local resident, discharge, about $66,000 \, \mathrm{ft}^3/\mathrm{s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $14,000~{ m ft}^3/{ m s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |----------------|-------------------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 25 | 0600 | 22,400 | 12.63 | Mar 19 | 0800 | *54,800 | *21.37 | | inimum dischar | ge, 115 ft ³ | /s, Sept. 13, 14 | 1, 16, 17. | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP 291 225 3530 331 2.4 ---TOTAL MEAN 269.4 218.4 558.5 465.6 519.3 244 4 254.8 MAX MIN MED 3.70 0.18 0.15 2.16 0.76 0.32 0.17 0.17 CFSM 0.38 1.65 1.26 0.35 0.21 4.27 IN. 0.79 0.35 0.19 ### 03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|-------------------------------------|--|-------------------------------------|--------------------------------------|--|-------------------------------------|-------------------------------------|--|---|--------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 642.5
2871
1990
145
1964 | 1076
4794
1978
159
1940 | 2280
9107
1927
217
1940 | 3420
9500
1937
285
1940 | 4065
9426
1957
572
1941 | 4277
11950
1963
990
1988 | 3075
8860
1977
711
1986 | 2283
6382
1929
547
1941 | 1271
3865
1989
301
1988 | 966.9
3251
1938
239
1988 | 858.9
4411
1942
169
1925 | 523.4
2939
1989
136
1955 | | SUMMARY | STATIST | ICS | FOR : | 2001 CALEI | NDAR YEAR | | FOR 2002 V | VATER YEAR | | WATER YEAR | 5 1919 - | - 2002 | | ANNUAL TANNUAL MIGHEST LOWEST A HIGHEST LOWEST A ANNUAL S ANXIMUM MAXIMUM MAXIMUM INSTANTA ANNUAL R ANNUAL R ANNUAL R ANNUAL R O PERCE 90 PERCE 90 PERCE | TEAN ANNUAL M ANNUAL M DAILY ME SEVEN-DA PEAK FL PEAK ST ANNEOUS L RUNOFF (C RUNOFF (C RUNOFF (C RUNOF | EAN EAN AN MINIMUM OW AGE OW FLOW CFSM) LINCHES) EDS EDS | | 500492
1371
21100
195
200
0.91
12.61
3150
675
243 | | | 507065
1389
51200
115
118
54800
21.1
5115
12.8
2510
536
203 | Sep 13 | | 2049
3269
850
83300
108
116
98100
a29.32
108
1.39
18.89
4600
1090
264 | Apr 5
Sep 11
Sep 17
Apr 5
Apr 5
Sep 11 | 1925
7 1955
5 1977
5 1977 | a From floodmarks. b Also occurred on Sept. 14, 16, 17. 0.84 0.97 2.91 1.25 1.31 4.31 4.97 0.29 IN. ### 03532000 POWELL RIVER NEAR ARTHUR, TN LOCATION.--Lat 36°32'30", long 83°37'49", Claiborne County, Hydrologic Unit 06010206, on left bank, 500 ft upstream from bridge on U.S. Highway 25E, 2.3 mi east of Arthur, 2.4 mi downstream from Indian Creek, and at mile 65.4. DRAINAGE AREA.--685 mi² . PERIOD OF RECORD.--October 1919 to February 1982, October 1996 to current year. Gage-height records collected at same site December 1892 to August 1893, September 1904 to March 1925 are in reports of U.S. Weather Bureau (published as "near Tazewell"). REVISED RECORDS. -- WSP 1336: 1920, 1921(M), 1923. GAGE.--Water-stage recorder. Datum of gage is 1,043.84 ft above NGVD of 1929, Tennessee River Survey datum. Prior to July 23, 1927, nonrecording gage, and July 23, 1927, to Sept. 30, 1970, water-stage recorder, at same site at datum 2.00 ft higher. REMARKS.--Records good. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1826 reached a stage of 29.5 ft present datum, discharge, 34,000 ft 3 /s, and flood of Jan. 29, 1918, reached a stage of 29.2 ft present datum, discharge, 33,000 ft 3 /s. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $9,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Ti | me | Discharge
(ft ³ /s) | e Gag | e height
(ft) | | Date | Time | е | Discharge
(ft ³ /s) | | height
(ft) | | |----------------------------------|--|---------------------------------|--|---|-----------------------|--|---------------------------------|--|---------------------------------|--|--|----------------------------------|--| | Jan 25 | 05 | 45 | 13,400 | | 17.31 | | Mar 19 | 214 | 5 | *28,700 | *2 | 7.01 | | | Minimum disc | Minimum discharge, 61 ft ³ /s, Sept. 14. | | | | | | | | | | | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 242 | 152 | 198 | 314 | 1210 | 476 | 5520 | 805 | 448 | 233 | 208 | 125 | | | 2 | 222 | 152 | 202 | 264 | 1080 | 463 | 5980 | 749 | 411 | 203 | 193 | 110 | | | 3 | 210 | 151 | 193 | 290 | 998 | 464 | 3640 | 1640 | 389 | 190 | 176 | 105 | | | 4 | 198 | 147 | 198 | 284 | 900 | 472 | 2590 | 2340 | 363 | 196 | 162 | 98 | | | 5 | 187 | 143 | 187 | 250 | 826 | 531 | 2000 | 1800 | 349 | 252 | 150 | 90 | | | 6 | 191 | 143 | 168 | 273 | 776 | 509 | 1660 | 1380 | 333 | 310 | 143 | 84 | | | 7 | 189 | 140 | 162 | 288 | 862 | 479 | 1440 | 1120 | 330 |
248 | 142 | 80 | | | 8 | 186 | 139 | 173 | 279 | 1220 | 472 | 1270 | 1350 | 334 | 201 | 134 | 76 | | | 9 | 246 | 138 | 288 | 254 | 1620 | 465 | 1240 | 1270 | 344 | 176 | 125 | 72 | | | 10 | 232 | 135 | 434 | 265 | 1410 | 462 | 2480 | 1070 | 308 | 256 | 118 | 69 | | | 11 | 199 | 133 | 783 | 314 | 1230 | 452 | 3110 | 935 | 276 | 278 | 113 | 66 | | | 12 | 183 | 131 | 722 | 435 | 1110 | 462 | 2310 | 812 | 259 | 178 | 112 | 64 | | | 13 | 173 | 130 | 817 | 798 | 1010 | 447 | 1840 | 784 | 250 | 201 | 112 | 62 | | | 14 | 201 | 129 | 1100 | 811 | 921 | 440 | 1560 | 1030 | 278 | 293 | 108 | 67 | | | 15 | 241 | 128 | 1560 | 684 | 846 | 442 | 1370 | 1540 | 270 | 248 | 107 | 74 | | | 16 | 225 | 128 | 1260 | 586 | 788 | 461 | 1220 | 1220 | 253 | 239 | 108 | 76 | | | 17 | 250 | 127 | 941 | 522 | 747 | 1830 | 1090 | 977 | 249 | 230 | 155 | 79 | | | 18 | 269 | 126 | 838 | 485 | 706 | 12900 | 984 | 883 | 229 | 197 | 215 | 75 | | | 19 | 214 | 125 | 891 | 913 | 668 | 24400 | 1040 | 1160 | 217 | 172 | 325 | 72 | | | 20 | 189 | 128 | 940 | 2280 | 639 | 17400 | 1140 | 1340 | 209 | 166 | 392 | 71 | | | 21 | 179 | 139 | 796 | 2800 | 625 | 4890 | 991 | 1010 | 196 | 190 | 361 | 93 | | | 22 | 173 | 124 | 664 | 1850 | 621 | 3790 | 900 | 852 | 186 | 232 | 205 | 127 | | | 23 | 168 | 125 | 579 | 2830 | 608 | 2880 | 837 | 754 | 191 | 231 | 165 | 362 | | | 24 | 164 | 131 | 552 | 8120 | 571 | 2270 | 777 | 680 | 183 | 223 | 133 | 232 | | | 25 | 173 | 189 | 536 | 12500 | 541 | 1890 | 781 | 623 | 174 | 309 | 116 | 187 | | | 26
27
28
29
30
31 | 173
168
166
173
171
156 | 203
190
181
191
200 | 540
480
438
408
378
350 | 10400
4760
2880
2090
1660
1390 | 526
510
491
 | 1660
1920
2270
1880
1680
2290 | 793
818
739
711
779 | 575
533
527
756
582
507 | 173
183
275
283
252 | 410
491
434
321
256
231 | 116
153
229
232
192
153 | 301
905
1150
719
429 | | | TOTAL | 6111 | 4398 | 17776 | 61869 | 24060 | 91447 | 51610 | 31604 | 8195 | 7795 | 5353 | 6120 | | | MEAN | 197.1 | 146.6 | 573.4 | 1996 | 859.3 | 2950 | 1720 | 1019 | 273.2 | 251.5 | 172.7 | 204.0 | | | MAX | 269 | 203 | 1560 | 12500 | 1620 | 24400 | 5980 | 2340 | 448 | 491 | 392 | 1150 | | | MIN | 156 | 124 | 162 | 250 | 491 | 440 | 711 | 507 | 173 | 166 | 107 | 62 | | | CFSM | 0.29 | 0.21 | 0.84 | 2.91 | 1.25 | 4.31 | 2.51 | 1.49 | 0.40 | 0.37 | 0.25 | 0.30 | | 1.49 1.72 0.33 0.45 2.51 2.80 ### 03532000 POWELL RIVER NEAR ARTHUR, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|-------------------------------------|---|-------------------------------------|-------------------------------------|---|---|--------------------------------------|---|--------------------------------------|--| | MEAN 315.2 649.9
MAX 1648 3045
(WY) 1978 1974
MIN 75.5 96.4
(WY) 1955 1940 | 1306
5557
1927
117
1966 | 1982
5812
1937
143
1940 | 2159
4887
1956
268
1941 | 2386
6596
1963
887
1931 | 1719
5224
1977
477
1942 | 1133
4220
1929
268
1941 | 663.8
2495
1928
168
1936 | 549.4
1917
1941
137
1944 | 450.7
2030
1942
117
1925 | 1081
1928
79.7 | | SUMMARY STATISTICS | FOR 200 | 01 CALENI | DAR YEAR | F | OR 2002 WAT | ER YEAR | | WATER YEARS | 1920 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 49302
683.0
8380
124
127
1.00
13.54
1520
394
152 | | | 316338
866.7
24400
62
68
28700
27.01
61
1.27
17.18
1660
321
127 | Mar 19
Sep 13
Sep 9
Mar 19
Mar 19
Sep 14 | | 1126
1858
486
50300
60
65
59500
38.96
47
1.64
22.33
2510
576
136 | Sep
Sep
Apr
Apr | 1974
1941
6 1977
23 1955
17 1955
6 1977
6 1977
6 1940 | ### 03535400 BEAVER CREEK AT SOLWAY, TN LOCATION.--Lat 35°57'51", long 84°01'41", Knox County, Hydrologic Unit 06010207, at bridge on Solway Road, 1.1 mi southwest of Solway and 5.9 mi southeast of intersection of State Highways 95 and 62 in Oak Ridge. DRAINAGE AREA. -- 86.8 mi². PERIOD OF RECORD.--August 1961 to September 1964, low-flow partial-record site, August 1998 to April 1999, flood crest-stage partial-record site, April 1999 to September 2000. GAGE.--Data logger. REMARKS.--Records good except of period of estimated daily discharges, which are fair. Periodic observations of water temperature and specific conducatance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|---------------------------|-----------------------------------|---------------------|--------------------|---------------|-----------------------------------|---------------------| | Jan 24
Jan 25 | 2245
0845 | 2,560
2,210 | 12.08
11.28 | Mar 19
Mar 19 | 0745
1900 | *3,530
2,470 | *14.01
11.88 | | Minimum discharg | re, 17 ft ³ /s | , Nov. 8, 9, 11 | , 21, 22. | | | | | | | DISC | CHARGE, CUBIC FE | ET PER SECOND, | WATER YEAR OCTOBER | 2001 TO SEPTE | MBER 2002 | | | | DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|---|----------------------------|--|-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 30 | 28 | 37 | 43 | 208 | 59 | 642 | 161 | 57 | 34 | 76 | 21 | | 2 | 29 | 27 | 32 | 41 | 203 | 59 | 537 | 251 | 54 | 32 | 36 | 21 | | 3 | 29 | 28 | 29 | 41 | 167 | 65 | 331 | 507 | 52 | 37 | 30 | 21 | | 4 | 27 | 26 | 26 | 39 | 153 | 63 | 258 | 380 | 50 | 83 | 27 | 21 | | 5 | 26 | 25 | 24 | 38 | 134 | 58 | 219 | 261 | 48 | 43 | 26 | 21 | | 6 | 27 | 22 | 23 | 40 | 130 | 54 | 193 | 202 | 48 | 32 | 26 | 21 | | 7 | 26 | 19 | 29 | 44 | 215 | 51 | 174 | 172 | 55 | 29 | 24 | 21 | | 8 | 28 | 19 | 39 | 45 | 266 | 50 | 160 | 173 | 51 | 28 | 23 | 21 | | 9 | 25 | 19 | 45 | 42 | 212 | 54 | 185 | 142 | 46 | 26 | 23 | 25 | | 10 | 24 | 20 | 76 | 42 | 176 | 64 | 194 | 136 | 45 | 25 | 23 | 21 | | 11 | 29 | 21 | 214 | 45 | 161 | 57 | 163 | 142 | 42 | 28 | 23 | 20 | | 12 | 26 | 20 | 130 | 47 | 144 | 60 | 150 | 121 | 40 | 33 | 22 | 20 | | 13 | 24 | 20 | 159 | 46 | 130 | 72 | 143 | 177 | 40 | 227 | 23 | 19 | | 14 | 27 | 21 | 296 | 46 | 119 | 71 | 138 | 307 | 42 | 354 | 21 | 21 | | 15 | 35 | 21 | 216 | 44 | 110 | 66 | 132 | 189 | 39 | 126 | 21 | 23 | | 16 | 32 | 22 | 131 | 40 | 100 | 74 | 128 | 143 | 38 | 68 | 20 | 26 | | 17 | 29 | 21 | 124 | 40 | 90 | 931 | 121 | 125 | 37 | 53 | 27 | 28 | | 18 | 27 | 21 | 175 | 42 | 85 | e3300 | 114 | 143 | 38 | 47 | 26 | 24 | | 19 | 29 | 21 | 143 | 490 | 81 | e3200 | 111 | 134 | 37 | 42 | 27 | 22 | | 20 | 29 | 21 | 108 | 1010 | 82 | 1170 | 102 | 110 | 34 | 41 | 41 | 22 | | 21
22
23
24
25 | 27
27
27
27
27
30 | 19
19
20
21
47 | 83
75
74
89
78 | 635
214
1200
2180
2120 | 86
79
72
69
65 | 631
429
316
265
231 | 96
88
90
84
146 | 99
90
84
81
77 | 33
32
32
32
32
33 | 45
39
35
36
37 | 35
28
25
21
22 | 355
549
569
163
79 | | 26
27
28
29
30
31 | 43
33
28
27
28
29 | 45
34
29
27
32 | 67
60
55
51
48
45 | 1510
667
420
310
251
212 | 67
66
62

 | 213
200
175
160
230
504 | 134
93
85
80
76 | 74
72
70
68
64
61 | 32
33
34
33
36 | 33
30
30
30
28
32 | 25
23
25
44
30
25 | 160
264
186
115
85 | | TOTAL | 884 | 735 | 2781 | 11984 | 3532 | 12932 | 5167 | 4816 | 1223 | 1763 | 868 | 2964 | | MEAN | 28.52 | 24.50 | 89.71 | 386.6 | 126.1 | 417.2 | 172.2 | 155.4 | 40.77 | 56.87 | 28.00 | 98.80 | | MAX | 43 | 47 | 296 | 2180 | 266 | 3300 | 642 | 507 | 57 | 354 | 76 | 569 | | MIN | 24 | 19 | 23 | 38 | 62 | 50 | 76 | 61 | 32 | 25 | 20 | 19 | | CFSM | 0.33 | 0.28 | 1.03 | 4.45 | 1.45 | 4.81 | 1.98 | 1.79 | 0.47 | 0.66 | 0.32 | 1.14 | | IN. | 0.38 | 0.32 | 1.19 | 5.14 | 1.51 | 5.54 | 2.21 | 2.06 | 0.52 | 0.76 | 0.37 | 1.27 | e Estimated # 03535400 BEAVER CREEK AT SOLWAY, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JA | I FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
--|---|-------------------------------------|-------------------------------------|---|--|--------------------------------------|--|---------------------------------------|---------------------------------------| | MEAN 25.88 32.56
MAX 28.5 37.2
(WY) 2000 2001
MIN 20.6 24.5
(WY) 2001 2002 | 58.73 199.
89.7 38
2002 200
34.9 98.
2000 200 | 7 367
2 2001
L 126 | 231.5
417
2002
113
2001 | 149.9
245
2000
84.4
2001 | 124.3
168
1999
43.5
2001 | 79.79
154
1999
40.1
2001 | 97.39
227
1999
37.8
2000 | 34.98
43.6
2001
27.0
2000 | 52.04
98.8
2002
25.6
1999 | | SUMMARY STATISTICS | FOR 2001 C | ALENDAR YEAR | 1 | FOR 2002 V | WATER YEAR | | WATER YEARS | 1998 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 195
1
2 | 7.37 Peb 17 Nov 7 Nov 7 1.01 3.67 | | 3300
19
20
3530
14.(
a17
1.5
239
46
22 | Mar 18
Nov 7
Nov 7
Mar 19
01 Mar 19
Nov 8 | | 104.9
136
84.5
3300
17
18
3530
14.01
b16
1.21
16.42
191
45 | Mar 19 | 2000
1 2000
2002 | a Also occurred Nov. 9, 11, 21, 22. b Also occurred Oct. 18, 19, 2000. ### 03538235 EAST FORK POPLAR CREEK AT BEAR CREEK ROAD AT OAK RIDGE, TN LOCATION.--Lat $35^{\circ}59^{\circ}48$ ", long $84^{\circ}14^{\circ}25$ ", Anderson County, Hydrologic Unit 06010207, on left bank upstream from bridge on Bear Creek Road, 0.5 mi south of Oak Ridge, and at mile 14.4. DRAINAGE AREA. -- 1.69 mi². MIN PERIOD OF RECORD. -- December 1992 to current year. GAGE. -- Water-stage recorder and concrete weir. Datum of gage is 890 ft above NGVD of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good below $100 \text{ ft}^3/\text{s}$. Flow affected by operations of the Department of Energy, Y-12 Plant. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge 708 ft³/s, gage height, 5.22 ft, Sept. 21; minimum, 3.5 ft³/s, gage height, 1.22 ft, Oct. 9, 10; minimum daily, 3.7 ft³/s, Oct. 9. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY FEB SEP JAN MAY 7.6 9.3 5.6 9.6 9.2 13 27 12 13 12 14 14 13 12 13 9.9 10 9.7 9.7 7.8 13 9.9 11 12 12 ---TOTAL 362.5 338.9 360.7 343.6 11.69 11.30 13.84 12.29 20.35 14.55 11.45 14.03 10.77 15.17 11 MAX 9.8 3.7 9.3 7.8 # 03538235 EAST FORK POPLAR CREEK AT BEAR CREEK ROAD AT OAK RIDGE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|---------------------------------------|---------------------------------------|---|---|---------------------------------------|--|---------------------------------------|--| | MEAN 9.400 10.47
MAX 11.9 14.5
(WY) 1998 1997
MIN 5.47 6.47
(WY) 1995 1995 | 11.11 13.15
15.0 19.6
1999 2002
5.82 7.56
1995 1993 | 12.78
18.1
1994
7.42
1995 | 13.44
20.4
2002
7.37
1995 | 12.80
23.8
1998
4.87
1995 | 11.48
15.9
2000
6.04
1994 | 11.73
17.5
1998
4.53
1995 | 12.51
20.8
1999
4.14
1995 | 10.55
15.5
1996
5.03
1995 | 10.53
15.2
2002
5.28
1995 | | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FO | R 2002 WAT | TER YEAR | | WATER YEARS | 1993 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 4723.0
12.94
99
3.7
8.4 | Feb 16
Oct 9
Oct 7 | | 5093.7
13.96
128
3.7
8.4
708
5.22
c3.5
16 | Jan 23
Oct 9
Oct 7
Sep 21
Sep 21
Oct 9 | | 11.69
14.1
6.30
163
3.3
3.6
a2000
b14.36
1.7
16 | Sep 3
Oct 1
Jul 2
Jul 2 | 1999
1995
4 1993
0 1995
6 1995
3 1997
3 1997
4 1997 | - a From area-velocity estimated at contracted section downstream.b Affected by backwater. From high-water marks.c Also occurred on Oct. 10. ### 03539600 DADDYS CREEK NEAR HEBBERTSBURG, TN LOCATION.--Lat $35^{\circ}59^{\circ}53^{\circ}$, long $84^{\circ}49^{\circ}24^{\circ}$, Cumberland County, Hydrologic Unit 06010208, on right bank, 200 ft downstream of Antioch Bridge, 2.1 mi southeast of Hebbertsburg, 6.9 mi northeast of Crab Orchard, and at mile 9.1. DRAINAGE AREA. -- 139 mi². PERIOD OF RECORD.--October 1956 to September 1968, April 1999 to current year. Prior to May 1957 monthly discharge only, published in WSP 1726. GAGE.--Data collection platform. Datum of gage is 1,445 ft above NGVD of 1929, from topographic map, datum of 1929, supplementary adjustment of 1936. Prior to May 24, 1965, graphic water-stage recorder at same site and datum of 1929. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,000 ft³/s, Jan. 23, gage height, 12.49 ft; minimum discharge, 0.15 ft³/s, Sept. 13, 14. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 11 244 2640 1440 27 3.5 3.5 2 6.3 11 205 81 407 86 1110 1640 24 4.3 0.87 3 3240 21 5.8 137 345 95 657 4.0 0.72 10 75 8.5 73 306 97 1750 18 5 5.3 7.8 58 61 253 92 355 1310 17 4.2 3 2 0.67 6 48 65 231 303 755 27 4.7 2.9 0.65 21 2.6 6.0 7.3 47 68 406 80 250 507 4.0 0.67 8 5.7 7.3 64 514 76 205 388 18 2.3 0.59 60 4.2 4.9 7.7 105 60 430 80 190 302 17 4.8 0.49 10 4.9 8.4 142 64 357 106 196 248 14 4.8 1.9 0.39 5.6 7.6 11 241 108 341 119 172 266 11 6.5 2.1 0.28 9.8 12 7.0 250 138 301 120 150 205 14 2.1 0.21 9.3 280 8.2 13 6.8 134 255 163 141 231 14 2.0 0.17 7.9 14 6.5 1410 123 216 188 132 111 35 1.8 0.23 15 14 113 122 32 0.92 6.5 1100 187 172 322 1.8 16 10 7.9 6 5 521 100 165 165 109 232 6.4 20 1 8 1 4 6.9 177 1.7 17 340 2970 92 146 98 14 1.8 7.5 393 8950 92 5.8 18 129 11 1.8 1.4 5.4 5.3 9.9 7.8 1.2 19 10 7 4 355 1130 118 2700 88 162 1.7 20 9.7 268 1880 1100 127 9.5 122 83 1.5 21 204 753 75 9.4 89 914 146 104 5.5 8.9 1.3 3 0 22 9.4 164 561 140 511 70 5.4 1.1 9.7 88 87 11 7.7 23 9.1 62 189 6960 127 395 62 74 4.7 11 7 3 24 9.2 2.7 365 7870 116 321 60 62 4.0 3.7 6 8 0 93 25 12 445 310 4540 266 1060 52 0.85 5.3 105 6.0 12 26 12 303 240 1570 103 242 671 46 3 7 9 2 0.80 27 11 247 93 132 191 880 104 49 4.6 2.8 12 85 157 618 99 212 318 45 8.6 0.78 93 29 12 62 135 420 179 261 40 5.2 6 9 0 91 55 30 12 333 4.5 6.0 181 31 12 100 281 ---2190 30 5.3 1.5 TOTAL 272.9 1632.3 8452 29543 6513 23093 10761 14511 322.3 292.7 61.54 338.90 MEAN 8.803 54.41 272.6 953.0 232.6 744.9 358.7 468.1 10.74 9.442 1.985 11.30 445 1410 7870 27 MAX 14 514 8950 2640 3240 35 4.8 93 3.5 3.7 4.9 6.5 47 99 76 0.77 0.17 CFSM 0.06 0.39 1.96 6.86 1.67 5.36 2.58 3.37 0.08 0.07 0.01 0.08 0.07 0.44 2.26 7.91 2.88 0.09 0.08 0.09 IN. 1.74 6.18 3.88 0.02 # 03539600 DADDYS CREEK NEAR HEBBERTSBURG, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|--------------------------------------| | MEAN 51.86 213.5
MAX 220 1271
(WY) 1958 1958
MIN 0.52 2.44
(WY) 1964 1964 | 359.8 427.2
860 953
1968 2002
12.5 188
1964 2000 | 461.5
887
1962
99.2
1968 | 619.5
1011
1963
251
2001 | 426.7
812
1962
94.1
1963 | 242.1
512
1958
27.2
1962 | 86.93
457
1961
10.7
2002 | 110.1
587
1967
9.44
2002 | 44.80
140
1959
1.66
1957 | 34.70
209
1960
0.62
1968 | | SUMMARY STATISTICS | FOR 2001 CALE | NDAR YEAR | F | 'OR 2002 WA' | TER YEAR | |
WATER YEARS | 1957 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 63063.8
172.8
4300
2.8
3.3
1.2
16.8
386
45
6.5 | | | 95793.64
262.4
8950
0.17
0.34
a13000
a12.49
c0.15
1.89
25.64
424
60
1.8 | Jan 23
Jan 23
Sep 13 | | 247.2
368
115
8950
0.17
0.27
a13000
b13.23
c0.15
1.78
24.16
574
89
4.0 | Mar 18
Sep 13
Sep 11
Jan 23
Mar 12
Sep 13 | 2002
1968
2002
1963 | From rating curve extended above $8,000~{\rm ft}^3/{\rm s}$, at site and datum presently in use. From rating curve extended above $6,600~{\rm ft}^3/{\rm s}$, at site and datum then in use. Also occurred Sept. 14. a b c ## 03539778 CLEAR CREEK AT LILLY BRIDGE NEAR LANCING, TN LOCATION.--Lat 36°06'11", long 84°43'06", Morgan County, Hydrologic Unit 06010208, on right bank 200 yards upstream of Lilly Bridge, 0.1 mi downstream of Little Clear Creek, 3.8 mi west-southwest of Lancing, and at mile 1.6. DRAINAGE AREA.--170 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1997 to current year. GAGE.--Data collection platform. Datum of gage is 1,040 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except during periods of missing record, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREME FOR CURRENT PERIOD.--Maximum daily discharge, $11,000 \text{ ft}^3/\text{s}$, estimated, maximum gage height 12.73, Jan. 24; minimum, $0.63 \text{ ft}^3/\text{s}$, Sept. 13, 14. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
Y MEAN VA | | 2001 TO |) SEPTEMBER | R 2002 | | | |----------------------------------|--|---|--|--|---|---|---|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.0
5.1
4.3
3.7
3.1 | 6.6
6.7
6.4
6.1
5.7 | 117
110
88
74
64 | 107
103
94
89
79 | 301
357
302
286
246 | 110
108
115
117
106 | 2530
1030
674
506
404 | 1910
1490
1250
976
885 | 66
55
46
41
98 | 33
28
23
22
21 | 25
23
18
14
12 | 2.2
1.9
1.9
1.9 | | 6
7
8
9
10 | 3.4
2.7
2.3
2.1
1.8 | 5.2
4.9
4.7
4.5
4.3 | 57
54
60
121
184 | e75
e75
e75
e75
e85 | 227
365
536
455
377 | 100
98
95
93
107 | 336
290
253
233
215 | 636
493
392
308
267 | 79
110
98
69
51 | 18
15
45
26
24 | 10
8.4
6.9
5.8
5.1 | 1.4
1.2
1.2
1.1
0.96 | | 11
12
13
14
15 | 1.5
1.5
2.2
3.3
3.1 | 4.1
3.8
3.8
3.8
3.7 | 238
230
199
700
674 | e120
e145
e150
e150
e145 | 342
292
253
221
199 | 107
107
125
144
141 | 191
174
167
161
157 | 259
220
236
464
329 | 39
32
27
24
26 | 65
46
93
236
167 | 4.4
3.7
3.2
2.8
4.7 | 0.87
0.79
0.67
0.81
1.3 | | 16
17
18
19
20 | 2.9
3.4
3.4
4.1
6.7 | 3.6
3.5
3.6
3.9
3.1 | 388
287
303
279
229 | e140
e135
e130
1050
1590 | e180
e170
e150
e140
141 | 205
e5700
e11000
e3250
e1150 | 148
134
125
117
111 | 254
209
249
265
205 | 33
28
23
19
16 | 94
60
43
33 | 5.4
4.6
3.9
4.6
5.1 | 1.6
3.0
4.4
4.2
5.0 | | 21
22
23
24
25 | 6.6
6.2
6.3
5.7
6.5 | 3.0
3.0
3.0
4.3
280 | 189
162
170
333
268 | 740
479
6330
9370
4470 | 183
162
144
134
126 | 992
682
523
422
349 | 105
106
111
111
2770 | 173
149
128
112
98 | 14
12
11
9.9
9.5 | 34
31
42
35
175 | 4.1
3.5
2.7
2.3
2.3 | 15
65
59
31
21 | | 26
27
28
29
30
31 | 6.6
6.6
5.8
5.7
6.3 | 275
140
99
76
78 | 225
201
173
153
134
117 | 1340
757
542
420
345
292 | 123
127
119
 | 354
616
467
385
333
1790 | 1210
668
502
488
366 | 84
187
160
119
96
78 | 11
141
86
53
43 | 133
81
57
55
39
31 | 2.6
3.9
4.7
3.7
3.2
2.6 | 48
224
147
84
55 | | TOTAL MEAN MAX MIN CFSM IN. | 135.3
4.365
6.7
1.5
0.03
0.03 | 1053.3
35.11
280
3.0
0.21
0.23 | 6581
212.3
700
54
1.25
1.44 | 29697
958.0
9370
75
5.64
6.50 | 6658
237.8
536
119
1.40
1.46 | 29891
964.2
11000
93
5.67
6.54 | 14393
479.8
2770
105
2.82
3.15 | 12681
409.1
1910
78
2.41
2.77 | 1370.4
45.68
141
9.5
0.27
0.30 | 1839
59.32
236
15
0.35
0.40 | 206.2
6.652
25
2.3
0.04
0.05 | 787.10
26.24
224
0.67
0.15
0.17 | e Estimated # 03539778 CLEAR CREEK AT LILLY BRIDGE NEAR LANCING, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|--------------------------------------|-------------------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|---| | MEAN 4.218 19.82
MAX 9.46 36.6
(WY) 1999 1998
MIN 0.81 5.07
(WY) 2000 1999 | 186.6 681.4
423 962
1999 1999
32.4 141
2000 2000 | 532.1
1145
2001
238
2002 | 518.3
964
2002
250
2001 | 469.1
1118
1998
206
2001 | 318.9
635
1998
80.3
2001 | 243.7
782
1997
30.6
2001 | 99.27
349
1999
11.9
2000 | 33.80
104
1998
4.65
1997 | 26.2 | | SUMMARY STATISTICS | FOR 2001 CALE | NDAR YEAR | 1 | FOR 2002 WAS | TER YEAR | | WATER YEARS | 1997 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 72476.8
198.6
8500
1.5
2.0
1.1
15.8
310
59
4.0 | Feb 17
Oct 11
Oct 7 | | 105292.30
288.5
11000
0.67
0.91
15400
12.73
b0.63
1.70
23.04
490
93
3.1 | Jan 24
Jan 24
Sep 13 | | 252.5
378
138
11000
0.17
0.23
a27300
14.24
c0.16
1.49
20.18
533
68
2.3 | Mar (
Oct
Oct
Jan
Oct | 1998
2000
18 2002
8 1999
2 1999
7 1998
7 1998
8 1999 | From rating curve extended above 6,710 ${\rm ft}^3/{\rm s}.$ Also occurred Sept. 14. Also occurred Oct. 9, 1999. a b c # 03539778 CLEAR CREEK AT LILLY BRIDGE NEAR LANCING, TN--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--March 1997 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
FIELD
WATER
UNFLTRD
(NTU)
(61028) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | |-----------|------|---|--|---|---|---|--|--|---|--|---
--|--| | NOV | | | | | | | | | | | | | | | 19 | 1045 | 10 | 87 | 6.5 | 9.0 | 739 | .3 | 11.1 | 99 | | 0 | 24 | 20 | | JAN
16 | 1115 | 142 | 47 | 7.0 | 2.0 | 743 | 1.1 | 14.6 | 108 | | | 5 | 4 | | FEB 21 | 1300 | 196 | 41 | 7.0 | 6.5 | 735 | .7 | 12.5 | 105 | E4 | | 5 | 4 | | MAR
19 | 1230 | 2110 | 34 | 6.7 | 11.5 | 735 | 10 | 11.5 | 109 | E1400 | | 4 | 3 | | JUN
07 | 1130 | 143 | 47 | 6.9 | 23.5 | 733 | 1.2 | 7.8 | 95 | 26 | | 8 | 7 | | JUL
24 | 1145 | 36 | 46 | 6.9 | 25.5 | 725 | 1.3 | 7.4 | 95 | 20 | | 12 | 10 | | SEP 03 | 1200 | 2.7 | 76 | 7.2 | 27.0 | 736 | 1.2 | 6.8 | 89 | <1 | | 23 | 19 | NITRO- | NITRO- | NITRO- | NITRO- | | | ORTHO- | | |------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------| | | | CHLO- | GEN, | GEN, | GEN, | GEN, AM- | | | PHOS- | | | | SULFATE | RIDE, | NITRITE | NO2+NO3 | AMMONIA | MONIA + | NITRO- | PHOS- | PHATE, | SEDI- | | | DIS- | DIS- | DIS- | DIS- | DIS- | ORGANIC | GEN, | PHORUS | DIS- | MENT, | | | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SOLVED | SUS- | | Date | (MG/L PENDED | | | AS SO4) | AS CL) | AS N) | AS P) | AS P) | (MG/L) | | | (00945) | (00940) | (00613) | (00631) | (00608) | (00625) | (00600) | (00665) | (00671) | (80154) | | NOV | | | | | | | | | | | | 19 | 5.9 | 8.64 | <.008 | <.05 | < .04 | .19 | | .004 | <.02 | .6 | | JAN | | | | | | | | | | | | 16 | 5.9 | 4.92 | <.008 | .33 | < .04 | .12 | .44 | <.004 | <.02 | .8 | | FEB | | | | | | | | | | | | 21 | 5.9 | 3.28 | <.008 | .23 | < .04 | E.10 | | <.004 | <.02 | 1.3 | | MAR | | | | | | | | | | | | 19 | 5.4 | 1.88 | <.008 | .20 | <.04 | .29 | .49 | .018 | <.02 | 17 | | JUN | | | | | | | | | | | | 07 | 5.9 | 3.32 | <.008 | .12 | <.04 | .21 | .33 | .010 | <.02 | .6 | | 19 | | | | | | | | | | | | JUL | | | | | | | | | | | | 24 | 3.5 | 3.36 | <.008 | <.05 | <.04 | .16 | | .009 | <.02 | . 4 | | SEP | | | | | | | | | | | | 03 | 4.2 | 8.16 | <.008 | E.04 | < .04 | .20 | | .008 | <.02 | .3 | E--Estimated THIS PAGE IS INTENTIONALLY BLANK ## 03539800 OBED RIVER NEAR LANCING, TN $\label{location.--Lat 36} \text{O4'53", long } 84^{\circ}40^{\circ}15^{\circ}, \\ \text{Morgan County, Hydrologic Unit 06010208, on left bank at Alley Ford, 2.9 mi southwest of Lancing, 3.0 mi downstream from Clear Creek, and at mile 1.5. }$ DRATNAGE AREA. -- 518 mi². PERIOD OF RECORD.--October 1956 to September 1968, March 1973 to December 1987, March 1999 to current year. Prior to May 1957 monthly discharge only, published in WSP 1726. GAGE.--Water-stage recorder. Datum of gage is 891.91 ft above NGVD of 1929. Discharge REMARKS.--Records goods except for Dec. 31, Jan. 9 to May 28 to July 12, which are fair. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood on Mar. 23, 1929, reached a stage of 33.9 ft, 35 ft downstream from gage, from high water marks by Tennessee Valley Authority. Discharge Gage height EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $13,000~{\rm ft}^3/{\rm s}$ and maximum (*): Gage height | | Date | Time | (ft ³ / | s) | (ft) | | Date | Time | | (ft ³ /s) | (| ft) | |--------|----------------|--------------|--------------------------|-----------|-----------------|--------------------------|------------------|--------------|----------|----------------------|-----|------| | | an 23
ar 18 | 2000
1000 | *50,1
41,6 | | *21.55
19.88 | | Mar 31
Apr 25 | 2315
0930 | | 15,700
13,700 | | 2.21 | | Minimu | m discharge | , 2.7 f | t ³ /s, Sept. | 13. | | | | | | | | | | | | D | ISCHARGE, CU | JBIC FEET | |), WATER YI
LY MEAN V | | R 2001 TO | SEPTEMBE | R 2002 | | | | D | AY OC | Г | NOV DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 3 | 0 | 26 625 | e350 | 1190 | 365 | 9270 | 5060 | e140 | e75 | 59 | 7.3 | | | 2 2 | 6 | 25 521 | e320 | 1550 | 352 | 4180 | 5480 | e120 | e65 | 56 | 6.4 | | | 3 2 | 3 | 25 412 | e290 | 1280 | 389 | 2540 | 8230 | e100 | e60 | 45 | 5.9 | | | 4 2 | 0 | 23 297 | e240 | 1160 | 388 | 1850 | 5000 | e90 | e50 | 36 | 5.6 | | | - 1 | | 00 040 | | | 250 | 4.42.0 | 4000 | 000 | 4.5 | 2.0 | | | | 001 | 2101 | 220 | 0111 | | | | | 0011 | 001 | 1100 | 521 | |----------------------------------|----------------------------------|----------------------------------|---|--|-------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------| | 1 | 30 | 26 | 625 | e350 | 1190 | 365 | 9270 | 5060 | e140 | e75 | 59 | 7.3 | | 2 | 26 | 25 | 521 | e320 | 1550 | 352 | 4180 | 5480 | e120 | e65 | 56 | 6.4 | | 3 | 23 | 25 | 412 | e290 | 1280 | 389 | 2540 | 8230 | e100 | e60 | 45 | 5.9 | | 4 | 20 | 23 | 297 | e240 | 1160 | 388 | 1850 | 5000 | e90 | e50 | 36 | 5.6 | | 5 | 19 | 23 | 243 | e240 | 971 | 359 | 1430 | 4000 | e220 | e45 | 30 | 5.3 | | 6
7
8
9
10 | 19
17
15
13 | 21
21
20
19
19 | 208
194
209
366
550 | e250
e280
e230
e230
242 | 854
1400
2030
1750
1470 | 333
320
312
307
356 | 1150
940
788
711
677 | 2610
1880
1460
1110
897 | e250
e250
e230
e190
e150 | e45
e40
e35
e35
e35 | 25
20
17
15
13 | 4.9
4.8
4.4
4.0
3.5 | | 11 | 15 | 18 | 741 | 400 | 1340 | 395 | 600 | 911 | e110 | e30 | 11 | 3.2 | | 12 | 16 | 18 | 829 | 663 | 1150 | 385 | 535 | 753 | e80 | e60 | 10 | 2.9 | | 13 | 14 | 17 | 711 | 610 | 970 | 456 | 504 | 731 | e65 | 99 | 8.9 | 2.7 | | 14 | 17 | 18 | 3030 | 540 | 804 | 561 | 477 | 1670 | e55 | 366 | 8.2 | 4.0 | | 15 | 16 | 17 | 3120 | 483 | 708 | 543 | 446 | 1210 | e45 | 351 | 7.9 | 5.1 | | 16 | 19 | 17 | 1680 | 426 | 642 | 757 | 416 | 884 | e35 | 217 | 9.9 | 4.8 | | 17 | 37 | 17 | 1130 | 388 | 580 | 11700 | 376 | 689 | e30 | 129 | 13 | 5.1 | | 18 | 29 | 16 | 1300 | 388 | 509 | 30300 | 347 | 708 | e30 | 85 | 12 | 6.9 | | 19 | 24 | 16 | 1220 | 2930 | 456 | 9830 | 329 | 732 | e25 | 68 | 10 | 8.6 | | 20 | 22 | 17 | 921 | 6330 | 453 | 4510 | 314 | 559 | e25 | 70 | 9.5 | 7.2 | | 21 | 24 | 16 | 687 | 3180 | 612 | 3310 | 293 | 465 | e20 | 65 | 9.4 | 20 | | 22 | 24 | 96 | 575 | 2000 | 581 | 2320 | 291 | 408 | e20 | 58 | 8.3 | 81 | | 23 | 22 | 108 | 553 | 22400 | 508 | 1780 | 292 | 368 | e20 | 84 | 7.8 | 132 | | 24 | 22 | 79 | 1200 | 30000 | 453 | 1460 | 287 | 336 | e20 | 81 | 8.5 | 88 | | 25 | 22 | 1050 | 1090 | 18300 | 419 | 1200 | 7130 | 312 | e15 | 252 | 8.0 | 65 | | 26
27
28
29
30
31 | 20
20
23
29
25
26 | 1170
537
357
279
298 | 840
685
582
504
436
e380 | 5940
3260
2280
1710
1370
1140 | 402
420
407
 | 1120
1690
1350
1130
1030
5330 | 4020
2200
1610
1410
1060 | 291
355
e340
e280
e215
e175 | e15
e40
e150
e105
e85 | 303
207
142
117
84
65 | 7.3
7.1
9.2
10
8.7
8.7 | 94
504
527
330
223 | | TOTAL | 661 | 4383 | 25839 | 107410 | 25069 | 84638 | 46473 | 48119 | 2730 | 3418 | 509.4 | 2166.6 | | MEAN | 21.32 | 146.1 | 833.5 | 3465 | 895.3 | 2730 | 1549 | 1552 | 91.00 | 110.3 | 16.43 | 72.22 | | MAX | 37 | 1170 | 3120 | 30000 | 2030 | 30300 | 9270 | 8230 | 250 | 366 | 59 | 527 | | MIN | 13 | 16 | 194 | 230 | 402 | 307 | 287 | 175 | 15 | 30 | 7.1 | 2.7 | | CFSM | 0.04 | 0.28 | 1.61 | 6.69 | 1.73 | 5.27 | 2.99 | 3.00 | 0.18 | 0.21 | 0.03 | 0.14 | | IN. | 0.05 | 0.31 | 1.86 | 7.71 | 1.80 | 6.08 | 3.34 | 3.46 | 0.20 | 0.25 | 0.04 | 0.16 | e Estimated # 03539800 OBED RIVER NEAR LANCING, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|-------------------------------------|-------------------------------------|--|---|---------------------------------------|---|--------------------------------------|--------------------------------------| | MEAN 274.2 950.9
MAX 1552 3829
(WY) 1976 1958
MIN 1.58 4.98
(WY) 1981 1964 | 1430 1773
3149 4780
1968 1974
43.5 69.5
1964 1981 | 1710
3611
1962
354
1968 | 2262
6220
1975
682
1985 | 1533
3522
1977
261
1986 | 1096
4066
1984
115
1962 | 378.8
1475
1961
70.7
1958 | 397.3
2572
1979
11.3
1980 | 149.0
587
1985
7.13
1980 | 156.8
856
1982
1.43
1968 | | SUMMARY STATISTICS | FOR 2001 CA | LENDAR YEAR | F | OR 2002 WAS | TER YEAR | | WATER YEARS | 1957 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | | Feb 17
Sep 18
Sep 15 | | 351416.0
962.8
30300
2.7
3.5
50100
21.55
2.7
1.86
25.24
1730
2552 | Mar 18
Sep 13
Sep 8
Jan 23
Jan 23
Sep 13 | |
991.8
1770
184
45000
0.50
0.61
a105000
b29.51
0.40
1.91
26.01
2320 | Oct 30 | 5 1963
7 1973
7 1973 | From rating curve extended above $33,000 \text{ ft}^3/\text{s}$, on basis of slope conveyance study at gage height 22.40 ft and slope-area measurement of peak flow. From dross line in gage well, 30.5 ft from flood marks. ### 03540500 EMORY RIVER AT OAKDALE, TN $\label{location.--Lat 35°58'59", long 84°33'29", Morgan County, Hydrologic Unit 06010208, on left bank, at Oakdale, 1,000 ft downstream from highway bridge, 1,100 ft downstream from Mud Lick Creek, and at mile 18.3.$ DRAINAGE AREA. -- 764 mi². PERIOD OF RECORD.--June 1927 to current year. Prior to October 1929, published as Emery River at Harriman and October 1929 to September 1934 as Emery River at Oakdale. REVISED RECORDS.--WSP 823: Drainage area. WSP 923: 1940. WSP 1386: 1928-30(M), 1932, 1943, 1945(P). GAGE.--Data collection platform and data logger. Datum of gage is 761.38 ft above NGVD of 1929. Prior to Oct. 1, 1929, nonrecording gage at site 5.8 mi downstream at datum 43.60 ft lower, and Oct. 1, 1929, to Dec. 29, 1969, water-stage recorder at present site at datum 2.00 ft higher. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1857, that of Mar. 23, 1929, from report of Tennessee Valley Authority. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $19,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Jan 23
Mar 18 | 2130
1030 | *75,200
62,800 | *28.85
26.56 | Mar 31 | 2330 | 20,600 | 16.99 | Minimum discharge, 5.0 ft³/s, Sept. 13, 14. | | | DISCHA | ARGE, CUB | IC FEET P | | , WATER
LY MEAN V | YEAR OCTOE
/ALUES | BER 2001 T | O SEPTEMBI | ER 2002 | | | |----------------------------------|----------------------------------|----------------------------------|--|--|-----------------------|--|--------------------------------------|--|------------------------------|--|------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 49 | 30 | 841 | 501 | 1540 | 528 | 13200 | 5530 | 189 | 79 | 85 | 11 | | 2 | 41 | 32 | 759 | 443 | 2020 | 503 | 5940 | 7400 | 157 | 64 | 77 | 9.8 | | 3 | 34 | 30 | 606 | 439 | 1750 | 545 | 3590 | 10700 | 132 | 55 | 72 | 8.7 | | 4 | 29 | 29 | 454 | 374 | 1610 | 553 | 2560 | 6760 | 119 | 59 | 61 | 7.9 | | 5 | 24 | 28 | 352 | 340 | 1390 | 513 | 1960 | 5430 | 151 | 49 | 52 | 7.2 | | 6 | 25 | 27 | 299 | 379 | 1240 | 475 | 1590 | 3580 | 283 | 43 | 45 | 6.6 | | 7 | 21 | 25 | 276 | 395 | 1780 | 452 | 1330 | 2550 | 225 | 35 | 36 | 6.2 | | 8 | 19 | 25 | 310 | 371 | 2890 | 437 | 1150 | 1930 | 256 | 30 | 29 | 5.8 | | 9 | 18 | 23 | 480 | 346 | 2570 | 435 | 1050 | 1490 | 181 | 37 | 24 | 5.6 | | 10 | 15 | 21 | 819 | 349 | 2120 | 508 | 1010 | 1230 | 139 | 53 | 20 | 5.5 | | 11 | 13 | 20 | 1220 | 458 | 1870 | 561 | 891 | 1190 | 107 | 84 | 17 | 5.5 | | 12 | 13 | 19 | 1340 | 840 | 1610 | 564 | 800 | 1040 | 86 | 96 | 15 | 5.4 | | 13 | 17 | 19 | 1300 | 839 | 1390 | 643 | 758 | 956 | 75 | 167 | 13 | 5.1 | | 14 | 22 | 18 | 5410 | 771 | 1190 | 767 | 724 | 1850 | 68 | 523 | 11 | 5.6 | | 15 | 59 | 18 | 4990 | 704 | 1050 | 769 | 684 | 1520 | 63 | 611 | 9.6 | 6.8 | | 16 | 44 | 18 | 2560 | 632 | 954 | 924 | 635 | 1170 | 59 | 355 | 9.0 | 6.8 | | 17 | 32 | 17 | 1710 | 572 | 860 | 13800 | 576 | 937 | 64 | 215 | 8.8 | 7.6 | | 18 | 45 | 16 | 1930 | 566 | 757 | 44100 | 525 | 865 | 60 | 145 | 11 | 8.0 | | 19 | 43 | 16 | 1830 | 3920 | 679 | 14200 | 490 | 966 | 51 | 110 | 25 | 7.8 | | 20 | 36 | 17 | 1410 | 9660 | 677 | 6250 | 460 | 761 | 44 | 143 | 27 | 7.8 | | 21 | 31 | 17 | 1080 | 4810 | 837 | 4460 | 427 | 627 | 40 | 120 | 32 | 40 | | 22 | 31 | 16 | 890 | 2930 | 822 | 3110 | 422 | 529 | 34 | 97 | 25 | 123 | | 23 | 31 | 94 | 881 | 31000 | 733 | 2340 | 421 | 454 | 29 | 85 | 19 | 237 | | 24 | 29 | 109 | 1630 | 42400 | 666 | 1890 | 400 | 394 | 25 | 131 | 15 | 160 | | 25 | 30 | 1090 | 1620 | 27300 | 625 | 1560 | 7070 | 338 | 23 | 150 | 13 | 108 | | 26
27
28
29
30
31 | 29
27
25
24
34
33 | 1600
792
522
391
442 | 1300
1070
902
777
673
583 | 8650
4680
3180
2380
1870
1560 | 599
602
587
 | 1390
1900
1590
1370
1290
6130 | 5420
2940
2090
1800
1400 | 290
348
461
359
282
230 | 24
25
166
119
92 | 353
253
184
147
135
100 | 12
11
9.4
8.8
11 | 130
725
976
561
349 | | TOTAL | 923 | 5521 | 40302 | 153659 | 35418 | 114557 | 62313 | 62167 | 3086 | 4708 | 816.6 | 3549.7 | | MEAN | 29.77 | 184.0 | 1300 | 4957 | 1265 | 3695 | 2077 | 2005 | 102.9 | 151.9 | 26.34 | 118.3 | | MAX | 59 | 1600 | 5410 | 42400 | 2890 | 44100 | 13200 | 10700 | 283 | 611 | 85 | 976 | | MIN | 13 | 16 | 276 | 340 | 587 | 435 | 400 | 230 | 23 | 30 | 8.8 | 5.1 | | MED | 29 | 25 | 902 | 771 | 1120 | 924 | 1030 | 966 | 81 | 110 | 17 | 7.9 | | CFSM | 0.04 | 0.24 | 1.70 | 6.49 | 1.66 | 4.84 | 2.72 | 2.62 | 0.13 | 0.20 | 0.03 | 0.15 | | IN. | 0.04 | 0.27 | 1.96 | 7.48 | 1.72 | 5.58 | 3.03 | 3.03 | 0.15 | 0.23 | 0.04 | 0.17 | ## 03540500 EMORY RIVER AT OAKDALE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927 - 2002, BY WATER YEAR (WY) | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------------------------------------|--------------------------------------|---|-------------------------------------|-------------------------------------|--|---|---------------------------------------|---|---------------------------------------|--| | MEAN 278.4
MAX 1971
(WY) 1976
MIN 0.57
(WY) 1954 | 1048
6214
1958
0.37
1954 | 2192
7938
1991
42.1
1940 | 2840
7941
1937
97.8
1981 | 2966
8136
1939
422
1941 | 3152
8962
1975
946
1985 | 2171
5808
1977
374
1986 | 1331
5804
1973
140
1962 | 712.8
6731
1989
16.3
1936 | 495.3
3694
1967
5.55
1944 | 278.3
2107
1942
7.70
1930 | 226.8
1562
1944
0.91
1954 | | SUMMARY STATISTIC | CS | FOR | 2001 CAL | ENDAR YEAR | I | FOR 2002 W | ATER YEAR | | WATER YEARS | 1927 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME HIGHEST DAILY MEA LOWEST DAILY MEA ANNUAL SEVEN-DAY MAXIMUM PEAK FLOW MAXIMUM PEAK STAC INSTANTANEOUS LOW ANNUAL RUNOFF (IN ANNUAL RUNOFF (IN 10 PERCENT EXCEEL 90 PERCENT EXCEEL | AN AN I MINIMUM V GE FSM) V(CHES) OS | | 327534
897.4
24900
11
17
15.5
1880
276
25 | Feb 17
Sep 18
Oct 7 | | 487020.3
1334
44100
5.1
5.5
75200
28.8
d5.0
1.7
23.7
2450
353
15 | Mar 18
Sep 13
Sep 8
Jan 23
5 Jan 23
Sep 13 | | 1464
2653
441
103000
a0.00
0.00
b195000
c41.20
0.00
1.92
26.04
3400
546
20 | Aug 1
Nov
Mar 2
Mar 2 | 1973
1927
3 1990
3 1944
7 1953
3 1929
3 1929
3 1944 | a Also occurred on Aug. 14, 15, 1944; Nov. 7, 8, 9, 1952. b From rating curve extended above 85,000 ft³/s confirmed by slope-area measurements of May 28, 1973, flood at gage height 38.68 c From floodmarks and flood profile, present site and datum, 61.1 ft at site and datum then in use. d Also occurred on Sept. 14. ### 03566000 HIWASSEE RIVER AT CHARLESTON, TN LOCATION.--Lat 35°17'16", long 84°45'07", until April 9, 1996, lat 35°17'17", long 84°45'10", until Nov. 10, 1998, lat 35°17'42", long 84°45'36" thereafter, Hydrologic Unit 06020002, on left bank 250 ft upstream from Norfolk Southern Railway bridge until April 9, 1996, at Norfolk Southern Railway bridge until Nov. 10, 1998, on right bank at dolphin at Bowater Southern Paper Company's barge facility thereafter, 0.3 mi downstream from bridge on U.S. Highway 11 at Charleston, and at mile 18.2. DRAINAGE AREA. -- 2,298 mi2. PERIOD OF RECORD.--November 1898 to April 1899, November 1899 to April 1903, October 1919 to January 1940, January 1963 to January 1977, September 1979 to December 1981 (vane lost), August 1987 to current year. Gage-height records collected at this station during the period December 1884 to December 1889 are contained in the United States War Department Stages of Ohio River and Principal Tributaries, 1858-89, Part 1, and during period January 1890 to December 1943 in reports of the U.S. Weather Bureau. REVISED RECORDS. -- WSP 853: Drainage area, WSP 1436: 1902, 1922 (M), 1928, 1936 (M). GAGE.--Data collection platform and velocity recorder. Datum of gage is 665.56 ft above NGVD of 1929. Prior to July 18, 1925, non- recording gages, and July 18, 1925 to September 6, 1926, water-stage recorder, at present site, at
datum 1.50 ft higher. September 1926 to January 1940, January 1963 to January 1977, September 1979 to December 1981, August 1987 to April 1996, on left bank 250 ft upstream of present site, at same datum. REMARKS.--Records good except for estimated discharges, which are poor. Some diversions above gage for industrial and municipal water supplies. Flow regulated by seven reservoirs (see p. 262 and Water Resources Data for Georgia and North Carolina). Reverse flow has occurred for short periods each year since closure of Chickamauga Dam on Tennessee River in 1939. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 31, 1886, reached a stage of 34.0 ft, present datum, discharge about 70,000 ft^3/s EXTREMES FOR CURRENT YEAR.--Maximum discharge, 24,700 ft³/s, Jan. 25; maximum gage height, 19.40 ft, Jan. 25; minimum daily, 645 ft³/s, Nov. 24, minimum gage height, 9.92 ft, Jan. 5. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | DAIL | Y MEAN VA | ALUES | | | | | | |----------------------------------|--|--------------------------------------|--|---|--------------------------|---|-------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2470 | 1400 | 1970 | 2440 | 5880 | 1880 | 8730 | 1230 | 2800 | 2330 | 3230 | 2450 | | 2 | 3470 | 2270 | 1310 | 3440 | 6240 | 1600 | 5110 | 2620 | 2790 | 1480 | 3590 | 1730 | | 3 | 4360 | 2550 | 1820 | 4320 | 5400 | 1100 | 4490 | 2960 | 3070 | 1960 | 4550 | 2420 | | 4 | 3890 | 2440 | 3480 | 2860 | 5080 | 2740 | 3780 | 8050 | 3360 | 2200 | 3860 | 2950 | | 5 | 3510 | 2590 | 3980 | 3160 | 5160 | 2440 | 3480 | 11200 | 3680 | 2040 | 4130 | 2910 | | 6 | 2680 | 3320 | 2930 | 1430 | 4420 | 1790 | 2570 | 4120 | 3830 | 2060 | 3560 | 2690 | | 7 | 2670 | 3490 | 3150 | e2700 | 4750 | 2320 | 2110 | 3500 | 3320 | 2040 | 3440 | 3530 | | 8 | 3370 | 2900 | 2620 | e2100 | 5630 | 1770 | 2600 | 3400 | 2650 | 2500 | 3040 | 3390 | | 9 | 3340 | 2680 | 2830 | e1700 | 4640 | 1060 | 2040 | 3350 | 2510 | 2140 | 3480 | 2910 | | 10 | 3720 | 2400 | 3860 | e2100 | 2470 | 2050 | 2170 | 3080 | 2540 | 2340 | 2870 | 3960 | | 11 | 3120 | 2500 | 4220 | e1700 | 3050 | 1310 | 1970 | 2380 | 2810 | 2430 | 2120 | 3920 | | 12 | 3540 | 3050 | 2450 | e1200 | 4100 | 1490 | 1740 | 2170 | 3100 | 1610 | 2360 | 3090 | | 13 | 3600 | 3060 | 2970 | e1400 | 4310 | 2390 | 1690 | 2770 | 3530 | 1620 | 3150 | 2360 | | 14 | 3520 | 3980 | 5150 | e2100 | 3910 | 2260 | 1590 | 2770 | 2770 | 2440 | 3220 | 2890 | | 15 | 3870 | 3270 | 4110 | e1700 | 3640 | 1540 | 1750 | 2190 | 2620 | 2250 | 2890 | 2450 | | 16 | 4540 | 2920 | 2860 | 1670 | 2650 | 1900 | 2570 | e2100 | 1880 | 2300 | 2940 | 2070 | | 17 | 4730 | 1910 | 3510 | 2240 | 1910 | 2610 | 1870 | e2300 | 2340 | 3730 | 2950 | 2320 | | 18 | 4090 | 780 | 5810 | 3280 | 2840 | 3000 | 1670 | 3120 | 3010 | 3820 | 2400 | 2490 | | 19 | 3810 | 1470 | 5950 | 4370 | 2030 | 3900 | 1580 | 2990 | 3080 | 3590 | 2740 | 2960 | | 20 | 2460 | 2640 | 5070 | 10300 | 2340 | 4670 | 2020 | 2670 | 2380 | 3050 | 3680 | 3440 | | 21 | 1280 | 4250 | 4480 | 5530 | 2360 | 4330 | 2750 | 2150 | 1990 | 2170 | 3340 | 5930 | | 22 | 2440 | 2130 | 5270 | 6790 | 2050 | 4730 | 3060 | 1880 | 1700 | 3090 | 3150 | 11100 | | 23 | 3020 | 939 | 1590 | 11300 | 1950 | 3470 | 2040 | 2230 | 1780 | 3930 | 3770 | 6020 | | 24 | 2950 | 645 | 3530 | 15700 | 1490 | 3090 | 1260 | 1910 | 1280 | 2850 | 3750 | 4320 | | 25 | 2840 | 778 | 3930 | 22300 | 1460 | 1820 | 1500 | 2970 | 2040 | 3110 | 2740 | 4590 | | 26
27
28
29
30
31 | 3060
2520
2610
2880
2620
2630 | 1910
1560
1160
1240
1010 | 3240
3340
2670
2150
4320
3800 | 15600
11500
8610
12800
12300
10800 | 1190
1890
1740
 | 2060
2760
2040
1970
7590
12600 | 1530
781
1070
1320
1130 | 2450
2770
1910
2410
2960
2960 | 2020
2120
1880
1590
1600 | 2730
3310
3570
3560
3840
3730 | 3470
2920
3090
3500
3690
3280 | 8300
6470
5580
4990
4930 | | TOTAL | 99610 | 67242 | 108370 | 189440 | 94580 | 90280 | 71971 | 95570 | 76070 | 83820 | 100900 | 119160 | | MEAN | 3213 | 2241 | 3496 | 6111 | 3378 | 2912 | 2399 | 3083 | 2536 | 2704 | 3255 | 3972 | | MAX | 4730 | 4250 | 5950 | 22300 | 6240 | 12600 | 8730 | 11200 | 3830 | 3930 | 4550 | 11100 | | MIN | 1280 | 645 | 1310 | 1200 | 1190 | 1060 | 781 | 1230 | 1280 | 1480 | 2120 | 1730 | e Estimated # 03566000 HIWASSEE RIVER AT CHARLESTON, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | | SEP | |------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----|--------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 3903
9332
1990
1442
1989 | 4259
8638
1968
1681
1982 | 5323
12980
1968
2070
1988 | 6015
13060
1974
2318
2000 | 6253
16270
1990
1623
2000 | 5978
13860
1990
1866
1988 | 4366
11950
1994
1110
1988 | 3695
7922
1973
971
1988 | 3855
8897
1989
1395
1988 | 3763
6975
1967
1750
1988 | 3834
6201
1967
1810
1988 | | 3606
5118
1967
1747
1987 | | SUMMARY | STATIST | ICS | FOR | 2001 CAL | ENDAR YEAR | | FOR 2002 | WATER YEAR | | WATER YEARS | 1964 | - | 2002 | | ANNUAL | TOTAL | | | 1068672 | | | 1197013 | | | | | | | | ANNUAL | | | | 2928 | | | 3279 | | | 4563 | | | | | | ANNUAL N | | | | | | | | | 6891 | | | 1990 | | | ANNUAL ME | | | 10100 | - 00 | | 00000 | - 0- | | 1894 | | | 1987 | | | DAILY ME | | | 12400 | Jan 20 | | 22300 | Jan 25 | | 54000 | Mar 1 | | | | | DAILY MEA | | | 645 | Nov 24 | | 645 | Nov 24 | | 524 | May 2 | | | | | | Y MINIMUM | | 1080 | Jan 11 | | 1180 | Nov 23 | | 817 | Oct 2 | | | | | I PEAK FLO | | | | | | 24700 | Jan 25 | | 57000 | Mar 1 | | | | | I PEAK STA | | | 4500 | | | | .40 Jan 25 | | 29.42 | Mar 2 | 28 | 1994 | | | ENT EXCE | | | 4520 | | | 4950 | | | 7430 | | | | | | ENT EXCEI | | | 2670
1400 | | | 2830
1590 | | | 4000
2030 | | | | | 90 PERC | EMI EXCE | ZDS | | 1400 | | | 1590 | | | 2030 | | | | ## 035661285 NORTH MOUSE CREEK NEAR ROCKY MOUNT HOLLOW NEAR ATHENS, TN LOCATION.--Lat $35^{\circ}26'55$ ", long $84^{\circ}39'23$ ", McMinn County, Hydrologic Unit 06020002, on right bank at downstream end of culvert at county road, 1.5 mi west of Athens. DRAINAGE AREA.--42.1 mi² PERIOD OF RECORD.--October 1993 to current year. GAGE.--Water-stage recorder. Datum of gage is 775 ft above NGVD of 1929, from topographic map. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\tt EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft}^3/s \ and \ maximum \ (*): \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 1745 | 1,540 | 12.93 | Mar 18 | 1330 | *3,560 | *14.94 | | Jan 24 | 1930 | 1,450 | 12.78 | Sep 21 | 2115 | 1,710 | 13.20 | | Mar 17 | 1830 | 1.210 | 12.33 | _ | | | | Minimum discharge, 12 ft³/s, Nov. 18, 19, 21. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO | SEPTEMBE | IR 2002 | | | |--|--|--|--|--|--|---|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
17
17
16
15 | 15
15
14
14
14 | 18
16
15
15
15 | 29
28
29
27
26 | 123
106
97
89
82 | 42
42
42
41
40 | 247
192
163
143
130 | 108
73
137
301
167 | 42
41
41
45
47 | 25
25
29
28
25 | 32
23
21
20
20 | 17
18
18
18 | | 6
7
8
9
10 | 15
15
15
15
15 | 14
14
14
14
14 | 15
20
20
17
41 | 30
31
29
28
28 | 90
123
104
90
85 | 38
38
37
37
37 | 115
105
100
100
91 | 132
113
99
99
96 | 38
36
35
34
33 | 24
23
23
23
26 | 20
20
19
19
18 | 17
15
15
15
16 | | 11
12
13
14
15 | 15
14
14
15
15 | 13
14
14
14
14 |
52
26
115
133
59 | 27
25
25
25
24 | 81
78
74
68
67 | 36
56
52
47
45 | 82
78
74
70
68 | 87
74
115
115
87 | 33
32
32
31
31 | 26
24
33
31
27 | 18
18
18
18 | 16
15
16
17
18 | | 16
17
18
19
20 | 15
15
15
15
15 | 14
13
13
13
13 | 46
99
96
61
51 | 23
24
24
423
227 | 61
58
56
54
59 | 65
574
1630
466
281 | 65
62
59
57
55 | 79
75
100
74
67 | 29
29
29
29
28 | 25
24
24
23
23 | 21
21
20
21
23 | 17
17
19
18
17 | | 21
22
23
24
25 | 14
14
15
15
27 | 13
13
13
16
32 | 46
41
43
44
38 | 135
106
879
987
781 | 56
50
48
46
45 | 220
175
154
140
128 | 52
52
50
49
51 | 63
59
57
54
51 | 27
27
27
27
29 | 22
42
25
23
30 | 20
18
19
18
31 | 261
140
39
31
33 | | 26
27
28
29
30
31 | 16
14
14
15
15 | 18
16
15
15
29 | 37
35
34
33
31
30 | 293
212
176
154
138
124 | 45
43
42

 | 120
109
100
94
236
400 | 47
47
51
47
45 | 50
48
48
47
45
49 | 27
27
26
27
26 | 29
22
23
23
21
25 | 30
30
23
20
20 | 74
72
47
39
35 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 479
15.45
27
14
0.37
0.42 | 457
15.23
32
13
0.36
0.40 | 1342
43.29
133
15
1.03
1.19 | 5117
165.1
987
23
3.92
4.52 | 2020
72.14
123
42
1.71
1.78 | 5522
178.1
1630
36
4.23
4.88 | 2547
84.90
247
45
2.02
2.25 | 2769
89.32
301
45
2.12
2.45 | 965
32.17
47
26
0.76
0.85 | 796
25.68
42
21
0.61
0.70 | 656
21.16
32
18
0.50
0.58 | 1108
36.93
261
15
0.88
0.98 | # 035661285 NORTH MOUSE CREEK NEAR ROCKY MOUNT HOLLOW NEAR ATHENS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--|---------------------------------------|--| | MEAN 31.44 44.78
MAX 59.5 113
(WY) 1996 1996
MIN 15.1 15.2
(WY) 1994 2002 | 59.65 135.7 139 225 1997 1996 19.7 48.2 2000 2000 | 134.6
258
1994
58.2
2000 | 163.2
297
1994
64.2
2000 | 138.4
381
1994
53.1
1995 | 83.97
125
1999
41.8
2001 | 71.12
191
1997
32.2
2002 | 53.31
113
1994
25.7
2002 | 35.58
80.7
1994
21.2
2002 | 32.48
43.4
2000
19.7
2001 | | SUMMARY STATISTICS | FOR 2001 CAI | LENDAR YEAR | : | FOR 2002 | WATER YEAR | | WATER YEARS | 1994 | - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HOHEST DAILY MEAN LOWEST DAILY MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 20823
57.
1010
133
13
14.
18.
115
34 | Jan 19
Nov 11
Nov 17 | | 23778
65.
1630
13
3560
14.
a12
1.
21.
123
31 | Mar 18
Nov 11
Nov 17
Mar 18
94 Mar 18
Nov 18 | | 81.74
125
48.1
2580
13
13
5790
15.74
a12
1.94
26.38
154
48 | Oct 2
Nov 1
Apr 1
Apr 1 | 1994
2000
1 1994
8 1993
7 2001
1 1994
1 1994
8 1993 | a Also occurred Oct. 29, 1993, Nov. 19, 21, 2001. #### 03568000 TENNESSEE RIVER AT CHATTANOOGA, TN LOCATION.--Lat 35°05'12", long 85°16'43", Hamilton County, Hydrologic Unit 06020001, 0.5 mi downstream from South Chickamauga Creek, 3.0 mi downstream from Chickamauga Dam, 3.5 mi upstream from Walnut Street Bridge in Chattanooga, and at mile 467.6. DRAINAGE AREA. -- 21,400 mi², approximately. PERIOD OF RECORD.--April 1874 to current year. Monthly discharges only for some periods, published in WSP 1306. July 1930 to December 1935, published as "at Hales Bar, near Chattanooga." Gage-height records collected in this vicinity since 1874 are contained in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 353: 1874-1912. WSP 783: 1917. WSP 823: 1875(M). WSP 973: 1942. WSP 1306: 1916(M). WSP 1386: 1932-34 (station at Hales Bar near Chattanooga). GAGE.--Water-stage recorder. Datum of gage is 621.12 ft above NGVD of 1929. Prior to Feb. 1, 1939, nonrecording or recording gages at several sites from 7.0 mi upstream from Chattanooga to Hales Bar Dam 33 mi downstream at or within 0.2 ft of present datum, except nonrecording gage at Bridgeport, AL, 49.9 mi downstream at different datum Oct. 22, 1913, to Feb. 28, 1915, and Oct. 1, 1918, to Jan. 5, 1921. Auxiliary gages at several sites parts of periods since Feb. 28, 1915. Present auxiliary gage at site 2.2 mi downstream from base gage at same datum. REMARKS.--Records fair except for periods of estimated daily discharges, which are poor. Flow regulated since 1936 by many upstream reservoirs (see p. 262 and Water Resources Data for adjoining states). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 410,000 ft³/s, Mar. 1, 1875, gage height, 53.8 ft, present datum, at Walnut Street, from rating curve extended above 250,000 ft³/s; minimum daily, 1,200 ft³/s, Nov. 1, 1953; minimum gage height, 0.0 ft, Sept. 11-14, 1881, Sept. 19, 1883. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 57.9 ft, Mar. 11, 1867, present datum at Walnut Street, discharge about 459,000 ft³/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 184,100 ft³/s, Jan. 24; maximum gage height, 29.41 ft, Jan. 26; minimum daily discharge, 4,140 ft³/s, Feb. 17; minimum gage height, 11.02 ft, Jun. 19. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES MAY DAY OCT NOV DEC JAN FEB MAR APR JUN JUL AUG SEP e15000 31500 e20000 e28000 23300 e19000 e22000 e11000 e9000 e21000 e18000 e16000 e17000 e22000 e10000 e5000 e14000 e7000 e8000 e20000 e26000 e9000 e19000 2.4 e23000 e24000 e12000 e7100 ---e12000 e15000 e13000 тотат. MEAN MAX e Estimated # 03568000 TENNESSEE RIVER AT CHATTANOOGA, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------------------------------|---|---|---|--|--|---|---|--|---|---|---|---| | MEAN
MAX
(WY)
MIN
(WY) | 29170
63270
1990
16690
1984 | 33860
68330
1958
16340
1988 | 43240
94270
1973
13660
1988 | 48550
127900
1974
17370
1986 | 49540
132800
1957
20520
2000 | 46380
98850
1963
14380
1988 | 28480
107800
1994
7503
1986 | 28160
87890
1984
7805
1988 | 29280
65280
1989
11310
1988 | 29380
49670
1989
11230
1988 | 31310
41590
1994
12740
1988 | 28450
42140
1967
14090
1968 | | SUMMAR | Y STATIST | ics | FOR | 2001 CAL | ENDAR YEAR | | FOR 2002 | WATER YEAR | | *WATER YEAR | s 1954 - | 2002 | | | | | | 8855640
24260 | | | 9710570
26600 | | | 35440
53260
15070 | | 1973
1988 | | HIGHES' | T DAILY ME | IEAN | | 75000
7580
8140 | Feb 19
Apr 12
Apr 3 | | 163000
4140
11300 | Jan 25
Feb 17
Mar 10 | | 251000
1200
6790 | Mar 18
Nov 1
May 29 | 1973
1953 | | MAXIMU
MAXIMU | M PEAK FI
M PEAK ST | OW
AGE | | | Apr 3 | | 184000
29 | Jan 24
.41 Jan 26 | | 267000
38.98 | Mar 18 | 1973 | | 50 PER | CENT EXCE
CENT EXCE
CENT EXCE | EDS | | 39400
21600
10200 | | | 39500
22000
11300 | | | 57600
31100
15500 | | | ^{*} Regulated period only. ### 03571000 SEQUATCHIE RIVER NEAR WHITWELL, TN LOCATION.--Lat 35°12'22", long 85°29'48", Marion County, Hydrologic Unit 06020004, on right bank 250 ft upstream from county road bridge, 1.5 mi east of Whitwell, 3.0 mi upstream from bridge on State Highway 283, 4.5 mi downstream from Griffith Creek, and at mile 25.1. DRAINAGE AREA.--402 mi², includes 18 mi² without surface drainagae. PERIOD OF RECORD.--October 1920 to September 1994, October 1, 2001 to September 30, 2002. Prior to December 1920, monthly discharges only, published in WSP 1306. REVISED RECORD.--WSP 603: 1922(M). WSP 758: 1929(M). WSP 1033: 1943(M). WSP 1386: 1921-22, 1923-25(M), 1927-28(M), 1930(M), 1933(M). WSP 1910: Drainagae area. WDR TN-76-1: 1973-75(P). GAGE.--Data collection platform. Datum of gage is 632.73 ft above NGVD of 1929 (levels by Tennessee Valley Authority). Prior to Sept. 18, 1927, nonrecording gage at
same datum 0.03 ft higher. Sept. 18, 1927, to Sept. 30, 1930, nonrecording gage at bridge 15 ft upstream at present datum. REMARKS.--No estimated daily discharge. Records good. Prior to 1950, some diurnal fluctuation caused by small mills above station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1867 reached a stage of about 19 ft from reports of Tennessee Valley Authority. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 5,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 25
Mar 19 | 0930
0330 | 15,300
*19,100 | 15.29
*15.91 | Mar 31 | 1445 | 10,100 | 14.30 | Minimum discharge, 37 ft³/s, Sept. 12. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | AR OCTOBE | R 2001 TC | SEPTEMBE | R 2002 | | | |----------------------------------|----------------------------------|---------------------------------|--|---|-----------------------|--|---------------------------------|--|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 67 | 56 | 597 | 301 | 1420 | 350 | 7410 | 380 | 286 | 120 | 86 | 62 | | 2 | 64 | 56 | 404 | 280 | 1200 | 350 | 4850 | 726 | 269 | 116 | 82 | 60 | | 3 | 61 | 54 | 336 | 265 | 1100 | 398 | 3030 | 1590 | 255 | 112 | 77 | 58 | | 4 | 59 | 52 | 281 | 251 | 982 | 403 | 2020 | 3920 | 242 | 117 | 75 | 56 | | 5 | 57 | 52 | 241 | 239 | 869 | 381 | 1580 | 4290 | 234 | 117 | 71 | 53 | | 6 | 56 | 51 | 218 | 238 | 821 | 368 | 1320 | 2640 | 233 | 106 | 68 | 50 | | 7 | 56 | 51 | 210 | 233 | 979 | 356 | 1130 | 1770 | 232 | 101 | 65 | 48 | | 8 | 55 | 51 | 224 | 226 | 1190 | 342 | 991 | 1260 | 220 | 95 | 64 | 46 | | 9 | 54 | 51 | 250 | 220 | 1230 | 336 | 896 | 986 | 210 | 89 | 62 | 45 | | 10 | 52 | 51 | 265 | 210 | 1120 | 340 | 815 | 903 | 201 | 87 | 60 | 43 | | 11 | 51 | 56 | 319 | 209 | 991 | 334 | 732 | 1110 | 189 | 90 | 59 | 40 | | 12 | 51 | 50 | 361 | 208 | 878 | 478 | 673 | 898 | 181 | 102 | 58 | 38 | | 13 | 51 | 49 | 509 | 207 | 792 | 909 | 630 | 817 | 174 | 146 | 56 | 38 | | 14 | 58 | 50 | 3340 | 201 | 711 | 956 | 592 | 1180 | 168 | 179 | 55 | 39 | | 15 | 74 | 48 | 2690 | 197 | 650 | 839 | 557 | 1150 | 163 | 173 | 56 | 39 | | 16 | 89 | 50 | 1620 | 187 | 603 | 1020 | 520 | 876 | 158 | 174 | 58 | 39 | | 17 | 83 | 48 | 1370 | 181 | 559 | 2410 | 495 | 710 | 154 | 146 | 58 | 39 | | 18 | 71 | 49 | 1890 | 177 | 517 | 10600 | 537 | 736 | 145 | 136 | 58 | 45 | | 19 | 67 | 49 | 1440 | 1290 | 478 | 17900 | 523 | 625 | 139 | 121 | 65 | 51 | | 20 | 64 | 47 | 1060 | 3080 | 490 | 12100 | 473 | 545 | 141 | 109 | 68 | 50 | | 21 | 63 | 46 | 800 | 2370 | 510 | 5410 | 440 | 485 | 144 | 101 | 63 | 59 | | 22 | 64 | 46 | 645 | 1680 | 486 | 2710 | 414 | 441 | 136 | 94 | 63 | 96 | | 23 | 61 | 50 | 595 | 4440 | 460 | 2120 | 389 | 407 | 131 | 97 | 60 | 136 | | 24 | 58 | 60 | 608 | 13400 | 437 | 1780 | 376 | 379 | 128 | 121 | 58 | 94 | | 25 | 64 | 1490 | 571 | 15100 | 415 | 1480 | 369 | 351 | 123 | 101 | 57 | 102 | | 26
27
28
29
30
31 | 58
57
56
59
57
55 | 698
397
334
251
525 | 570
496
443
400
359
326 | 13000
6800
3000
2230
1870
1590 | 403
385
370
 | 1180
1030
894
808
4290
9080 | 341
346
374
338
341 | 355
392
405
360
337
307 | 124
120
122
122
130 | 104
94
92
90
87
88 | 72
117
87
73
68
63 | 202
470
525
355
289 | | TOTAL | 1892 | 4918 | 23438 | 73880 | 21046 | 81952 | 33502 | 31331 | 5274 | 3505 | 2082 | 3267 | | MEAN | 61.03 | 163.9 | 756.1 | 2383 | 751.6 | 2644 | 1117 | 1011 | 175.8 | 113.1 | 67.16 | 108.9 | | MAX | 89 | 1490 | 3340 | 15100 | 1420 | 17900 | 7410 | 4290 | 286 | 179 | 117 | 525 | | MIN | 51 | 46 | 210 | 177 | 370 | 334 | 338 | 307 | 120 | 87 | 55 | 38 | | CFSM | 0.16 | 0.43 | 1.97 | 6.21 | 1.96 | 6.88 | 2.91 | 2.63 | 0.46 | 0.29 | 0.17 | 0.28 | | IN. | 0.18 | 0.48 | 2.27 | 7.16 | 2.04 | 7.94 | 3.25 | 3.04 | 0.51 | 0.34 | 0.20 | 0.32 | # 03571000 SEQUATCHIE RIVER NEAR WHITWELL, TN--Continued | STATISTICS | OF | V. THTMOM | MEDI | מידעת | FOR | [시] 전 다 다 다 | VEVDC | 1921 | _ | 2002 | RV | TATA TYPE | VEVD | (TATV) | |------------|----|-----------|------|-------|-----|-------------|-------|------|---|------|----|-----------|------|--------| | MEAN | 182.6 | 464.9 | 1016 | 1371 | 1551 | 1644 | 1230 | 677.9 | 361.7 | 282.1 | 205.8 | 170.1 | |---------|-----------|-------|------|------|--------|-----------|------|-------|-------|-----------|-----------|-------| | MAX | 1626 | 3471 | 3935 | 3736 | 4126 | 3508 | 3449 | 2795 | 2381 | 1770 | 863 | 1152 | | (WY) | 1990 | 1958 | 1991 | 1937 | 1994 | 1973 | 1994 | 1984 | 1928 | 1989 | 1926 | 1950 | | MIN | 27.1 | 32.4 | 51.9 | 74.0 | 271 | 364 | 228 | 179 | 71.6 | 68.6 | 46.9 | 23.1 | | (WY) | 1932 | 1932 | 1940 | 1981 | 1941 | 1988 | 1986 | 1941 | 1988 | 1986 | 1957 | 1925 | | | | | | | | | | | | | | | | SUMMAR' | Y STATIST | 'ICS | | | FOR 20 | 002 WATER | YEAR | | | WATER YEA | RS 1921 - | 2002 | | SUMMARI STATISTICS | FOR ZUUZ WAIER IEAR | WAIER IEARS 1921 - 2002 | |--------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 286087 | | | ANNUAL MEAN | 783.8 | 759.5 | | HIGHEST ANNUAL MEAN | | 1284 1973 | | LOWEST ANNUAL MEAN | | 305 1981 | | HIGHEST DAILY MEAN | 17900 Mar 19 | 32300 Dec 23 1990 | | LOWEST DAILY MEAN | 38 Sep 12 | 16 Sep 6 1925 | | ANNUAL SEVEN-DAY MINIMUM | 39 Sep 11 | 18 Sep 6 1925 | | MAXIMUM PEAK FLOW | 19100 Mar 19 | 35400 Dec 23 1990 | | MAXIMUM PEAK STAGE | 15.91 Mar 19 | 18.02 Dec 23 1990 | | INSTANTANEOUS LOW FLOW | 37 Sep 12 | 16 Sep 6 1925 | | ANNUAL RUNOFF (CFSM) | 2.04 | 1.98 | | ANNUAL RUNOFF (INCHES) | 27.71 | 26.87 | | 10 PERCENT EXCEEDS | 1530 | 1770 | | 50 PERCENT EXCEEDS | 233 | 338 | | 90 PERCENT EXCEEDS | 52 | 61 | ### 03578000 ELK RIVER NEAR PELHAM, TN $\hbox{LOCATION.--Lat } 35^\circ17^\circ48^*, \hbox{long } 85^\circ52^\circ12^*, \hbox{Grundy County, Hydrologic Unit 06030003, on right bank at downstream side of bridge ou U.S. \hbox{Highway 41, 1.1 mi southeast of Pelham, 1.8 mi upstream from Caldwell Creek, and at mile 194.2.}$ DRAINAGE AREA. -- 65.6 mi². PERIOD OF RECORD.--October 1951 to November 1987, November 2000 to current year. REVISED RECORDS.--WRD TN 1973: 1963(P), 1965(M), 1966(P), 1969(M), 1970-71(P). GAGE.--Data collection platform. Datum of gage is 980.99 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Gage at datum 0.63 ft higher prior to Nov. 30, 1987. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $15,800 \text{ ft}^3/\text{s}$, Mar. 16, 1973, gage height, 14.08 ft; minimum, $1.0 \text{ ft}^3/\text{s}$, Sept. 27, 28, 1954. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Dec 14 | 1415 | 2,390 | 10.43 | Mar 31 | 0100 | 2,280 | 10.34 | | Jan 23 | 1800 | *5,180 | *11.97 | May 4 | 1430 | 2,150 | 10.23 | | Mar 18 | 1130 | 4.370 | 11.62 | _ | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum daily discharge, $1.1 \, \mathrm{ft}^3/\mathrm{s}$, Sept. 13. | | DAILY MEAN VALUES | | | | | | | | | | | | |--|--|--|---|--|--|--|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 23
21
19
18
16 | 22
21
20
19
e18 | 284
193
143
112
89 | 65
59
55
49
45 | 273
297
232
196
162 | 59
57
71
77
64 | 1440
650
376
271
215 | 265
254
965
1750
1110 | 28
24
20
18
36 | 11
11
12
10
8.9 | 2.50
2.4
2.3
2.2
2.1 | 2.8
2.8
2.7
2.6
2.7 | | 6
7
8
9
10 | 16
16
17
16
14 | e16
e14
14
14
14 | 74
93
197
283
238 | 49
57
50
46
55 | 160
287
273
229
198 | 60
58
55
55
79 | 175
150
130
121
109 | 447
291
209
173
241 | 38
39
29
20
16 | 9.0
9.1
8.3
7.3
6.3 | 2.1
2.0
1.9
1.9 | 3.1
3.6
3.4
2.7
2.3 | | 11
12
13
14
15 | 14
14
15
131
189 | 14
14
13
13 | 249
197
345
1710
1020 | 67
65
59
55
50 |
179
150
130
117
106 | 69
186
313
251
198 | 93
90
91
84
75 | 216
151
142
177
120 | 13
11
8.8
7.9
9.2 | 5.9
5.7
7.8
7.4
5.4 | 1.7
1.8
1.7
1.7
6.0 | 1.9
1.5
1.3
1.4 | | 16
17
18
19
20 | 103
69
52
44
38 | 13
14
14
14
14 | 418
513
873
457
298 | 45
43
43
647
996 | 95
84
73
67
88 | 354
591
2890
1440
654 | 62
55
51
50
45 | 90
72
101
96
68 | 8.2
8.0
6.2
4.7
4.3 | 4.5
4.8
4.7
4.7 | 13
10
4.4
4.7
4.8 | 2.4
2.4
2.3
2.0
1.9 | | 21
22
23
24
25 | 33
29
27
26
28 | 14
14
55
164
829 | 221
176
207
306
224 | 445
291
2630
2930
2260 | 129
97
86
78
71 | 437
306
238
196
162 | 44
44
53
42
58 | 54
46
39
35
30 | 4.8
5.5
6.9
7.0
7.5 | 4.3
4.0
4.0
3.9
3.7 | 4.3
4.4
5.3
5.4
5.0 | 3.1
2.8
2.6
2.3
2.1 | | 26
27
28
29
30
31 | 35
31
27
25
23
23 | 423
214
149
115
328 | 178
148
126
108
88
74 | 1010
492
342
273
223
189 | 70
75
64

 | 161
167
140
130
1230
1960 | 66
53
49
46
40 | 27
48
45
34
30
30 | 8.6
9.2
9.7
10
11 | 3.3
3.3
3.1
2.90
2.8
2.6 | 5.1
5.4
5.2
4.8
2.2
2.5 | 21
56
46
23
15 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1152
37.16
189
14
0.57
0.65 | 2613
87.10
829
13
1.33
1.48 | 9642
311.0
1710
74
4.74
5.47 | 13685
441.5
2930
43
6.73
7.76 | 4066
145.2
297
64
2.21
2.31 | 12708
409.9
2890
55
6.25
7.21 | 4828
160.9
1440
40
2.45
2.74 | 7356
237.3
1750
27
3.62
4.17 | 429.5
14.32
39
4.3
0.22
0.24 | 186.20
6.006
12
2.6
0.09
0.11 | 120.60
3.890
13
1.7
0.06
0.07 | 221.4
7.380
56
1.3
0.11
0.13 | e Estimated # 03578000 ELK RIVER NEAR PELHAM, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1952 - 2002, BY WATER YEAR (WY) | MEAN 42.67 115.6
MAX 341 562
(WY) 1976 1958
MIN 1.92 2.24
(WY) 1979 1957 | 210.3 247.9
475 679
1973 1974
18.2 31.5
1964 1981 | 262.4
601
1956
67.3
1968 | 283.9
707
1973
103
1985 | 221.6
522
1977
50.2
1986 | 140.7
362
1984
18.8
1987 | 43.29
178
1961
7.24
1982 | 34.49
118
1972
3.66
1954 | 29.18
168
2001
2.39
1980 | 25.37
174
1979
1.69
1954 | |---|--|--------------------------------------|-------------------------------------|--|---|--------------------------------------|--|--|--------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALENI | DAR YEAR | F | FOR 2002 WAS | TER YEAR | | WATER YEARS | 1952 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 54613.0
149.6
1890
6.9
7.6
2.28
30.97
367
52
13 | Feb 17
Jul 23
Jul 18 | | 57007.70
156.2
2930
1.3
1.8
5180
11.97
1.1
2.38
32.33
306
45
2.8 | Jan 24
Sep 13
Aug 8
Jan 23
Jan 23
Sep 13 | | 138.0
235
61.3
8800
1.0
1.2
15800
a14.08
b1.0
2.10
28.59
305
53
4.1 | Mar 16
Sep 27
Sep 23
Mar 16
Mar 16
Sep 27 | 1954
1954
1973
1973 | Previous datum. Also occurred Sept. 28. ### 03579040 SPRING CREEK OFF SPRING CREEK ROAD AT AEDC NEAR MANCHESTER, TN DRAINAGE AREA.--9.51 mi². PERIOD OF RECORD.--February 2002 to September 2002. Occasional low-flow measurements, water year 1991. GAGE.--Data logger. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $642 \text{ ft}^3/\text{s}$, Mar. 18, gage height, 6.03 ft; minimum discharge, $6.9 \text{ ft}^3/\text{s}$, on several days, gage height, 2.83 ft. | | | DISCHARG | E, CUBIC | FEET PEF | | WATER YE
Y MEAN VA | | ARY 2002 T | O SEPTEMB | BER 2002 | | | |-------|-----|----------|----------|----------|-------|-----------------------|-------|------------|-----------|----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | e15 | 12 | 75 | 20 | 11 | 9.3 | 8.2 | 7.4 | | 2 | | | | | e15 | 12 | 36 | 20 | 11 | 9.3 | 8.2 | 7.4 | | 3 | | | | | e14 | 12 | 26 | 61 | 11 | 9.4 | 8.1 | 7.3 | | 4 | | | | | e14 | 12 | 21 | 183 | 10 | 9.4 | 7.9 | 7.2 | | 5 | | | | | 14 | 11 | 18 | 40 | 10 | 9.2 | 7.7 | 7.2 | | 6 | | | | | 14 | 11 | 16 | 25 | 10 | 9.1 | 7.8 | 7.2 | | 7 | | | | | 17 | 11 | 15 | 20 | 10 | 9.6 | 7.7 | 7.1 | | 8 | | | | | 17 | 11 | 15 | 17 | 10 | 9.4 | 7.7 | 7.2 | | 9 | | | | | 15 | 11 | 14 | 16 | 9.9 | 9.3 | 7.6 | 7.1 | | 10 | | | | | 15 | 11 | 14 | 16 | 9.9 | 9.2 | 7.7 | 7.2 | | 11 | | | | | 14 | 11 | 13 | 15 | 9.9 | 9.3 | 7.6 | 7.3 | | 12 | | | | | 14 | 12 | 13 | 14 | 9.8 | 9.2 | 7.6 | 7.4 | | 13 | | | | | 13 | 11 | 12 | 14 | 9.9 | 9.3 | 7.7 | 7.4 | | 14 | | | | | 13 | 12 | 12 | 14 | 10 | 9.1 | 7.8 | 7.5 | | 15 | | | | | 14 | 12 | 12 | 13 | 10 | 9.0 | 8.8 | 7.7 | | 16 | | | | | 14 | 13 | 12 | 13 | 10 | 9.0 | 8.0 | 7.8 | | 17 | | | | | 13 | 28 | 11 | 13 | 10 | 8.9 | 7.9 | 7.8 | | 18 | | | | | 13 | 310 | 11 | 12 | 9.9 | 9.0 | 7.8 | 7.9 | | 19 | | | | | 13 | 57 | 11 | 12 | 9.8 | 9.0 | 7.9 | 7.8 | | 20 | | | | | 13 | 35 | 11 | 12 | 9.7 | 8.9 | 7.7 | 8.4 | | 21 | | | | | 13 | 27 | 11 | 12 | 9.6 | 8.9 | 7.6 | 8.1 | | 22 | | | | | 13 | 21 | 10 | 12 | 9.5 | 8.8 | 7.4 | 8.2 | | 23 | | | | | 12 | 18 | 10 | 11 | 9.7 | 8.8 | 7.4 | 7.9 | | 24 | | | | | 12 | 16 | 10 | 11 | 9.7 | 8.5 | 7.5 | 7.8 | | 25 | | | | | 12 | 15 | 9.8 | 11 | 9.8 | 8.4 | 7.4 | 8.7 | | 26 | | | | | 12 | 17 | 9.7 | 11 | 9.8 | 8.4 | 7.3 | 9.7 | | 27 | | | | | 12 | 17 | 9.6 | 11 | 9.7 | 8.3 | 7.3 | 10 | | 28 | | | | | 12 | 15 | 9.6 | 11 | 9.7 | 8.3 | 8.2 | 8.5 | | 29 | | | | | | 15 | 9.5 | 11 | 9.5 | 8.2 | 7.6 | 8.2 | | 30 | | | | | | 89 | 9.6 | 11 | 9.5 | 8.2 | 7.4 | 8.1 | | 31 | | | | | | 221 | | 11 | | 8.3 | 7.4 | | | TOTAL | | | | | 382 | 1086 | 466.8 | 673 | 298.3 | 277.0 | 239.9 | 234.5 | | MEAN | | | | | 13.64 | 35.03 | 15.56 | 21.71 | 9.943 | 8.935 | 7.739 | 7.817 | | MAX | | | | | 17 | 310 | 75 | 183 | 11 | 9.6 | 8.8 | 10 | | MIN | | | | | 12 | 11 | 9.5 | 11 | 9.5 | 8.2 | 7.3 | 7.1 | | CFSM | | | | | 1.43 | 3.68 | 1.64 | 2.28 | 1.05 | 0.94 | 0.81 | 0.82 | | IN. | | | | | 1.49 | 4.25 | 1.83 | 2.63 | 1.17 | 1.08 | 0.94 | 0.92 | e Estimated THIS PAGE IS INTENTIONALLY BLANK ## 03584020 RICHLAND CREEK AT HWY 64 NEAR PULASKI, TN LOCATION.--Lat 35°12'39", long 87°06'01", Giles County, Hydrologic Unit 06030004, bridge on Highway 64, 4.1 miles west of Pulaski. DRAINAGE AREA.--366 mi². PERIOD OF RECORD.--April 27, 1934 to September 30, 1975 published as "near Pulaski", February 2001 to current year. GAGE.--Data collection platform and pressure sensor. Datum of gage is 637.29 ft above NGVD of 1929. April 27, 1934 to September 30, 1975, recording at gage at site 1,200 ft upstream at datum 5.25 ft higher. REMARKS.--Records good, except for estimated discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,630~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 1200 | 5,620 | 16.74 | Mar 18 | 1730 | 14,000 | 22.21 | | Nov 30 | 1030 | 10,600 | 20.55 | Mar 31 | 2215 | 13,800 | 22.13 | | Dec 14 | 1400 | 4,730 | 15.60 | May 4 | 1900 | 5,580 | 16.85 | | Jan 23 | 2100 | *40,900 | *27.86 | | | | | Minimum discharge, 27 ft^3/s , Sept. 13, 14. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|-----------------------------------|---|--|-----------------------|---|---------------------------------|--|---------------------------------|------------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 103 | 159 | 3280 | 529 | e1240 | 359 | 9640 | 589 | 169 | 325 | 72 | 49 | | 2 | 98 | 153 |
1750 | 483 | 1180 | 352 | 3590 | 522 | 150 | 195 | 69 | 46 | | 3 | 95 | 145 | 1270 | 445 | 1030 | 351 | 1690 | 1680 | 138 | 136 | 64 | 43 | | 4 | 91 | 136 | 1000 | 400 | 935 | 322 | 1700 | 4510 | 129 | 111 | 56 | 40 | | 5 | 89 | 131 | 825 | 367 | 802 | 301 | 1330 | 3320 | 135 | 94 | 52 | 37 | | 6 | 92 | 126 | 705 | 421 | 836 | 290 | 1080 | 1850 | 143 | 85 | 49 | 35 | | 7 | 91 | 122 | 715 | 428 | 1070 | 283 | e938 | 1300 | 130 | 75 | 46 | 35 | | 8 | 88 | 119 | 1380 | 370 | 1070 | 276 | e845 | 950 | 122 | 67 | 43 | 33 | | 9 | 85 | 116 | 2250 | 343 | 1040 | 292 | e742 | 746 | 113 | 61 | 41 | 31 | | 10 | 83 | 113 | 1750 | 329 | 1000 | 304 | 629 | 639 | 105 | 73 | 38 | 31 | | 11 | 82 | 112 | 1650 | 319 | 913 | 277 | 548 | 575 | 99 | 461 | 37 | 30 | | 12 | 155 | 110 | 1450 | 298 | 819 | 1310 | 545 | 464 | 95 | 150 | 37 | 28 | | 13 | 473 | 108 | 2470 | 286 | 755 | 2270 | 489 | 516 | 130 | 179 | 36 | 28 | | 14 | 4990 | 106 | 4290 | 275 | 674 | 1680 | 449 | 546 | 169 | 266 | 39 | 28 | | 15 | 2460 | 104 | 3100 | 259 | 620 | 1280 | 418 | 415 | 140 | 189 | 77 | 29 | | 16 | 1340 | 103 | 2030 | 236 | 576 | 1150 | 392 | 356 | 113 | 176 | 92 | 44 | | 17 | 963 | 102 | 2120 | 222 | 524 | 6960 | e366 | 322 | 105 | 132 | 148 | 47 | | 18 | 760 | 100 | 2240 | 238 | 471 | 11900 | e340 | 347 | 97 | 115 | 95 | 42 | | 19 | 632 | 99 | 1750 | 1520 | 437 | 8020 | 311 | 303 | 91 | 114 | 78 | 53 | | 20 | 533 | 100 | 1370 | 2400 | 629 | 3560 | 295 | 267 | 85 | 108 | 67 | 51 | | 21 | 447 | 99 | 1120 | 1680 | 677 | 2650 | 284 | 246 | 78 | 95 | 66 | 62 | | 22 | 373 | 97 | 958 | 1270 | 585 | 1990 | 275 | 230 | 73 | 87 | 62 | 71 | | 23 | 325 | 98 | 1580 | 20100 | 535 | 1620 | 256 | 219 | 69 | 80 | 56 | 129 | | 24 | 292 | 122 | 1660 | 24100 | 495 | 1360 | 245 | 207 | 68 | 178 | 60 | 76 | | 25 | 335 | 186 | 1370 | 14700 | 460 | 1130 | 295 | 197 | 73 | 239 | 58 | 65 | | 26
27
28
29
30
31 | 327
246
208
190
177
167 | 163
417
795
2490
9440 | 1160
996
872
765
655
582 | 5800
2940
2130
1670
1360
1120 | 459
419
381
 | e1440
1460
1160
1030
2020
8950 | 265
244
242
465
354 | 189
182
179
170
164
205 | 148
183
161
114
105 | 139
109
92
84
77
76 | 53
50
49
99
66
54 | 465
1570
730
365
258 | | TOTAL | 16390 | 16271 | 49113 | 87038 | 20632 | 66347 | 29262 | 22405 | 3530 | 4368 | 1909 | 4551 | | MEAN | 528.7 | 542.4 | 1584 | 2808 | 736.9 | 2140 | 975.4 | 722.7 | 117.7 | 140.9 | 61.58 | 151.7 | | MAX | 4990 | 9440 | 4290 | 24100 | 1240 | 11900 | 9640 | 4510 | 183 | 461 | 148 | 1570 | | MIN | 82 | 97 | 582 | 222 | 381 | 276 | 242 | 164 | 68 | 61 | 36 | 28 | | CFSM | 1.44 | 1.48 | 4.33 | 7.67 | 2.01 | 5.85 | 2.67 | 1.97 | 0.32 | 0.38 | 0.17 | 0.41 | | IN. | 1.67 | 1.65 | 4.99 | 8.85 | 2.10 | 6.74 | 2.97 | 2.28 | 0.36 | 0.44 | 0.19 | 0.46 | e Estimated # 03584020 RICHLAND CREEK AT HWY 64 NEAR PULASKI, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2002, BY WATER YEAR (WY) | MEAN 528.7 542.4 MAX 529 542 (WY) 2002 2002 MIN 529 542 (WY) 2002 2002 | 1584
2002
1584 | 2808
2808
2002
2808
2002 | 1714
2690
2001
737
2002 | 1724
2140
2002
1307
2001 | 940.7
975
2002
906
2001 | 472.6
723
2002
222
2001 | 255.0
392
2001
118
2002 | 181.8
223
2001
141
2002 | 251.9
442
2001
61.6
2002 | 170.9
190
2001
152
2002 | |---|----------------------|--------------------------------------|-------------------------------------|--|---|-------------------------------------|-------------------------------------|---|---|-------------------------------------| | SUMMARY STATISTICS | | | FOR 20 | 02 WATI | ER YEAR | | | WATER YEARS | S 2001 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CPSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 2410
2
2
4090
2
a2 | 1.7
0
8
9
0
7.86
7
2.41
2.71
0
6 | Jan 24
Sep 12
Sep 9
Jan 23
Jan 23
Sep 13 | | | 881.7
882
882
24100
28
29
40900
27.86
a27
2.41
32.73
1720
276
57 | Jan 24
Sep 12
Sep 9
Jan 23
Jan 23
Sep 13 | 2002
2002
2002
2002 | # a Also occurred Sept. 14. ### 03588500 SHOAL CREEK AT IRON CITY, TN LOCATION.--Lat 35°01'27", long 87°34'44", Lawrence County, Hydrologic Unit 06030005, on right downstream bank at bridge, on county road, 400 ft downstream from Holly Creek, 1,350 ft upstream from Louisville and Nashville Railroad bridge, 1,350 ft northeast of Iron City Post Office, and at mile 22.3. DRAINAGE AREA. -- 348 mi². PERIOD OF RECORD. -- July 1925 to September 1994, October 2000 to current year. REVISED RECORDS.--WSP 823: Drainage area. WSP 1113: 1927(M). WSP 1436: 1926(M), 1927-29, 1930(M), 1932, 1933(M). GAGE.--Water-stage recorder. Datum of gage is 534.22 ft above NGVD of 1929. Prior to Feb. 25, 1931, nonrecording gage at railroad bridge, 1350 ft downstream at datum 0.85 ft. lower. Feb. 25, 1931, to Sept. 30, 1933, nonrecording gage at site 825 ft downstream and Oct. 1, 1933, to Sept. 30, 1957, water-stage recorder at site 750 ft downstream at datum 0.69 ft higher. REMARKS.--No estimated daily discharges. Records good. Maximum gage height at present site and datum, 24.4 ft, from high water profile. Prior to January 1951, diurnal fluctuation at low flow caused by powerplant near Lawrenceburg. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREME OUTSIDE PERIOD OF RECORD.--Flood in March 1902 reached a stage about 3 ft higher than that of Mar. 21, 1955, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $6,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 1030 | 11,000 | 12.95 | Jan 24 | 1830 | 23,900 | 18.11 | | Nov 30 | 0415 | 21,100 | 17.19 | Mar 18 | 1545 | 11,000 | 12.96 | | Dec 14 | 1115 | 6,610 | 10.11 | Mar 31 | 1945 | 14,200 | 14.50 | | Jan 23 | 2100 | *47,400 | *23.21 | | | | | Minimum discharge, 122 ft³/s, Sept. 13, 14. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|--------------------------------------|--|---|---------------------------|---|---------------------------------|--|---------------------------------|--|--|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 190 | 212 | 2590 | 527 | 964 | 516 | 5120 | 480 | 287 | 240 | 197 | 152 | | 2 | 182 | 208 | 1530 | 492 | 873 | 503 | 2250 | 464 | 263 | 232 | 184 | 148 | | 3 | 184 | 204 | 1110 | 475 | 814 | 491 | 1520 | 622 | 254 | 236 | 173 | 145 | | 4 | 183 | 216 | 893 | 453 | 779 | 457 | 1140 | 2620 | 248 | 210 | 167 | 142 | | 5 | 184 | 180 | 761 | 438 | 717 | 439 | 932 | 1610 | 308 | 197 | 161 | 138 | | 6 | 208 | 184 | 674 | 483 | 756 | 430 | 806 | 1040 | 268 | 189 | 157 | 134 | | 7 | 196 | 210 | 699 | 470 | 878 | 422 | 724 | 795 | 252 | 182 | 153 | 132 | | 8 | 181 | 209 | 1610 | 429 | 880 | 416 | 677 | 650 | 244 | 178 | 149 | 132 | | 9 | 178 | 204 | 2370 | 415 | 846 | 446 | 680 | 566 | 237 | 176 | 148 | 131 | | 10 | 174 | 201 | 1540 | 409 | 824 | 460 | 598 | 551 | 232 | 187 | 148 | 131 | | 11 | 181 | 199 | 1240 | 400 | 775 | 424 | 556 | 537 | 226 | 230 | 149 | 128 | | 12 | 811 | 198 | 1050 | 395 | 723 | 1720 | 557 | 467 | 225 | 240 | 147 | 126 | | 13 | 1080 | 194 | 3020 | 408 | 687 | 1720 | 524 | 458 | 229 | 473 | 144 | 124 | | 14 | 7480 | 192 | 5430 | 368 | 643 | 1200 | 504 | 477 | 267 | 430 | 151 | 126 | | 15 | 2420 | 192 | 2800 | 357 | 617 | 961 | 492 | 410 | 240 | 295 | 178 | 129 | | 16 | 1330 | 190 | 1780 | 343 | 594 | 1190 | 467 | 382 | 224 | 269 | 198 | 133 | | 17 | 891 | 189 | 1880 | 342 | 564 | 4470 | 448 | 374 | 224 | 237 | 259 | 169 | | 18 | 638 | 187 | 1940 | 358 | 536 | 7420 | 436 | 414 | 217 | 217 | 219 | 158 | | 19 | 523 | 187 | 1460 | 1230 | 519 | 3610 | 424 | 366 | 211 | 232 | 197 | 157 | | 20 | 448 | 187 | 1130 | 1610 | 873 | 2220 | 412 | 343 | 209 | 222 | 182 | 149 | | 21 | 393 | 184 | 943 | 1130 | 893 | 1770 | 402 | 328 | 204 | 213 | 213 | 196 | | 22 | 352 | 183 | 835 | 871 | 764 | 1310 | 403 | 317 | 198 | 202 | 181 | 186 | | 23 | 310 | 185 | 1260 | 19700 | 699 | 1100 | 381 | 311 | 196 | 202 | 167 | 162 | | 24 | 300 | 217 | 1270 | 19800 | 652 | 964 | 371 | 302 | 207 | 210 | 187 | 149 | | 25 | 366 | 318 | 1000 | 10400 | 613 | 858 | 391 | 297 | 208 | 236 | 215 | 146 | | 26
27
28
29
30
31 |
311
277
253
231
212
205 | 237
1900
2200
4970
12400 | 898
808
741
647
588
548 | 3130
1990
1480
1220
1050
921 | 616
567
535

 | 1000
960
828
763
1200
8280 | 363
358
361
494
396 | 290
294
281
277
274
313 | 251
335
245
220
214 | 224
198
186
186
204
220 | 181
169
162
162
160
157 | 488
2040
714
372
292 | | TOTAL | 20872 | 26737 | 45045 | 72094 | 20201 | 48548 | 23187 | 16910 | 7143 | 7153 | 5415 | 7529 | | MEAN | 673.3 | 891.2 | 1453 | 2326 | 721.5 | 1566 | 772.9 | 545.5 | 238.1 | 230.7 | 174.7 | 251.0 | | MAX | 7480 | 12400 | 5430 | 19800 | 964 | 8280 | 5120 | 2620 | 335 | 473 | 259 | 2040 | | MIN | 174 | 180 | 548 | 342 | 519 | 416 | 358 | 274 | 196 | 176 | 144 | 124 | | CFSM | 1.93 | 2.56 | 4.18 | 6.68 | 2.07 | 4.50 | 2.22 | 1.57 | 0.68 | 0.66 | 0.50 | 0.72 | | IN. | 2.23 | 2.86 | 4.82 | 7.71 | 2.16 | 5.19 | 2.48 | 1.81 | 0.76 | 0.76 | 0.58 | 0.80 | # 03588500 SHOAL CREEK AT IRON CITY, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002, BY WATER YEAR (WY) | MEAN 234.3 439.8
MAX 1290 1894
(WY) 1933 1978
MIN 69.4 123
(WY) 1932 1955 | 773.5 1052 1215
2968 3604 3562
1927 1974 1948
165 170 273
1964 1981 1941 | 1312 988.1 725.0 3626 2227 3425 1975 1964 1991 373 222 169 1966 1986 1936 | 378.4 297.2 222.4 223.5 1876 1131 615 1296 1928 1932 1926 1979 118 105 94.8 64.8 1988 1943 1988 1925 | |--|---|--|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1925 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 269241
737.6
13500 Feb 17
168 Aug 26
186 Oct 5
2.12
28.78
1370
366
197 | 300834
824.2
19800 Jan 24
124 Sep 13
128 Sep 9
47400 Jan 23
23.21 Jan 23
c122 Sep 13
2.37
32.16
1520
366
165 | 653.1 1178 1178 1981 44000 Feb 13 1948 41 Sep 22 1925 55 Sep 3 1925 a132000 Mar 21 1955 b27.25 Mar 21 1955 38 Aug 31 1943 1.88 25.50 1300 315 | From rating curve extended above $50,000~{\rm ft^3/s}$ on basis of slope-area measurement. Site and datum then in use (see REMARKS). Also occurred Sept. 14. #### 03593500 TENNESSEE RIVER AT SAVANNAH, TN LOCATION.--Lat 35°13'29", long 88°15'26", Hardin County, Hydrologic Unit 06040001, on right bank at upstream side of bridge on U.S. Highway 64, at Savannah, 16.8 mi downstream from Pickwick Landing Dam, and at mile 189.9. DRAINAGE AREA. -- 33,140 mi² approximately. PERIOD OF RECORD.--September 1930 to current year. Gage-height records collected in this vicinity since June 1905, are in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 853: Drainage area. WSP 1306: 1936 (monthly runoff). WSP 2110: 1966. WRD TN-73-1: 1973-96. WRD TN- 74-1: 1973. WRD TN-85-1: 1985. WRD TN-90-1: 1989. GAGE.--Data collection platform. Datum of gage is 350.06 ft above NGVD of 1929 (Levels by Tennessee Valley Authority). Prior to Oct. 1, 1992, at datum 50.06 ft lower, prior to Apr. 7, 1945, at datum 8.45 ft lower. Oct. 1, 1948 to Apr. 13, 1978 and Oct. 1, 1989 to present, auxiliary water-stage recorder on downstream end of lockwall in lower pool at Pickwick Landing Dam Apr. 13, 1978 to Sept. 30, 1989, auxiliary water-stage recorder over tailwater elevation well adjacent to the powerhouse which is an integral part of Pickwick Landing Dam, both sites 16.8 mi. upstream from base gage at same datum. Apr. 5, 1937, to Jan. 31, 1939, auxiliary nonrecording gage 4.0 mi downstream and Feb. 1, 1939, to Sept. 30, 1948, water-stage recorder 4.3 mi downstream from base gage at same datum. REMARKS.--Records good, except for estimated discharges, which are fair. Slight regulation since 1924 by Wilson Lake and increasing regulation since 1936 as other reservoirs have been built above station ((see p. 262) and Water Resources Data for adjoining states). Periodic observations of specific conductance and water temperature are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1867, 101.2 ft, Mar. 21, 1897, datum then in use, from floodmarks, discharge, 450,000 ft³/s, from rating curve extended above 320,000 ft³/s. Flood of Jan. 2, 1927, reached a stage of 92.7 ft datum then in use, discharge, 349,000 ft³/s. Minimum stage since 1905, 38.8 ft datum then in use, Sept. 8, 1925. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 299,000 ft³/s, Jan. 28; maximum gage height, 34.85 ft, Jan. 29; minimum daily discharge, 2,190 ft³/s, June 15, minimum gage height, 4.27 ft, Jan. 13. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES NOV DAY OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 91600 38500 28500 e15100 111000 e14500 e15000 e48400 e41400 e14500 e25100 e36600 e31600 2.4 --- TOTAL 1074900 MEAN MAX MIN e Estimated # 03593500 TENNESSEE RIVER AT SAVANNAH, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 2002, BY WATER YEAR (WY) | MEAN
MAX | 36220
97010 | 46730
147000 | 71370
160100 | 88430
223100 | 92320
228100 | 85260
185600 | 55290
172300 | 47350
140400 | 40160
112900 | 38050
84810 | 37260
64740 | 34550
71700 | |-------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------| | (WY) | 1990 | 1958 | 1992 | 1974 | 1957 | 1973 | 1994 | 1984 | 1997 | 1989 | 1967 | 1950 | | MIN | 18820 | 20510 | 26850 | 23710 | 30610 | 19840 | 11150 | 8977 | 10490 | 12910 | 15910 | 15800 | | (WY) | 1955 | 1954 | 1981 | 1986 | 2000 | 1988 | 1986 | 1988 | 1988 | 1988 | 1988 | 1968 | | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WA | TER YEAR | *WATER YEARS | 1946 - 2002 | |--------------------------|----------------|-----------|-------------|----------|--------------|-------------| | ANNUAL TOTAL | 16030450 | | 16812970 | | | | | ANNUAL MEAN | 43920 | | 46060 | | 55940 | | | HIGHEST ANNUAL MEAN | | | | | 86550 | 1973 | | LOWEST ANNUAL MEAN | | | | | 23090 | 1988 | | HIGHEST DAILY MEAN | 170000 | Feb 21 | 294000 | Jan 27 | 495000 | Mar 18 1973 | | LOWEST DAILY MEAN | 7360 | Apr 26 | 2190 | Jun 15 | 60 | Apr 23 1966 | | ANNUAL SEVEN-DAY MINIMUM | 10400 | May 20 | 13200 | Jun 28 | 5890 | May 20 1986 | | MAXIMUM PEAK FLOW | | | | | 507000 | Mar 18 1973 | | MAXIMUM PEAK STAGE | | | | | a96.11 | Mar 20 1973 | | 10 PERCENT EXCEEDS | 79400 | | 100000 | | 107000 | | | 50 PERCENT EXCEEDS | 36400 | | 33100 | | 42200 | | | 90 PERCENT EXCEEDS | 10700 | | 10700 | | 21200 | | Regulated period only. Datum then in use; see GAGE paragraph. ## 03595100 LITTLE DUCK RIVER SOUTHEAST OF MANCHESTER, TN LOCATION.--Lat $35^{\circ}27^{\circ}44^{\circ}$, long $86^{\circ}03^{\circ}54^{\circ}$, Coffee County, Hydrologic Unit 06040002, on left downstream side of bridge on US Highway 41, 2 mi southeast of Manchester. DRAINAGE AREA.--13.0 mi². PERIOD OF RECORD.--February 2002 to September 2002. Occasional low-flow measurements, water year 1953-54, 1956-57, 1962, 1964-65, 1970. GAGE.--Data logger and crest-stage gage. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 935 ft³/s, Mar. 18, gage height, 9.05 ft; minimum discharge, 0.50 ft³/s, Sept. 9, gage height, 3.15 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR FEBRUARY 2002 TO SEPTEMBER 2002 | | | | • | | DAI | LY MEAN VA | LUES | | | | | | |--|--------------|--------------|----------|--------------|---|---|--|---|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |

 |

 |

 |

 | e8.7
e8.5
e8.3
e8.0
e7.8 | 4.8
5.1
6.1
5.0
4.0 | 232
131
82
38
24 | 75
77
155
342
142 | 5.0
4.1
3.6
4.0
3.7 | 2.0
2.1
1.8
1.9 | 1.7
1.6
1.4
1.4 | 1.2
1.2
1.1
1.1 | | 6
7
8
9
10 |

 |

 |

 |

 | e8.0
e12
e9.0
e8.5
e8.0 | 3.8
3.5
3.2
4.2 | 18
13
10
9.2
8.0 | 71
32
21
16
15 | 3.8
3.2
2.9
2.8
2.7 | 1.8
1.8
1.8
1.8 | 1.4
1.3
1.3
1.2 | 1.0
0.94
0.99
0.90
0.91 | | 11
12
13
14
15 |

 |

 |

 |

 | e9.0
e13
24
41
16 | 4.2
21
36
19
12 | 7.4
7.0
6.9
6.7 |
15
11
11
11
8.3 | 3.9
2.6
3.4
2.9
2.8 | 1.8
1.8
24
5.2
2.2 | 1.2
1.2
1.1
1.0 | 0.83
0.88
0.84
1.5
2.4 | | 16
17
18
19
20 |

 |

 |

 |

 | 7.2
5.9
4.9
4.7 | 56
323
642
215
132 | 5.7
5.3
4.8
4.5
4.3 | 6.7
8.3
16
9.7
6.6 | 2.8
2.7
2.6
2.5
2.5 | 2.1
1.9
1.9
2.0
1.8 | 2.9
1.3
3.3
2.3
1.9 | 1.3
1.1
3.6
1.4
6.5 | | 21
22
23
24
25 |

 |

 |

 |

 | 23
14
8.6
6.7
5.3 | 89
44
29
22
18 | 4.0
5.6
5.4
5.7 | 5.4
4.7
4.2
3.8
3.8 | 2.4
2.5
2.5
2.3
2.4 | 7.1
2.1
15
4.9
2.2 | 1.7
1.6
1.8
1.6 | 3.9
6.1
2.6
1.8
6.1 | | 26
27
28
29
30
31 |

 |

 | |

 | 5.8
5.2
5.0
 | 42
42
28
55
439
402 | 9.9
7.0
5.8
4.9
4.3 | 4.6
3.7
3.5
5.0
8.1
6.2 | 3.6
2.4
2.2
2.2
2.1 | 2.0
1.8
1.8
1.7
1.7 | 3.4
1.5
1.4
1.3
1.2 | 47
39
7.0
2.9
2.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. |

 |

 |

 |

 | 304.1
10.86
41
4.7
0.84
0.87 | 2714.3
87.56
642
3.2
6.74
7.77 | 687.6
22.92
232
4.0
1.76
1.97 | 1102.6
35.57
342
3.5
2.74
3.16 | 89.1
2.970
5.0
2.1
0.23
0.25 | 105.2
3.394
24
1.6
0.26
0.30 | 49.4
1.594
3.4
1.0
0.12
0.14 | 149.39
4.980
47
0.83
0.38
0.43 | e Estimated ### 03596100 CRUMPTON CREEK AT RUTLEDGE FALLS, TN DRAINAGE AREA. -- 28.1 mi². PERIOD OF RECORD.--March 2002 to September 2002. Occasional low-flow measurements, water years 1953-54, 1956-57, 1962, 1964-65, 1970, water-quality 1975. GAGE.--Data logger and crest-stage gage. REMARKS.--Records fair except for periods of estimated daily dishcarges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,720 $\rm ft^3/s$, Mar. 31, gage height, 6.72 $\rm ft$; minimum discharge, 4.3 $\rm ft^3/s$, July 6, 7, gage height, 3.71 $\rm ft$. | | | DISCHAR | RGE, CUBIC | FEET PEF | | , WATER YE
LY MEAN VA | | 2002 TO S | EPTEMBER | 2002 | | | |-------|-----|---------|------------|----------|-----|--------------------------|-------|-----------|----------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | e10 | 324 | e9.5 | 12 | 6.6 | 6.0 | 6.0 | | 2 | | | | | | e12 | 134 | e90 | 12 | 5.6 | 6.0 | 6.0 | | 3 | | | | | | e14 | 84 | e200 | 12 | 5.6 | 5.8 | 6.0 | | 4 | | | | | | e13 | 65 | e470 | 11 | 5.6 | 5.6 | 6.1 | | 5 | | | | | | e12 | 53 | e180 | 11 | 5.6 | 5.6 | 6.1 | | 6 | | | | | | e9.0 | 46 | e80 | 11 | 5.5 | 5.6 | 6.0 | | 7 | | | | | | e8.5 | 42 | e55 | 9.7 | 5.0 | 5.4 | 6.1 | | 8 | | | | | | e9.0 | 39 | e47 | 9.4 | 5.4 | 5.4 | 5.9 | | 9 | | | | | | e14.0 | 35 | e42 | 9.1 | 5.3 | 5.3 | 5.8 | | 10 | | | | | | e13 | 33 | e36 | 8.8 | 5.3 | 5.4 | 6.1 | | 11 | | | | | | e20 | 30 | e33 | 8.5 | 5.1 | 5.3 | 6.2 | | 12 | | | | | | e37 | 29 | e31 | 8.5 | 5.1 | 5.0 | 6.2 | | 13 | | | | | | e53 | 28 | e29 | 9.3 | 18 | 5.2 | 6.4 | | 14 | | | | | | e32 | 27 | e26 | 8.8 | 9.8 | 5.3 | 6.8 | | 15 | | | | | | e23 | 25 | e23 | 8.3 | 7.0 | 5.2 | 7.4 | | 16 | | | | | | e100 | 23 | e21 | 7.9 | 6.1 | 5.7 | 7.2 | | 17 | | | | | | e400 | 22 | e30 | 7.9 | 6.8 | 5.6 | 7.0 | | 18 | | | | | | e1000 | 21 | e50 | 7.6 | 6.5 | 13 | 11 | | 19 | | | | | | 400 | 20 | e30 | 7.4 | 6.5 | 5.9 | 6.6 | | 20 | | | | | | 218 | 18 | e20 | 7.4 | 6.5 | 5.7 | 11 | | 21 | | | | | | 140 | e19 | e17 | 7.4 | 8.2 | 5.7 | 10 | | 22 | | | | | | 94 | e24 | e14 | 7.1 | 6.7 | 5.7 | 7.2 | | 23 | | | | | | 68 | e21 | e12 | 7.1 | 10 | 6.3 | 6.4 | | 24 | | | | | | 51 | e22 | e11 | 7.3 | 7.0 | 6.2 | 6.0 | | 25 | | | | | | 40 | e32 | e9.0 | 7.4 | 6.3 | 6.1 | 8.5 | | 26 | | | | | | 56 | e25 | e38 | 8.1 | 6.3 | 6.1 | 24 | | 27 | | | | | | 50 | e20 | e16 | 7.7 | 6.2 | 5.8 | 53 | | 28 | | | | | | 42 | e16 | e14 | 7.4 | 6.1 | 5.8 | 11 | | 29 | | | | | | 51 | e12 | e13 | 7.3 | 6.1 | 6.1 | 9.3 | | 30 | | | | | | 492 | e10 | e12 | 7.2 | 6.0 | 6.0 | 8.4 | | 31 | | | | | | 858 | | 13 | | 5.9 | 5.9 | | | TOTAL | | | | | | 4339.5 | 1299 | 1671.5 | 261.6 | 207.7 | 183.7 | 279.7 | | MEAN | | | | | | 140.0 | 43.30 | 53.92 | 8.720 | 6.700 | 5.926 | 9.323 | | MAX | | | | | | 1000 | 324 | 470 | 12 | _18 | _13 | _53 | | MIN | | | | | | 8.5 | 10 | 9.0 | 7.1 | 5.0 | 5.0 | 5.8 | | CFSM | | | | | | 4.98 | 1.54 | 1.92 | 0.31 | 0.24 | 0.21 | 0.33 | | IN. | | | | | | 5.74 | 1.72 | 2.21 | 0.35 | 0.27 | 0.24 | 0.37 | e Estimated ## 03597210 GARRISON FORK ABOVE L&N RAILROAD AT WARTRACE, TN LOCATION.--Lat 35°30'42", long 86°19'26", Bedford County, Hydrologic Unit 06040002, on right bank 0.3 mi above L&N Railroad bridge, 0.6 mi below Knob Creek, 1.2 mi southeast of Wartrace, and at mile 3.2. DRAINAGE AREA.--85.5 mi². PERIOD OF RECORD.--October 1989 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 769.30 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft}^3/s \ \hbox{\it and maximum} \ \ (*):$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 1715 | *17,700 | *19.89 | Mar 30 | 0045 | 5,760 | 13.36 | | Jan 24 | 1200 | 8,820 | 15.79 | Mar 30 | 1345 | 3,590 | 11.21 | | Mar 17
Mar 18 | 1300
0845 | 10,800
7,930 | 17.05
15.10 | Mar 31 | 1315 | 5,290 | 12.94 | Minimum daily discharge, 2.8 ft³/s, Sept. 13, 14. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YE
Y MEAN V | AR OCTOBE | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---|--|--|--|--|---|---|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.3
6.1
6.0
5.8
6.0 | 13
13
13
12
11 | 112
67
48
39
33 | 41
38
35
32
31 | 242
189
152
126
101 | 41
42
44
38
35 | 1160
510
331
240
189 | 142
498
571
1380
538 | 32
29
27
25
24 | 13
26
18
27
16 | 6.8
6.2
5.8
5.3 | 6.1
5.7
5.3
4.8
4.3 | | 6
7
8
9
10 | 13
18
12
9.4
8.1 | 11
11
11
11 | 29
32
245
276
207 | 40
48
43
42
46 | 122
182
172
150
133 | 35
33
33
35
35 | 155
133
120
111
95 | 305
197
135
105
94 | 64
36
28
24
22 | 13
11
11
10
9.9 | 4.6
4.1
3.9
3.5
3.5 | 3.9
3.6
3.3
3.3 | | 11
12
13
14
15 | 7.2
9.0
16
364
148 | 11
11
11
10
10 | 275
174
267
612
296 | 52
54
53
49
45 | 112
97
86
75
69 | 32
113
122
96
81 | 87
81
76
71
68 | 85
70
914
466
214 | 20
19
19
22
20 | 9.9
22
71
34
19 | 3.5
3.7
3.1
3.0
3.1 | 3.1
2.9
2.8
2.8
2.9 | | 16
17
18
19
20 | 66
42
30
24
21 | 10
10
10
10
12 | 180
247
251
176
123 | 40
38
41
515
407 | 64
58
52
50
83 | 89
6450
4340
956
533 | 61
58
54
52
50 | 138
148
275
149
108 | 18
18
17
16
14 | 14
12
10
11
12 | 4.4
8.3
11
15
14 | 4.2
6.2
12
22
13 | | 21
22
23
24
25 | 18
16
15
15
24 | 13
12
12
17
36 | 93
77
236
210
145 | 250
162
9480
6260
1980 | 80
64
58
54
51 | 375
265
212
174
142 | 49
48
43
43
48 | 86
71
62
56
50 | 14
13
13
13
13 | 9.7
8.9
11
11 | 9.7
7.2
6.2
7.8 | 129
94
45
21
16 | | 26
27
28
29
30
31 | 23
18
15
14
13 | 24
19
19
37
269 | 110
90
75
62
52
46 | 571
352
246
184
141
115 | 52
47
43
 | 352
247
192
472
2620
2910 | 41
40
40
38
35 | 47
44
40
39
40
37 | 16
14
13
13
12 | 9.2
8.9
8.1
7.2
7.6
7.0 | 17
12
9.4
9.8
8.5
7.0 | 244
640
186
90
56 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1001.9
32.32
364
5.8
0.38
0.44 | 680
22.67
269
10
0.27
0.30 | 4885
157.6
612
29
1.84
2.13 | 21431
691.3
9480
31
8.09
9.32 | 2764
98.71
242
43
1.15
1.20 | 21144
682.1
6450
32
7.98
9.20 | 4127
137.6
1160
35
1.61
1.80 | 7104
229.2
1380
37
2.68
3.09 | 628
20.93
64
12
0.24
0.27 | 469.4
15.14
71
7.0
0.18
0.20 | 227.5
7.339
17
3.0
0.09
0.10 |
1636.5
54.55
640
2.8
0.64
0.71 | # 03597210 GARRISON FORK ABOVE L&N RAILROAD AT WARTRACE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 2002, BY WATER YEAR (WY) | MEAN 58.31 100.4
MAX 285 296
(WY) 1996 1997
MIN 5.09 10.7
(WY) 2000 2000 | 271.2 314.2
825 691
1991 2002
22.1 28.4
2000 2000 | 298.7
793
1991
91.4
2000 | 358.3
726
1994
191
2001 | 200.8
503
1994
60.2
1999 | 121.2
261
1997
28.5
2001 | 72.22
294
1997
19.4
2000 | 45.26
127
1999
9.06
2000 | 32.10
92.1
1996
7.33
1999 | 39.63
240
1992
3.90
1999 | |---|--|--------------------------------------|-------------------------------------|---|---|--------------------------------------|--|---|--------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1990 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 41501.9
113.7
3520
5.8
6.6
1.33
18.06
244
31 | | | 9480
2.8
3.0
17700
19.89
a2.6
2.12
28.76
257
37
6.2 | Jan 23
Sep 13
Sep 9
Jan 23
Jan 23
Aug 13 | | 158.9
233
79.7
9480
2.0
2.1
17700
19.89
1.7
1.86
25.26
300
51
8.7 | Jan 23
Sep 18
Sep 14
Jan 23
Jan 23
Sep 9 | 1999
1999
2002
4003 | a Also occurred Aug. 14, Sept. 13, 15. ## 03597590 WARTRACE CREEK BELOW COUNTY ROAD AT WARTRACE, TN DRAINAGE AREA.--35.7 mi². PERIOD OF RECORD.--October 1989 to current year. GAGE.--Data collection platform and crest-stage gage. Datum of gage is 781.66 ft above NGVD of 1929. REMARKS.--Records good except for estimated discharge, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,400 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 1300 | *6,790 | *15.15 | Mar 18 | 0800 | 3,040 | 11.32 | | Jan 24 | 1145 | 3,780 | 12.35 | Mar 30 | 0130 | 2,830 | 10.95 | | Mar 17 | 0730 | 6,460 | 14.92 | Mar 31 | 1445 | 2,710 | 10.73 | Minimum discharge, 0.00 ft³/s, many days. | | | DISCHA | ARGE, CUB | IC FEET PE | | , WATER YE
LY MEAN VA | | ER 2001 TO |) SEPTEMBE | R 2002 | | | |--|--|--|---|--|--|--|--|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.66
0.65
0.69
0.61
0.59 | 1.6
1.6
1.7
1.7 | 33
14
8.0
5.5
4.0 | 9.5
9.0
8.5
7.7
7.4 | 157
72
51
40
31 | 11
11
12
9.8
9.3 | 312
130
75
52
39 | 42
440
355
593
132 | 3.0
2.5
2.2
1.9 | 0.30
0.29
0.27
0.69
0.72 | 0.49
0.43
0.34
0.30
0.24 | 0.63
0.47
0.40
0.30
0.21 | | 6
7
8
9
10 | 1.0
2.7
2.2
1.8
2.0 | 1.8
1.8
1.8
1.7 | 3.3
4.0
211
119
88 | 12
16
14
14
14 | 53
90
73
55
46 | 8.9
8.6
8.3
9.4 | 31
26
22
21
18 | 71
e52
e40
e28
26 | 1.8
1.7
1.5
1.3 | 0.44
0.29
0.22
0.21
0.16 | 0.19
0.15
0.13
0.11
0.09 | 0.16
0.12
0.10
0.08
0.07 | | 11
12
13
14
15 | 1.5
1.8
3.2
192
25 | 1.9
1.8
1.8
1.8 | 112
50
144
380
98 | 16
17
16
15 | 36
30
25
21
19 | 8.7
98
73
45
33 | 15
14
13
12
11 | 24
18
353
96
43 | 0.94
0.79
0.81
0.85
0.80 | 0.15
0.15
1.2
2.1
1.4 | 0.07
0.05
0.03
0.00
0.00 | 0.05
0.03
0.0
0.00
0.00 | | 16
17
18
19
20 | 7.9
4.6
3.2
2.5
2.1 | 1.9
2.1
2.1
2.0
2.1 | 49
131
93
49
30 | 13
12
14
408
166 | 17
15
13
13
37 | 40
3010
1470
256
209 | 10
9.3
8.5
7.8
7.4 | 26
46
76
30
19 | 0.79
0.72
0.62
0.59
0.56 | 0.83
0.62
0.49
0.37
0.28 | 0.00
0.03
0.09
3.0
1.6 | 0.02
0.0
0.70
4.9
8.2 | | 21
22
23
24
25 | 1.8
1.7
1.8
1.7
4.3 | 2.1
2.0
2.0
3.0
4.5 | 20
16
191
85
45 | 84
56
3800
2350
691 | 28
20
17
15
14 | 122
73
55
43
34 | 7.2
6.7
5.9
6.0
8.1 | 14
11
8.9
7.4
6.3 | 0.47
0.42
0.32
0.32
0.28 | 0.32
5.4
14
9.7
3.3 | 0.86
0.59
0.47
8.3
3.6 | 119
19
9.6
5.6
4.6 | | 26
27
28
29
30
31 | 3.2
2.2
2.1
2.0
1.9 | 3.0
2.6
2.7
16
181 | 31
23
18
15
12 | 195
105
70
53
42
33 | 15
13
11
 | 197
71
49
199
1220
1340 | 6.0
5.6
5.3
4.9
4.4 | 5.4
4.9
4.3
3.7
4.7
3.7 | 0.31
0.28
0.26
0.26
0.31 | 2.7
1.5
1.1
0.80
0.65
0.57 | 6.9
2.8
1.7
1.3
1.0 | 229
786
79
38
24 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 281.20
9.071
192
0.59
0.25
0.29 | 255.4
8.513
181
1.6
0.24
0.27 | 2092.8
67.51
380
3.3
1.89
2.18 | 8282.1
267.2
3800
7.4
7.48
8.63 | 1027
36.68
157
11
1.03
1.07 | 8744.0
282.1
3010
8.3
7.90
9.11 | 894.1
29.80
312
4.4
0.83
0.93 | 2584.3
83.36
593
3.7
2.34
2.69 | 29.30
0.977
3.0
0.26
0.03
0.03 | 51.22
1.652
14
0.15
0.05
0.05 | 35.62
1.149
8.3
0.00
0.03
0.04 | 1330.24
44.34
786
0.00
1.24
1.39 | e Estimated ## 03597590 WARTRACE CREEK BELOW COUNTY ROAD AT WARTRACE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2002, BY WATER YEAR (WY) | MEAN 23.32 49.06
MAX 109 172
(WY) 1996 1997
MIN 0.014 0.46
(WY) 2000 2000 | 350 289
1991 1999
7.46 10.3 | 127.6 146.
326 31
1991 199
36.8 77.
2002 200 | 1 215
4 2000
9 11.9 | 41.38
114
1997
2.23
1992 | 23.26
143
1997
1.57
1990 | 40.7
1999 | 20.67
79.5
1992
0.012
1991 | 23.44
167
1992
0.000
1999 | |---|-----------------------------------|--|--|--------------------------------------|--------------------------------------|--|--|---------------------------------------| | SUMMARY STATISTICS | FOR 2001 CALENDA | AR YEAR | FOR 2002 WAT | ER YEAR | | WATER YEARS | 1989 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 0.57 | Feb 16
Sep 18
Sep 29 | 25607.28
70.16
3800
0.00
0.01
6790
15.15
a0.00
1.97
26.68
101
6.3
0.28 | Jan 23 | | 67.42
97.2
36.2
4000
0.00
10900
16.02
a0.00
1.89
25.66
121
14
0.21 | Sep 22
Aug 24
Aug 24
Jan 23
Jan 23
Aug 24 | 1990
1990
1999
1999 | # a No flow many days most years. #### 03597860 DUCK RIVER AT SHELBYVILLE, TN $\label{location.--Lat 35^28^51", long 86^27^45", Bedford County, Hydrologic Unit 06040002, on right bank 125 ft upstream from U.S. \\ Highway 231 bridge, one block west of the southwest corner of the public square, and at mile 221.4.$ DRAINAGE AREA. -- 425 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1991 to current year, discharge for gage height of 12.00 ft and below only. Continuous stage records were collected by Tennessee Valley Authority from December 1981 to September 1991.
GAGE.--Data collection platform. Datum of gage is 680.00 ft above NGVD of 1929. Prior to Oct. 10, 1991 at datum 10.00 ft higher. REMARKS.--Records good except for estimated discharges, which are fair. Flow regulated by Normandy Reservoir (station 03596460) since January 1976. EXTREME FOR PERIOD OF RECORD.--Maximum discharge, not determined; maximum gage height, 33.13 ft, Mar. 28, 1994; minimum discharge, 129 ft³/s, May 20, 1992; minimum daily discharge, 125 ft³/s, July 30, 2001. EXTREMES FOR CURRENT YEAR.--Maximum discharge, not determined, maximum gage height, unknown Jan. 25; minimum discharge, 132 ${\rm ft}^3/{\rm s}$, April 30; minimum daily discharge, 137 ${\rm ft}^3/{\rm s}$, April 29. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DIDCINA | NOL, CODIC | · I DDI I DI | | Y MEAN VAL | | . 2001 10 | | 11 2002 | | | |-------|-----|---------|------------|--------------|-----|------------|-----|-----------|-----|---------|-------|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 175 | 375 | | 283 | | 187 | | 517 | 219 | 191 | 181 | 164 | | 2 | 173 | 374 | 562 | 272 | | 186 | | | 216 | 202 | 175 | 161 | | 3 | 170 | 376 | 485 | 312 | | 194 | | | 208 | 198 | 175 | 162 | | 4 | 169 | 371 | 445 | 302 | | 182 | | | 203 | 197 | 177 | 162 | | 5 | 168 | 368 | 327 | 257 | 662 | 180 | | | 205 | 186 | 176 | 160 | | 6 | 191 | 367 | 226 | 276 | | 177 | | | | 179 | 174 | 164 | | 7 | 184 | 370 | 237 | 301 | | 176 | | | 244 | 189 | 172 | 167 | | 8 | 179 | 371 | | 290 | | 173 | | | 171 | 188 | 171 | 165 | | 9 | 175 | 373 | | 283 | 811 | e175 | | 657 | 221 | 201 | 164 | 163 | | 10 | 174 | 371 | | 232 | 746 | e178 | 284 | 584 | 214 | 190 | 170 | 162 | | 11 | 172 | 370 | | 230 | 684 | e176 | 244 | 420 | 204 | 186 | 174 | 163 | | 12 | 182 | 364 | | 235 | 622 | 321 | 227 | 366 | 200 | 189 | 259 | 162 | | 13 | 207 | 362 | | 233 | 590 | 460 | 213 | | 200 | 255 | 176 | 162 | | 14 | | | | 225 | 552 | 331 | 200 | | 203 | 258 | 180 | 164 | | 15 | | 357 | | 234 | 503 | 283 | 199 | 590 | 200 | 200 | 186 | 169 | | 16 | 417 | 357 | | 225 | 307 | 348 | 187 | e430 | 197 | 196 | 183 | 183 | | 17 | 319 | 354 | | 219 | 285 | | 177 | e400 | 193 | 192 | 200 | 171 | | 18 | 274 | 354 | | 228 | 269 | | 170 | | 190 | 175 | 194 | 186 | | 19 | 252 | 354 | | | 263 | | 163 | 546 | 188 | 184 | 236 | 201 | | 20 | 238 | 354 | | | 333 | | 161 | 286 | 185 | 190 | 180 | 209 | | 21 | 230 | 351 | 683 | | 383 | | 157 | 247 | 184 | 194 | 168 | 432 | | 22 | 220 | 353 | 619 | | 320 | | 165 | 245 | 186 | 221 | 160 | 371 | | 23 | 213 | 357 | | | 287 | | 153 | 284 | 192 | 212 | 169 | 314 | | 24 | 212 | 388 | | | 257 | | 154 | 270 | 282 | 210 | 172 | 197 | | 25 | 275 | 448 | e660 | | 247 | | 165 | 186 | 188 | 182 | 187 | 185 | | 26 | 399 | | e650 | | 250 | | 150 | 172 | 187 | 190 | 198 | | | 27 | 386 | | 637 | | 236 | | 144 | 170 | 193 | 186 | 187 | | | 28 | 382 | | 589 | | 195 | | 143 | 198 | 192 | 179 | 155 | | | 29 | 379 | | 557 | | | | 137 | 250 | 189 | 175 | 168 | 540 | | 30 | 376 | | 493 | | | | 140 | 320 | 199 | 175 | 171 | 424 | | 31 | 374 | | 313 | | | | | 228 | | 179 | 167 | | | TOTAL | | | | | | | | | | 6049 | 5605 | | | MEAN | | | | | | | | | | 195.1 | 180.8 | | | MAX | | | | | | | | | | 258 | 259 | | | MIN | | | | | | | | | | 175 | 155 | | | | | | | | | | | | | | | | e Estimated #### 03597860 DUCK RIVER AT SHELBYVILLE, TN--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1991 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1991 to current year. DISSOLVED OXYGEN: October 1991 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1991. REMARKS.--Records for water temperature are good and dissolved oxygen is fair. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 30.1°C, July 30, 31, 1999; minimum, 0.1°C, Feb. 4, 5, 6, 1996. DISSOLVED OXYGEN: Maximum, 17.2, mg/L, Jan. 16, 2002; minimum, 5.7 mg/L, June 12, 1999. WATER TEMPERATURE: Maximum, 29.2°C, July 29; minimum, 3.3°C, Jan. 3. DISSOLVED OXYGEN: Maximum, 17.2 mg/L, Jan. 16; minimum, 6.4 mg/L, July 17. WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|------------------------------------|--|---| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 18.7
19.4
20.1
20.4
20.2 | 17.8
17.9
18.0
18.4
19.0 | 18.3
18.5
18.8
19.2
19.5 | 15.4
16.6
17.4
16.9
15.5 | 14.3
15.4
16.5
15.5
14.6 | 14.9
16.1
17.0
16.4
15.2 | 14.0
12.7
12.5
12.7
13.2 | 12.7
12.3
11.9
12.0
12.7 | 13.2
12.5
12.2
12.3
12.9 | 5.5
4.1
3.7
4.1
4.0 | 4.1
3.4
3.3
3.4
3.4 | 4.9
3.8
3.5
3.7 | | 6
7
8
9
10 | 19.5
18.9
17.8
17.0
17.8 | 18.9
17.8
16.5
15.8
16.1 | 19.2
18.3
17.0
16.3
16.8 | 14.9
14.4
14.5
15.0
14.8 | 13.9
13.7
13.7
14.0
13.7 | 14.5
13.9
14.0
14.5
14.3 | 13.7
14.1
15.0
14.8
13.0 | 12.8
13.3
14.1
13.0
11.8 | 13.2
13.7
14.6
13.8
12.2 | 4.5
5.0
5.2
5.3
6.9 | 3.8
4.5
4.5
4.4
5.2 | 4.1
4.8
4.8
4.9
6.0 | | 11
12
13
14
15 | 18.3
19.1
19.8
20.1
18.8 | 17.0
18.3
19.1
18.8
17.5 | 17.6
18.7
19.5
19.6
18.0 | 14.2
14.2
13.8
14.1
13.9 | 13.6
13.4
13.3
13.3
13.2 | 13.8
13.8
13.5
13.6
13.5 | 12.6
13.7
14.3
14.3 | 11.9
12.6
13.7
14.1
13.4 | 12.2
13.2
14.2
14.2
13.6 | 8.2
8.5
7.7
6.8
7.0 | 6.8
7.7
6.7
6.3
6.0 | 7.6
8.0
7.2
6.5
6.4 | | 16
17
18
19
20 | 17.5
16.3
14.8
14.8
15.8 | 16.3
14.5
13.8
13.5
13.9 | 16.9
15.6
14.3
14.1
14.7 | 13.7
13.9
14.4
14.5
14.3 | 13.0
13.0
13.5
14.0
13.2 | 13.3
13.4
14.0
14.2
13.9 | 13.8
14.2
14.2
13.0
11.9 | 13.4
13.8
13.0
11.9
10.3 | 13.5
14.0
13.6
12.2
11.2 | 6.6
6.3
7.0
7.0
8.2 | 5.8
5.8
6.1
6.2
6.4 | 6.1
6.6
6.6
7.5 | | 21
22
23
24
25 | 16.6
17.4
18.5
19.4
19.4 | 14.7
15.6
16.6
17.9
18.1 | 15.5
16.3
17.4
18.6
18.8 | 13.2
11.7
12.9
14.6
15.4 | 11.4
11.2
11.5
12.9
14.6 | 12.5
11.4
12.3
13.9
14.9 | 10.3
10.1
11.1
10.4
9.0 | 9.6
9.3
10.1
9.0
7.6 | 9.8
9.7
10.6
9.5
8.3 | 8.8
8.6
11.8
12.6
11.5 | 8.2
7.5
8.0
11.5
9.2 | 8.5
7.8
9.7
12.3 | | 26
27
28
29
30
31 | 18.1
15.7
13.8
13.8
14.3 | 15.7
13.8
13.0
13.0
13.4
13.9 | 16.9
14.8
13.4
13.3
13.8
14.3 | 14.6
15.4
15.8
15.9
15.8 | 13.7
13.9
15.4
15.6
14.0 | 14.0
14.9
15.5
15.7
14.9 | 7.6
7.1
7.7
8.0
7.6
6.4 | 6.9
6.6
6.9
7.6
6.4
5.5 | 7.1
6.9
7.3
7.8
6.9
6.0 | 9.3
9.6
10.0
10.3
11.1 | 8.2
8.6
8.8
9.8
10.1
10.2 | 8.8
9.1
9.4
10.0
10.6
10.8 | | MONTH | 20.4 | 13.0 | 16.9 | 17.4 | 11.2 | 14.3 | 15.0 | 5.5 | 11.4 | 12.6 | 3.3 | 7.1 | # 03597860 DUCK RIVER AT SHELBYVILLE, TN--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 233 03597860 DUCK RIVER AT SHELBYVILLE, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|---|--|--|---|--|--| | | | OCTOBER | | | NOVEMBER | | 1 | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 10.2
10.1
10.2
10.0
10.2 |
9.3
9.4
9.5
9.6
9.4 | 9.7
9.7
9.8
9.8 | 10.4
10.1
9.8
9.9
10.3 | 10.0
9.7
9.6
9.7
9.9 | 10.2
10
9.7
9.8
10.1 | 10.6
10.8
11.1
11.0
10.9 | 10.6
10.8
10.7 | 10.3
10.7
10.9
10.9 | 14.0
13.9
14.0 | 13.8
13.5
13.5 | 13.9
13.8
13.7 | | 6
7
8
9
10 | 9.9
10.3
10.3
10.5
10.2 | 9.6
9.8
9.9
10.2
9.9 | 9.7
9.9
10.2
10.3
10.1 | 10.8
11.2
11.0
11.1
10.9 | 10.1
10.3
10.3
10.2
10.1 | 10.3
10.5
10.5
10.4
10.3 | 10.7
10.5
10.1
10.5
10.9 | 10.3
10.1
9.6
9.7
10.5 | 10.5
10.3
9.9
10.0
10.7 | 13.6
13.3
13.5
15.5
14.2 | 13.0
13.1 | 13.1 | | 12
13
14 | 10.0
9.6
9.3
9.1
9.9 | 9.5
9.2
8.9
8.3
8.7 | 9.8
9.4
9.1
8.6
9.4 | 10.6
11.4
11.1
11.3
10.5 | 10.3
10.3
10.4
10.2
10.0 | 10.4
10.6
10.6
10.5
10.3 | 10.7
10.6
10.4
9.9
10.5 | 10.6
10.4
9.8
9.4
9.8 | 10.7
10.5
10.1
9.6
10.2 | 15.4
14.5
16.1
14.8
16.9 | 12.8
13.0
13.6 | 13.2
13.8
13.9 | | 16
17
18
19
20 | 10 7 | 9.8
10.2
10.5
10.3
10.2 | 10.1
10.5
10.7
10.5
10.5 | 10.3
10.3
10.2
11.2
12.5 | 10.1
10.0
9.8
9.8
11.2 | 10.2
10.2
10.0
10.3
12.1 | 10.6
10.4
10.5
11.0
11.7 | 10.4
9.6
9.6
10.5
11.0 | 10.5
10.1
10.1
10.8
11.3 | 17.2
15.1
16.1
14.9
13.2 | 14.0
14.2
14.0
13.0
12.9 | 14.5
14.6 | | 22
23
24 | 10.3
10.0
9.7
9.8
9.0 | | | 12.6
12.7
11.9
10.6 | | | 11.9
12.0
11.7
11.8
12.4 | | 11.8
11.9
11.3
11.4
12.1 | | 12.9
13.2
10.3
10.1 | 13.1
13.5
11.8
10.3
11.7 | | 26
27
28
29
30
31 | 10.2
10.5
10.6 | 8 8 | 9.3
10
10.4
10.5
10.5 | 10.4
10.3
9.8
9.7
10.0 | 9.8 | 10
9.8
9.7
9.5 | 12.7
12.8

 | 12.4 | 12.6 | | 13.0
12.9
12.8
12.6 | 13.1
13.1
13.1
12.9
12.7 | | MONTH | 11.3 | 8.3 | 9.9 | 12.7 | 9.3 | 10.4 | 12.8 | 9.4 | 10.8 | 17.2 | 10.1 | 13.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | DAY 1 2 3 4 5 | 12.7 | FEBRUARY | | | MARCH | | | APRIL | | 9.8
9.7
10.1
10.4
10.7 | MAY | 9.6
9.4
9.3
10.2 | | 1
2
3
4
5
6
7
8
9 | 12.7
13.0
13.3
13.6
14.3
14.4
14.2
14.2
14.1
13.7 | FEBRUARY
12.2
12.6
13.0
13.3
13.6 | 12.5
12.8
13.2
13.5
14.0 | | MARCH
13.0
13.0
12.7
12.6
13.0 | 13.3
13.1
12.9
12.9
13.6 | | APRIL
10.9
10.9
10.9
11.2
11.3 | 11.2
11.0
11.1
11.4
11.5 | | MAY
9.3
8.7
8.3
10.1
10.3 | 9.6
9.4
9.3
10.2
10.5 | | 1
2
3
4
5
6
7
8
9 | 12.7
13.0
13.3
13.6
14.3
14.4
14.2
14.1
13.7 | 12.2
12.6
13.0
13.3
13.6
14.2
14.0
14.0
13.7
13.3 | 12.5
12.8
13.2
13.5
14.0
14.3
14.1
14.1
13.9
13.5 | 13.6
13.3
13.1
13.5
14.4 | MARCH 13.0 13.0 12.7 12.6 13.0 13.5 13.1 12.3 11.9 11.5 | 13.3
13.1
12.9
12.9
13.6
13.9
13.6
12.7
12.1 | 11.3
11.2
11.3
11.6
11.6
11.5
11.4
11.2
10.9 | APRIL 10.9 10.9 10.9 11.2 11.3 11.3 11.2 10.9 10.6 10.4 | 11.2
11.0
11.1
11.4
11.5
11.4
11.3
11.0
10.8
10.6 | 9.8
9.7
10.1
10.4
10.7 | 9.3
8.7
8.3
10.1
10.3
10.3
10.0
9.7 | 9.6
9.4
9.3
10.2
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.7
13.0
13.3
13.6
14.3
14.4
14.2
14.2
14.1
13.7 | FEBRUARY 12.2 12.6 13.0 13.3 13.6 14.2 14.0 14.0 13.7 13.3 13.5 13.7 13.8 | 12.5
12.8
13.2
13.5
14.0
14.3
14.1
14.1
13.9
13.5
13.5
13.7 | 13.6
13.3
13.1
13.5
14.4
14.4
14.3
13.1
12.3
12.1
12.3
11.9 | MARCH 13.0 13.0 12.7 12.6 13.0 13.5 13.1 12.3 11.9 11.5 11.5 11.5 11.9 | 13.3
13.1
12.9
12.9
13.6
13.9
13.6
12.7
12.1
11.8
11.8
12.1
11.7 | 11.3
11.2
11.6
11.6
11.5
11.4
11.2
10.9
10.8 | APRIL 10.9 10.9 11.2 11.3 11.3 11.2 10.9 10.6 10.4 10.0 9.8 9.7 9.6 | 11.2
11.0
11.1
11.4
11.5
11.4
11.3
11.0
10.8
10.6 | 9.8
9.7
10.1
10.4
10.7
10.5
10.5
10.3
10.1
10.3
10.4
10.2
9.6 | MAY 9.3 8.7 8.3 10.1 10.3 10.3 10.0 9.7 10.0 10.2 9.5 8.5 8.7 | 9.6
9.4
9.3
10.2
10.5
10.4
10.1
10
10.2
10.3
10
9.3
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 12.7
13.0
13.3
13.6
14.3
14.4
14.2
14.1
13.7
13.6
13.8
14.0
14.2
14.1 | FEBRUARY 12.2 12.6 13.0 13.3 13.6 14.2 14.0 14.0 13.7 13.3 13.5 13.7 13.8 13.6 | 12.5
12.8
13.2
13.5
14.0
14.3
14.1
13.9
13.5
13.5
13.7
13.8
13.9
13.9 | 13.6 13.3 13.1 13.5 14.4 14.4 14.3 13.1 12.3 12.1 12.1 12.7 11.9 11.7 11.9 | MARCH 13.0 13.0 12.7 12.6 13.0 13.5 13.1 12.3 11.9 11.5 11.5 11.9 11.5 11.9 10.9 | 13.3
13.1
12.9
12.9
13.6
13.9
13.6
12.7
12.1
11.8
11.8
12.1,7
11.5
11.4 | 11.3
11.2
11.6
11.6
11.5
11.4
11.2
10.9
10.8
10.5
10.2
10.2
10.2 | APRIL 10.9 10.9 11.2 11.3 11.3 11.2 10.9 10.6 10.4 10.0 9.8 9.7 9.6 9.6 9.4 9.2 9.1 8.9 | 11.2
11.0
11.1
11.4
11.5
11.4
11.3
11.0
10.8
10.6
10.3
10.0
10
9.8
9.8
9.7
9.5
9.3 | 9.8
9.7
10.1
10.4
10.7
10.5
10.5
10.3
10.1
10.3
10.4
10.2
9.6
10.6
10.8 | MAY 9.3 8.7 8.3 10.1 10.3 10.3 10.0 9.7 10.0 10.2 9.5 8.7 10.5 10.4 9.5 9.6 10.2 | 9.6
9.4
9.3
10.2
10.5
10.4
10.1
10
10.2
10.3
10
9.3
10.0
10.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 12.7
13.0
13.3
13.6
14.3
14.4
14.2
14.2
14.1
13.7
13.6
13.8
14.0
14.2
14.1 | FEBRUARY 12.2 12.6 13.0 13.3 13.6 14.2 14.0 14.0 13.7 13.3 13.5 13.7 13.8 13.6 13.3 13.5 13.7 13.8 13.6 | 12.5
12.8
13.2
13.5
14.0
14.3
14.1
14.1
13.9
13.5
13.5
13.7
13.8
13.9
13.9 | 13.6
13.3
13.1
13.5
14.4
14.4
14.3
12.3
12.1
12.3
11.9
11.7
11.9
11.2
10.7
11.5
11.6 | MARCH 13.0 13.0 12.7 12.6 13.0 13.5 13.1 12.3 11.9 11.5 11.5 11.9 11.5 11.4 11.6 11.7 11.6 | 13.3
13.1
12.9
12.9
13.6
13.9
13.6
12.7
12.1
11.8
12.1
11.5
11.4
10.8
10.0
11.3
11.5
11.8
12.0
12.1 | 11.3
11.2
11.6
11.6
11.5
11.4
11.2
10.9
10.8
10.5
10.2
10.2
10.2
10.0
9.7
9.6
9.3
9.2
9.3
9.5
9.2 | APRIL 10.9 10.9 11.2 11.3 11.3 11.2 10.9 10.6 10.4 10.0 9.8 9.7 9.6 9.6 9.4 9.2 9.1 8.9 8.6 8.5 8.6 8.6 8.6 | 11.2
11.0
11.1
11.4
11.5
11.4
11.3
11.0
10.8
10.6
10.3
10.0
9.8
9.8
9.7
9.5
9.3
9.1
8.8
8.8
8.8
8.8 | 9.8
9.7
10.1
10.4
10.7
10.5
10.5
10.3
10.1
10.3
10.4
10.2
9.6
10.6
10.8
10.5
10.1
10.2
11.0
11.0
11.0
11.0
11.0
11.0 | MAY 9.3 8.7 8.3 10.1 10.3 10.3 10.0 9.7 10.0 10.2 9.5 8.7 10.5 10.4 9.5 9.6 10.2 10.3 10.4 10.4 10.4 10.3 9.8 | 9.6
9.4
9.3
10.2
10.5
10.4
10.1
10
10.2
10.3
10
9.3
10.0
10.7
10.4
9.9
9.8
10.5
10.6 | # 03597860 DUCK RIVER AT SHELBYVILLE, TN--Continued OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | A | UGUST | | ٤ | SEPTEMBE | R | | 1
2
3
4
5 | 9.9
9.4
9.5
9.1
8.7 | 8.3
8.0
7.9
7.8
7.7 | 8.8
8.4
8.3
8.1
8.0 | 7.8
7.8
7.8 | 7.5
7.5
7.5 |
7.7
7.7
7.7 | 8.1
8.3
8.2
8.0 | 7.6
7.8
7.8
7.7
7.6 | 7.9
7.9
8.0
7.9
7.8 | 7.8
8.1
8.3
8.5 | 7.2
7.6
7.9
8.1
8.1 | 7.6
7.9
8.1
8.2
8.3 | | 6
7
8
9
10 | 8.4
8.4
8.7
8.9
8.5 | 7.8
8.0
8.1
8.0
8.0 | 8.1
8.1
8.3
8.3 | 7.8
7.8
7.8
7.7 | 7.5
7.5
7.5
7.4
7.4 | 7.6
7.6
7.6
7.6
7.6 | 7.9
8.1
8.3
8.4
8.6 | 7.5
7.6
7.8
8.0
7.6 | 7.7
7.8
8.1
8.2
8.3 | 8.3
8.5
8.5
8.2
8.2 | 8.2
8.0
7.6
7.8
7.5 | 8.3
8.2
8.2
8.1
7.9 | | 11
12
13
14
15 | 8.4
8.3
8.1
8.2
8.7 | 7.5
7.2
7.3
7.3
7.4 | 8.0
7.8
7.7
7.6
7.9 | 7.8
7.8
7.8
8.1
8.0 | 7.5
7.4
7.4
7.6
7.3 | 7.6
7.6
7.6
7.9
7.8 | 8.4
8.4
8.2
8.4
8.3 | 8.1
7.8
7.8
6.8
7.9 | 8.2
8.2
8.0
8.0 | 8.2
8.6
8.1
7.9
7.8 | 7.5
7.4
7.3
7.5
7.3 | 7.8
7.7
7.6
7.6
7.6 | | 16
17
18
19
20 | 8.4
8.6
8.9
8.8
8.2 | 7.9
8.1
8.0
7.8
7.5 | 8.1
8.2
8.3
8.2
7.9 | 7.4
7.8
7.8
8.0
8.0 | 6.8
6.4
7.2
7.5
7.8 |
7.2
7.3
7.6
7.8
7.9 | 8.3
8.3
8.3
8.2 | 7.9
7.9
7.6
7.3
7.8 | 8.1
8.1
8.1
7.9
8.1 | 7.6
7.7
7.5
7.7 | 7.4
7.4
7.1
7.2
7.3 | 7.5
7.5
7.3
7.5
7.4 | | 21
22
23
24
25 | 8.1
7.8
7.9
8.0
7.9 | 7.2
7.1
7.1
7.3
7.4 | 7.6
7.3
7.4
7.5
7.6 | 8.0
7.9
7.9
8.1
8.0 | 7.8
7.5
7.4
7.6
7.6 | 7.9
7.8
7.6
7.8
7.8 | 8.4
8.4
8.3
8.3 | 8.1
8.1
7.9
8.1
8.0 | 8.2
8.2
8.2
8.2
8.1 | 7.6
7.9
8.2
8.2
8.4 | 7.3
7.6
7.9
8.0
8.1 | 7.5
7.7
8.0
8.1
8.3 | | 26
27
28
29
30
31 | 8.0
8.0
8.0
8.1 | 7.5
7.5
7.6
7.7 | 7.6
7.6
7.8
7.8 | 7.9
7.8
7.8
7.6
7.4
7.6 | 7.5
7.5
6.9
6.8
6.8
7.2 | 7.7
7.6
7.5
7.3
7.1
7.4 | 8.4
8.4
8.3
8.3 | 8.1
8.1
8.1
7.8
7.7 | 8.2
8.2
8.2
8.2
8.1
7.9 | 8.7
8.5
9.2
9.0
8.8 | 8.3
7.4
8.5
8.7
8.6 | 8.5
7.8
8.9
8.9 | | MONTH | 9.9 | 7.1 | 7.9 | 8.1 | 6.4 | 7.6 | 8.6 | 6.8 | 8.1 | 9.2 | 7.1 | 8.0 | THIS PAGE IS INTENTIONALLY BLANK #### 03598000 DUCK RIVER NEAR SHELBYVILLE, TN LOCATION.--Lat 35°28'49", long 86°29'57", Bedford County, Hydrologic Unit 06040002, on right bank 150 ft downstream from Sims Bridge, 2.1 mi upstream from Sugar Creek, 2.2 mi west of Shelbyville, 2.9 mi downstream from Flat Creek, and at mile 216.2. DRAINAGE AREA. -- 481 mi². PERIOD OF RECORD.--October 1933 to current year. Prior to April 1934, monthly discharge only, published in WSP 1306. REVISED RECORDS. -- WSP 783: 1934. WSP 853: Drainage area. GAGE.--Data collection platform. Datum of gage is 683.51 ft above NGVD of 1929. Prior to Sept. 2, 1966, at datum 2.0 ft higher. REMARKS.--No estimated daily discharges. Records good. Maximum discharge prior to regulation, 62,900 ft³/s, Feb. 13, 1948, gage height, 38.40 ft, present datum, from floodmarks, from rating curve extended above 35,000 ft³/s on basis of slope-area measurement of peak flow. Prior to 1948, diurnal fluctuation caused by powerplant upstream. Flow regulated by Normandy Reservoir (station 03596460) since January 1976. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of 39.6 ft present datum, discharge, about 70,000 ft³/s, from high-water profile by Tennessee Valley Authority. Flood in March 1902 reached a stage about 2.0 ft higher than that in March 1929, from information by local residents. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,600 $\mathrm{ft^3/s}$, at 0630 hours Feb. 17, gage height 22.07 ft; minimum discharge, 133 $\mathrm{ft^3/s}$, Aug. 28, 29; minimum daily, 162 $\mathrm{ft^3/s}$, Aug. 28. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | DAII | Y MEAN VAL | UES | | | | | | |---|--|-----------------------------------|--|--|-----------------------|--|---|---|---------------------------------|---|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 210 | 401 | 1010 | 297 | 3460 | 241 | 7200 | 758 | 269 | 220 | 213 | 176 | | 2 | 205 | 402 | 688 | 279 | 1610 | 236 | 4230 | 623 | 263 | 226 | 205 | 175 | | 3 | 197 | 403 | 563 | 324 | 1370 | 245 | 3430 | 2770 | 253 | 231 | 205 | 177 | | 4 | 190 | 399 | 501 | 320 | 1070 | 229 | 2310 | 5860 | 244 | 230 | 206 | 179 | | 5 | 183 | 396 | 407 | 270 | 756 | 219 | 1550 | 4240 | 246 | 220 | 204 | 177 | | 6 | 215 | 392 | 266 | 296 | 788 | 215 | 1420 | 3400 | 910 | 207 | 201 | 180 | | 7 | 205 | 392 | 281 | 327 | 1100 | 212 | 1340 | 2610 | 359 | 217 | 198 | 183 | | 8 | 197 | 391 | 721 | 315 | 1060 | 207 | 1280 | 1150 | 238 | 216 | 197 | 183 | | 9 | 190 | 389 | 1390 | 305 | 957 | 215 | 1030 | 802 | 278 | 256 | 188 | 180 | | 10 | 184 | 387 | 1070 | 260 | 882 | 221 | 417 | 718 | 273 | 228 | 194 | 178 | | 11 | 180 | 389 | 1520 | 256 | 810 | 200 | 359 | 538 | 259 | 219 | 196 | 177 | | 12 | 198 | 387 | 1350 | 259 | 734 | 407 | 338 | 473 | 250 | 229 | 289 | 177 | | 13 | 218 | 385 | 2020 | 257 | 695 | 606 | 322 | 1000 | 251 | 317 | 193 | 179 | | 14 | 2050 | 381 | 3950 | 245 | 650 | 449 | 309 | 1270 | 257 | 344 | 191 | 183 | | 15 | 1170 | 378 | 2400 | 249 | 613 | 390 | 296 | 692 | 249 | 257 | 201 | 192 | | 16 | 597 | 376 | 1720 | 239 | 420 | 493 | 277 | 536 | 239 | 237 | 197 | 216 | | 17 | 422 | 375 | 2040 | 231 | 386 | 9240 | 264 | 496 | 232 | 232 | 228 | 203 | | 18 | 350 | 375 | 2200 | 243 | 361 | 17300 | 253 | 937 | 228 | 208 | 214 | 220 | | 19 | 310 | 375 | 1630 | 2130 | 345 | 8560 | 242 | 679 | 223 | 220 | 270 | 238 | | 20 | 284 | 377 | 939 | 2320 | 422 | 5290 | 238 | 369 | 221 | 224 | 195 | 243 | | 21 | 268 | 374 | 1090 | 1910 | 491 | 4580 | 231 | 317 | 217 | 226 | 176 | 529 | | 22 | 253 | 374 | | 1550 | 413 | 2960 | 244 | 302 | 220 | 258 | 165 | 463 | | 23 | 243 | 377 | | 12200 | 374 | 2500 | 223 | 351 | 222 | 281 | 174 | 391 | | 24 | 239 | 406 | | 24200 | 334 | 2250 | 226 | 337 | 330 | 261 | 179 | 232 | | 25 | 296 | 496 | | 18100 | 318 | 2050 | 240 | 246 | 227 | 223 | 195 | 207 | | 26
27
28
29
30
31 | 443
425
418
414
408
402 | 516
934
775
1020
2200 | 791
705
645
601
541
349 | 8150
5730
4920
4380
3900
3500 | 319
305
254
 | 2390
2020
1410
1220
6000
7860 | 217
204
202
197
195 | 217
213
238
284
398
284 | 223
223
218
210
223 | 225
221
208
202
201
208 | 205
201
162
174
186
181 | 764
3140
1140
706
552 | | TOTAL MEAN MAX MIN (†) MEAN(‡) CFSM(†) IN.(‡) | | | 3950
266
-1200 | | | 200
+16700
3130
52 6.51 | 29284
976.1
7200
195
-3300
866
1.80
2.01 | 33108
1068
5860
213
+1400
1110
2.31
2.67 | | 7252
233.9
344
201
-2700
147
0.31
0.35 | | | | | | | 706 CF
967 CF | | | (‡) 19.91
(‡) 27.29 | | | | | | | ^(†) Change in contents, in cfs-days in Normandy Lake.(‡) Adjusted for chage in content.NOTE.--Contents (cfs-days) for adjustments furnished by Tennessee Valley Authority. ## 03598000 DUCK RIVER NEAR SHELBYVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 2002, BY WATER YEAR (WY) | MEAN | 354.0 | 905.2 | 1322 | 1433 | 1295 | 1518 | 937.8 | 715.5 | 522.4 | 340.7 | 287.2 | 308.2 | |------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------| | MAX | 1314 | 2277 | 4132 | 3160 | 3730 | 3649 | 2992 | 2753 | 2151 | 1670 | 749 | 1036 | | (WY) | 1990 | 1987 | 1992 | 2002 | 1994 | 1980 | 1994 | 1983 | 1989 | 1989 | 1998 | 1992 | | MIN | 157 | 170 | 289 | 175 | 339 | 308 | 165 | 137 | 166 | 166 | 154 | 163 | | (WY) | 1988 | 1988 | 2000 | 1986 | 1978 | 1988 | 1986 | 1988 | 1988 | 1987 | 1983 | 1980 | | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | *WATER YEARS | 1977 - 2002 | |--------------------------|----------------|----------|--------------|---------|--------------|-------------| | ANNUAL TOTAL | 256390 | | 357298 | | | | | ANNUAL MEAN | 702.4 | | 978.9 | | 824.3 | | | HIGHEST ANNUAL MEAN | | | | | 1253 | 1991 | | LOWEST ANNUAL MEAN | | | | | 257 | 1981 | | HIGHEST DAILY MEAN | 10700 | Feb 17 | 24200 | Jan 24 | 24200 | Jan 24 2002 | | LOWEST DAILY MEAN | 159 | May 27 | 162 | Aug 28 | 72 | Oct 1 1982 | | ANNUAL SEVEN-DAY MINIMUM | 174 | Jun 20 | 176 | Aug 28 | 88 | Sep 25 1982 | | MAXIMUM PEAK FLOW | | | 26400 | Jan 24 | 26400 | Jan 24 2002 | | MAXIMUM PEAK STAGE | | | 29.96 | Jan 24 | 29.96 | Jan 24 2002 | | INSTANTANEOUS LOW FLOW | | | a155 | Aug 28 | 71 | Sep 30 1982 | | 10 PERCENT EXCEEDS | 1920 | | 2160 | | 2040 | | | 50 PERCENT EXCEEDS | 299 | | 315 | | 304 | | | 90 PERCENT EXCEEDS | 187 | | 197 | | 172 | | Regulated period only. Also occurred Aug. 29. #### 03598250 NORTH FORK CREEK NEAR POPLINS CROSSROADS, TN LOCATION.--Lat 35°35'06", long 86°35'45", Bedford County, Hydrologic Unit 06040002, on left bank 25 ft downstream from State Highway 270 bridge, 1.2 mi downstream from Weakly Creek, 0.8 mi northwest of Poplins Crossroads, and at mile 3.4. DRAINAGE AREA.--71.9 mi². PERIOD OF RECORD.--April 1994 to April 1995, October 1998 to current year. GAGE.--Data logger. Elevation of gage is 662 ft above NGVD of 1929, from topographic map. REMARKS.--No esitmated daily discharges. Records good. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan 23 | 1745 | *7,290 | *15.59 | Mar 17 | 1515 | 5,320 | 13.82 | | Jan 24 | 2030 | 5,060 | 13.55 | Mar 31 | 1730 | 3,940 | 12.34 | Minimum discharge, no flow, many days. | | | DISCHAR | GE, CUBIO | C FEET PER | | WATER YI
Y MEAN V | | ER 2001 TC | SEPTEMBI | ER 2002 | | | |--|---|---|--|--|--
--|---|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.4
1.9
1.5
1.1
0.98 | 9.8
8.9
7.7
6.7
6.0 | 167
107
79
62
51 | 34
30
28
25
23 | 192
122
90
81
63 | 22
21
22
19
17 | 759
236
142
99
75 | 92
260
519
888
236 | 3.9
2.8
2.0
1.5 | 0.15
2.7
2.2
1.3
0.66 | 0.71
0.54
0.42
0.31
0.25 | 0.12
0.12
0.09
0.06
0.04 | | 6
7
8
9
10 | 2.7
5.6
6.2
4.4
3.2 | 5.3
5.0
4.5
4.2
3.8 | 43
44
202
230
161 | 32
51
40
36
34 | 76
144
119
90
86 | 15
14
13
14
19 | 59
50
43
39
34 | 127
89
65
50
47 | 25
12
4.9
2.9
1.8 | 0.42
0.30
0.24
0.24 | 0.23
0.17
0.13
0.13 | 0.06
0.06
0.03
0.00 | | 11
12
13
14
15 | 2.5
4.0
9.0
395
146 | 4.1
3.8
3.2
2.9
2.7 | 234
139
275
541
221 | 40
41
36
32
29 | 87
67
57
49
44 | 17
145
164
97
73 | 29
27
24
21
18 | 54
38
406
184
88 | 1.2
1.4
1.5
1.7 | 12
81
95
37
19 | 0.09
0.08
0.06
0.06
0.13 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 87
61
47
37
30 | 2.5
2.4
2.2
2.2
2.3 | 141
184
183
117
86 | 25
24
32
580
317 | 40
36
31
28
59 | 81
3110
2230
463
376 | 16
14
12
11 | 60
49
80
51
37 | 0.67
0.59
0.47
0.36
0.28 | 11
7.4
5.2
3.9
2.9 | 0.13
0.18
0.15
0.17
0.14 | 0.00
0.00
0.04
0.07
0.12 | | 21
22
23
24
25 | 24
20
17
16
28 | 2.1
2.0
2.1
3.3 | 70
60
327
184
112 | 161
112
4130
4340
2490 | 59
41
35
31
28 | 248
142
107
84
67 | 9.4
8.7
7.5
8.9 | 28
22
18
13 | 0.23
0.19
0.16
0.15
0.17 | 2.3
1.8
1.5
12
9.1 | 0.10
0.07
0.06
0.29
2.3 | 0.27
9.5
4.6
2.5
2.0 | | 26
27
28
29
30
31 | 30
21
16
14
12 | 17
23
51
155
693 | 85
69
59
51
43
38 | 380
224
156
123
100
82 | 29
28
24
 | 191
125
83
93
1300
2590 | 8.9
7.1
6.2
5.2
4.4 | 8.9
7.4
6.0
4.7
5.7
5.3 | 0.18
0.20
0.18
0.15
0.13 | 4.3
3.3
2.0
1.2
1.0
0.96 | 0.59
0.32
0.27
0.22
0.20
0.13 | 79
246
93
41
23 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1057.48
34.11
395
0.98
0.47
0.55 | 1056.7
35.22
693
2.0
0.49
0.55 | 4365
140.8
541
38
1.96
2.26 | 13787
444.7
4340
23
6.19
7.13 | 1836
65.57
192
24
0.91
0.95 | 11962
385.9
3110
13
5.37
6.19 | 1795.3
59.84
759
4.4
0.83
0.93 | 3550.0
114.5
888
4.7
1.59
1.84 | 68.91
2.297
25
0.13
0.03
0.04 | 338.07
10.91
95
0.15
0.15
0.17 | 8.73
0.282
2.3
0.06
0.00 | 501.68
16.72
246
0.00
0.23
0.26 | ## 03598250 NORTH FORK CREEK NEAR POPLINS CROSSROADS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2002, BY WATER YEAR (WY) | MEAN 17.19 32.41
MAX 51.4 104
(WY) 1995 1995
MIN 0.002 0.50
(WY) 2000 1999 | 140.8 256.7 170.5 226 472 433 1999 2001 25.6 2000 2000 2002 | 243.2 149.7 57.16 386 369 115 2002 1994 2002 147 29.7 3.89 2001 1999 2001 | 5.891 8.509 25.11 7.961 12.8 18.6 94.2 24.9 2001 1994 2001 1994 2.30 0.61 0.016 0.000 2002 2000 1999 1999 | |---|---|---|---| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1994 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 33551.25
91.92
2630 Feb 16
0.20 Jul 3
0.30 Jun 27 | 40326.87
110.5
4340 Jan 24
0.00 Sep 9
0.00 Sep 9
7290 Jan 23
15.59 Jan 23
a0.00 Sep 9
1.54
20.86 | 90.38 110 2002 61.7 2000 4700 Jan 23 1999 0.00 Aug 4 1999 0.00 Aug 4 1999 7390 Jan 23 1999 15.67 Jan 23 1999 0.00 Aug 4 1999 1.266 17.08 | | 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 177
16
0.88 | 183
17
0.15 | 166
9.4
0.03 | a No flow many days, most years. #### 03599500 DUCK RIVER AT COLUMBIA, TN LOCATION.--Lat 35°37'05", long 87°01'56", Maury County, Hydrologic Unit 06040003, on right bank 4 ft downstream from bridge on former U.S. Highway 31, 2 blocks north of public square in Columbia, 2.4 mi upstream from Rutherford Creek, and at mile 132 8 DRAINAGE AREA. -- 1,208 mi². PERIOD OF RECORD.--October 1904 to December 1908, April 1920 to current year. Monthly discharge only for some periods, published in WSP 1305. Gage-height records collected at same site, 1887-95, 1911 (fragmentary), 1947-71, published in reports of U.S. Weather Bureau. Discharge records furnished by Tennessee Valley Authority, 1983-1991. REVISED RECORD.--WSP 783: 1929(M). WSP 853: Drainage area. WSP 1306: 1905-9, 1920-22, 1923(M). GAGE.--Data collection platform. Datum of gage is 535.33 ft above NGVD of 1929, supplementary adjustment of 1955. Prior to Jan. 9, 1925, nonrecording gages near this site; all gages at datum 2.37 ft higher prior to Oct. 1, 1933. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Maximum discharge prior to regulation, 61,500 ft³/s, Mar. 17, 1973; maximum gage height, 51.75 ft Feb. 14, 1948; no flow Oct. 22, 1922, caused by regulation by power plant .75 mi upstream. Flow regulated by Normandy Lake (station 03596460) since January 1976. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 30, 1902, reached a stage of 48.0 ft, present datum, discharge, 50,700 ft³/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 51,000 ft³/s, Jan. 26, gage height, 45.61 ft; minimum discharge, 161 ft³/s, Sept. 12-14, gage height, 1.47 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | DAII | Y MEAN VAL | UES | | | | | | |--|--|--|---|---

--|---
--|---|--|---| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 302 | 507 | 8250 | 968 | 5250 | 590 | 24300 | 1400 | 428 | 221 | 221 | 193 | | 276 | 496 | 3880 | 814 | 5670 | 520 | 19600 | 2480 | 344 | 216 | 217 | 188 | | 261 | 488 | 2300 | 724 | 3720 | 501 | 9280 | 5200 | 294 | 222 | 214 | 186 | | 248 | 480 | 1700 | 676 | 2740 | 481 | 6060 | 10800 | 267 | 217 | 204 | 181 | | 249 | 470 | 1370 | 694 | 2280 | 464 | 4430 | 12900 | 249 | 223 | 197 | 174 | | 387 | 462 | 1140 | 681 | 1780 | 432 | 3020 | 8010 | 244 | 218 | 192 | 170 | | 390 | 452 | 945 | 654 | 1980 | 410 | 2560 | 5450 | 724 | 207 | 189 | 174 | | 306 | 448 | 1470 | 768 | 2840 | 394 | 2270 | 4190 | 736 | 194 | 181 | 184 | | 277 | 447 | 4260 | 791 | 2630 | 399 | 2070 | 2340 | 408 | 195 | 179 | 176 | | 258 | 441 | 4380 | 735 | 2230 | 414 | 1860 | 1700 | 277 | 231 | 178 | 171 | | 245 | 435 | 3330 | 707 | 2010 | 417 | 1220 | 1510 | 253 | 362 | 178 | 166 | | 287 | 431 | 3720 | 644 | 1840 | 1380 | 948 | 1270 | 259 | 385 | 174 | 162 | | 405 | 428 | 3770 | 645 | 1640 | 3480 | 840 | 1950 | 251 | 300 | 176 | 161 | | 4260 | 426 | 6650 | 624 | 1480 | 3060 | 751 | 3560 | 252 | 1010 | 227 | 164 | | 6290 | 421 | 8590 | 595 | 1340 | 2020 | 691 | 3010 | 245 | 1150 | 214 | 173 | | 3300 | 416 | 5660 | 562 | 1230 | 1760 | 631 | 1750 | 251 | 673 | 206 | 183 | | 1700 | 414 | 3850 | 545 | 1040 | 14700 | 581 | 1310 | 244 | 428 | 201 | 188 | | 1160 | 412 | 4320 | 545 | 850 | 27600 | 546 | 1170 | 232 | 331 | 201 | 218 | | 898 | 411 | 4460 | 1670 | 764 | 32200 | 489 | 1380 | 225 | 292 | 227 | 228 | | 748 | 412 | 3180 | 6670 | 817 | 28600 | 453 | 1400 | 207 | 256 | 250 | 219 | | 632 | 411 | 2180 | 5760 | 995 | 15900 | 418 | 887 | 203 | 243 | 417 | 243 | | 544 | 406 | 1710 | 3800 | 1190 | 8710 | 392 | 653 | 194 | 239 | 257 | 315 | | 479 | 407 | 1810 | 13600 | 980 | 5900 | 364 | 548 | 189 | e186 | 233 | 626 | | 444 | 428 | 3390 | 35500 | 852 | 4600 | 375 | 491 | 191 | e210 | 248 | 666 | | 454 | 468 | 3070 | 49300 | 754 | 3890 | 413 | 498 | 210 | e575 | 257 | 487 | | 441
515
602
561
537
521 | 557
1000
1820
6210
13100 | 2190
1790
1550
1370
1210
1100 |
49900
40100
20100
8600
6700
5770 | 708
670
644
 | 3830
4960
4030
2850
6040
18300 | 395
384
380
436
406 | 459
372
317
294
287
330 | 298
272
247
228
212 | 425
313
391
308
256
234 | 224
241
226
222
211
188 | 931
3980
5330
2680
1330 | | | | | | | | | | | | | | | | 302
276
261
248
249
387
390
306
277
258
245
287
405
4260
6290
3300
1700
1160
898
748
632
544
474
454
441
515
602
561
537
521
27977
902.5
6290
245
-1900
841
-7 | 302 507 276 496 261 488 248 480 249 470 387 462 390 452 306 448 277 447 258 441 245 435 287 431 405 428 4260 426 6290 421 3300 416 1700 414 1160 412 898 411 748 412 632 411 544 406 479 407 444 428 454 468 441 557 515 1000 602 1820 561 6210 537 13100 521 27977 33704 902.5 1123 6290 13100 521 27977 33704 902.5 1123 6290 13100 521 27977 33704 902.5 1123 6290 13100 521 27977 33704 902.5 1123 6290 13100 521 27977 33704 902.5 1000 602 1820 561 6210 537 13100 521 27977 33704 902.5 1123 6290 13100 521 | 302 507 8250 276 496 3880 261 488 2300 248 480 1700 249 470 1370 387 462 1140 390 452 945 306 448 1470 277 447 4260 258 441 4380 245 435 3330 287 431 3720 405 428 3770 4260 426 6650 6290 421 8590 3300 416 5660 1700 414 3850 1160 412 4320 898 411 4460 748 412 3180 632 411 2180 644 406 1710 479 407 1810 479 407 1810 479 407 1810 479 407 1810 479 407 1810 544 406 1710 5561 6210 1370 5561 6210 1370 557 13100 1210 551 1000 5561 6210 1370 537 13100 1210 521 1100 27977 33704 98595 56290 13100 8590 245 406 945 -1900 -8700 -1200 841 833 3140 .70 .69 2.60 | 302 507 8250 968 276 496 3880 814 261 488 2300 724 248 480 1700 676 249 470 1370 694 387 462 1140 681 390 452 945 654 306 448 1470 768 277 447 4260 791 258 441 4380 735 245 435 3330 707 287 431 3720 644 405 428 3770 645 4260 426 6650 624 6290 421 8590 595 3300 416 5660 562 1700 414 3850 545 1160 412 4320 545 1160 412 4320 545 898 411 4460 1670 748 412 3180 6670 632 411 2180 5760 544 406 1710 3800 479 407 1810 13600 479 407 1810 13600 444 428 3390 35500 454 468 3070 49300 441 557 2190 49900 515 1000 1790 40100 602 1820 1550 20100 561 6210 1370 8600 537 13100 1210 6700 521 1100 5770 27977 33704 98595 259842 902.5 1123 3180 8382 6290 13100 8590 49900 245 406 945 545 -1900 -8700 -1200 +2200 841 833 3140 8450 .70 .69 2.60 7.00 | OCT NOV DEC JAN FEB 302 507 8250 968 5250 276 496 3880 814 5670 261 488 2300 724 3720 248 480 1700 676 2740 249 470 1370 694 2280 387 462 1140 681 1780 390 452 945 654 1980 306 448 1470 768 2840 277 447 4260 791 2630 258 441 4380 735 2230 245 435 3330 707 2010 287 431 3720 644 1840 405 428 3770 645 1640 4260 426 6650 624 1480 6290 421 8590 595 1340 3300 <td>OCT NOV DEC JAN FEB MAR 302 507 8250 968 5250 590 276 496 3880 814 5670 520 261 488 2300 724 3720 501 248 480 1700 676 2740 481 249 470 1370 694 2280 464 387 462 1140 681 1780 432 390 452 945 654 1980 410 306 448 1470 768 2840 394 277 447 4260 791 2630 399 258 441 4380 735 2230 414 245 435 3330 707 2010 417 287 431 3720 644 1840 1380 405 428 3770 645 1640 3480<td> 302 507 8250 968 5250 590 24300 </td><td>OCT NOV DEC JAN FEB MAR APR MAY 302 507 8250 968 5250 590 24300 1400 276 496 3880 814 5670 520 19600 2480 261 488 2300 724 3720 501 9280 5200 248 480 1700 676 2740 481 6060 10800 249 470 1370 664 2780 464 4430 12900 387 462 1140 681 1780 432 3020 8010 390 452 945 654 1980 410 2560 5450 306 448 1470 768 2840 394 2270 4190 277 447 4260 791 2630 399 2070 2340 258 441 4380 735 2230 414<td>OCT NOV DEC JAN FEB MAR APR MAY JUN 302 507 8250 968 5250 590 24300 1400 428 276 496 3880 814 5670 520 19600 2480 344 261 488 2300 724 3720 501 9280 5200 294 248 480 1700 676 2740 481 6660 10800 267 249 470 1370 694 2280 464 4430 12900 249 387 462 1140 681 1780 432 3020 8010 244 390 452 945 654 1980 410 2560 5450 724 306 4481 1470 768 2840 394 2270 4190 736 277 447 2660 791 2630 399</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 302 507 8250 968 5250 590 24300 1400 428 221 276 496 3880 814 5670 520 19600 2480 344 216 261 488 2300 724 3720 501 9280 5200 294 222 248 480 1700 676 2740 481 6060 10800 267 217 249 470 1370 694 2280 464 4430 12900 249 223 387 462 1140 681 1780 432 3020 8010 244 218 390 452 945 654 1980 410 2560 5450 724 207 306 448 1470 768 2840 394 2270 4190</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 302 507 8250 968 5250 590 24300 1400 428 221 221 221 276 496 3880 814 5670 520 19600 2480 344 216 217 261 488 2300 724 3720 501 9280 5200 294 222 214 248 480 1700 676 2740 481 6060 10800 267 217 204 2249 470 1370 694 2280 464 4430 12900 249 223 197 242 2020 8010 244 218 192 390 452 945 654 1980 410 2560 5450 724 207 189 390 447 4260 791 2630 399 2070 2340 408 195</td></td></td> | OCT NOV DEC JAN FEB MAR 302 507 8250 968 5250 590 276 496 3880 814 5670 520 261 488 2300 724 3720 501 248 480 1700 676 2740 481 249 470 1370 694 2280 464 387 462 1140 681 1780 432 390 452 945 654 1980 410 306 448 1470 768 2840 394 277 447 4260 791 2630 399 258 441 4380 735 2230 414 245 435 3330 707 2010 417 287 431 3720 644 1840 1380 405 428 3770 645 1640 3480 <td> 302 507 8250 968 5250 590 24300 </td> <td>OCT NOV DEC JAN FEB MAR APR MAY 302 507 8250 968 5250 590 24300 1400 276 496 3880 814 5670 520 19600 2480 261 488 2300 724 3720 501 9280 5200 248 480 1700 676 2740 481 6060 10800 249 470 1370 664 2780 464 4430 12900 387 462 1140 681 1780 432 3020 8010 390 452 945 654 1980 410 2560 5450 306 448 1470 768 2840 394 2270 4190 277 447 4260 791 2630 399 2070 2340 258 441 4380 735 2230 414<td>OCT NOV DEC JAN FEB MAR APR MAY JUN 302 507 8250 968 5250 590 24300 1400 428 276 496 3880 814 5670 520 19600 2480 344 261 488 2300 724 3720 501 9280 5200 294 248 480 1700 676 2740 481 6660 10800 267 249 470 1370 694 2280 464 4430 12900 249 387 462 1140 681 1780 432 3020 8010 244 390 452 945 654 1980 410 2560 5450 724 306 4481 1470 768 2840 394 2270 4190 736 277 447 2660 791 2630 399</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 302 507 8250 968 5250 590 24300 1400 428 221 276 496 3880 814 5670 520 19600 2480 344 216 261 488 2300 724 3720 501 9280 5200 294 222 248 480 1700 676 2740 481 6060 10800 267 217 249 470 1370 694 2280 464 4430 12900 249 223 387 462 1140 681 1780 432 3020 8010 244 218 390 452 945 654 1980 410 2560 5450 724 207 306 448 1470 768 2840 394 2270 4190</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 302 507 8250 968 5250 590 24300 1400 428 221 221 221 276 496 3880 814 5670 520 19600 2480 344 216 217 261 488 2300 724 3720 501 9280 5200 294 222 214 248 480 1700 676 2740 481 6060 10800 267 217 204 2249 470 1370 694 2280 464 4430 12900 249 223 197 242 2020 8010 244 218 192 390 452 945 654 1980 410 2560 5450 724 207 189 390 447 4260 791 2630 399 2070 2340 408 195</td></td> | 302 507 8250 968 5250 590 24300 | OCT NOV DEC JAN FEB MAR APR MAY 302 507 8250 968 5250 590 24300 1400 276 496 3880 814 5670 520 19600 2480 261 488 2300 724 3720 501 9280 5200 248 480 1700 676 2740 481 6060 10800 249 470 1370 664 2780 464 4430 12900 387 462 1140 681 1780 432 3020 8010 390 452 945 654 1980 410 2560 5450 306 448 1470 768 2840 394 2270 4190 277 447 4260 791 2630 399 2070 2340 258 441 4380 735 2230 414 <td>OCT NOV DEC JAN FEB MAR APR MAY JUN 302 507 8250 968 5250 590 24300 1400 428 276 496 3880 814 5670 520 19600 2480 344 261 488 2300 724 3720 501 9280 5200 294 248 480 1700 676 2740 481 6660 10800 267 249 470 1370 694 2280 464 4430 12900 249 387 462 1140 681 1780 432 3020 8010 244 390 452 945 654 1980 410 2560 5450 724 306 4481 1470 768 2840 394 2270 4190 736 277 447 2660 791 2630 399</td> <td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 302 507 8250 968 5250 590 24300 1400 428 221 276 496 3880 814 5670 520 19600 2480 344 216 261 488 2300 724 3720 501 9280 5200 294 222 248 480 1700 676 2740 481 6060 10800 267 217 249 470 1370 694 2280 464 4430 12900 249 223 387 462 1140 681 1780 432 3020 8010 244 218 390 452 945 654 1980 410 2560 5450 724 207 306 448 1470 768 2840 394 2270 4190</td> <td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 302 507 8250 968 5250 590 24300 1400 428 221 221 221 276 496 3880 814 5670 520 19600 2480 344 216 217 261 488 2300 724 3720 501 9280 5200 294 222 214 248 480 1700 676 2740 481 6060 10800 267 217 204 2249 470 1370 694 2280 464 4430 12900 249 223 197 242 2020 8010 244 218 192 390 452 945 654 1980 410 2560 5450 724 207 189 390 447 4260 791 2630 399 2070 2340 408 195</td> | OCT NOV DEC JAN FEB MAR APR MAY JUN 302 507 8250 968 5250 590 24300 1400 428 276 496 3880 814 5670 520 19600 2480 344 261 488 2300 724 3720 501 9280 5200 294 248 480 1700 676 2740 481 6660 10800 267 249 470 1370 694 2280 464 4430 12900 249 387 462 1140 681 1780 432 3020 8010 244 390 452 945 654 1980 410 2560 5450 724 306 4481 1470 768 2840 394 2270 4190 736 277 447 2660 791 2630 399 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 302 507 8250 968 5250 590 24300 1400 428 221 276 496 3880 814 5670 520 19600 2480 344 216 261 488 2300 724 3720 501 9280 5200 294 222 248 480 1700 676 2740 481 6060 10800 267 217 249 470 1370 694 2280 464 4430 12900 249 223 387 462 1140 681 1780 432 3020 8010 244 218 390 452 945 654 1980 410 2560 5450 724 207 306 448 1470 768 2840 394 2270 4190 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 302 507 8250 968 5250 590 24300 1400 428 221 221 221 276 496 3880 814 5670 520 19600 2480 344 216 217 261 488 2300 724 3720 501 9280 5200 294 222 214 248 480 1700 676 2740 481 6060 10800 267 217 204 2249 470 1370 694 2280 464 4430 12900 249 223 197 242 2020 8010 244 218 192 390 452 945 654 1980 410 2560 5450 724 207 189 390 447 4260 791 2630 399 2070 2340 408 195 | CAL YR 2000 MEAN(‡) 1870 CFSM(‡) 1.55 IN.(‡) 21.04 WTR YR 2001 MEAN(‡) 2400 CFSM(‡) 1.99 IN.(‡) 26.98 ^(†) Change in contents, in cfs-days in Normandy Lake. (‡) Adjusted for change in content. NOTE.--Contents (cfs-days) for adjustments furnished by Tennessee Valley Authority. e Estimated ## 03599500 DUCK RIVER AT COLUMBIA, TN--Continued | STATISTICS | OF N
 V. THTMON | MEAN | $\Delta \Delta \Delta \Delta$ | FOR | MATER | VEARS | 1977 | - 2002 | RV | MATER | VEAR | (TATV) | |------------|------|-----------|------|-------------------------------|-----|-------|-------|------|--------|----|-------|------|--------| | MEAN
MAX
(WY)
MIN
(WY) | 712.7
3642
1990
160
2000 | 2013
5925
1987
236
1981 | 3486
10360
1991
418
1981 | 3818
8513
1979
273
1986 | 3580
9901
1991
953
1978 | 4254
10090
1980
1104
1985 | 2652
7464
1994
325
1986 | 1961
9106
1983
244
1988 | 1032
5081
1997
167
1988 | 652.8
4740
1989
220
1988 | 467.6
1365
1998
172
1999 | 611.2
3832
1979
150
1999 | |--|---|---|--------------------------------------|---|-------------------------------------|---------------------------------------|--|--|-------------------------------------|---|---|--------------------------------------| | SUMMARY | STATIST | ICS | FOR 2 | 2001 CALE | IDAR YEAR | | FOR 2002 T | WATER YEAR | , | WATER YEARS | 1977 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MEA | EAN EAN AN Y MINIMUM DW AGE DW FLOW EDS EDS | | 682251
1869
35000
202
213
4450
561
257 | Feb 17
Jul 22
Jul 19 | | 880695
2413
49900
161
168
51000
45.4
a161
5380
521
204 | Jan 26
Sep 13
Sep 9
Jan 26
61 Jan 26
Sep 12 | | 2102
3282
553
52300
86
100
52300
45.82
a161
4880
726
189 | Feb 20
Oct 4
Sep 28
Feb 20
Feb 20
Sep 12 | 1982
1982
1991
1991 | ^{*} Regulated period only. a Also occurred Sept. 13, 14. ## 03600085 CARTERS CREEK AT PETTY LANE NEAR CARTERS CREEK, TN $\label{location.--Lat 35^43'39", long 86^59'19", Maury County, Hydrologic Unit 06040003, at bridge on Petty Lane, 0.8 mile north of Carters Creek, and at mile 4.7.$ DRAINAGE AREA.--16.6 mi^2 . PERIOD OF RECORD.--October 1986 to current year | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(COL/
100 ML)
(31673) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | |------------------|--|---|---|---|---|---|---|--|---|---|--|--|---| | NOV
27 | 0915 | 80020 | 11 | 370 | 14.5 | 7.3 | 752 | 12.5 | 125 | K9300 | 3500 | <2 | 18.0 | | FEB
26 | 0900 | 80020 | 17 | 339 | 8.5 | 7.8 | 750 | 10.7 | 93 | 430 | 360 | <2 | 13.9 | | MAY
21 | 0915 | 80020 | 13 | 362 | 13.0 | 7.7 | 760 | 10.5 | 100 | 310 | 430 | E1 | 15.0 | | AUG
20 | 0935 | 80020 | .32 | 333 | 23.5 | 7.3 | 750 | | | K800 | 1700 | <1 | 18.5 | | Date | CADMIUM
WATER
UNFLITRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-MIUM,
TOTAL
RECOV-ERABLE
(UG/L
AS CR)
(01034) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | CYANIDE
TOTAL
(MG/L
AS CN)
(00720) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | NOV
27 | E.1 | <.8 | 1.5 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 7.0 | .21 | | FEB
26 | <.1 | E.7 | <1.0 | <1 | E.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 9.0 | .41 | | MAY
21 | <.1 | .9 | E.7 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 4.0 | .14 | | AUG
20 | <.1 | <.8 | <1.0 | <1 | <.01 | <2.0 | <2 | <.3 | E10 | <.01 | <7 | 5.0 | .0 | | Date | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(UG/L)
(34551) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(UG/L)
(82626) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34621) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34601) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(UG/L)
(34606) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(UG/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34626) | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(UG/L)
(34581) | | NOV 27 | 96 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <3.0 | <20 | <3 | <2 | <2 | | FEB
26 | 45 | | | | | | | | | | | | | | MAY
21 | 90 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <.7 | <3 | <3 | <2 | <2 | | AUG
20 | 87 | | | | | | | | | | | | | | Date | 2-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34586) | | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(UG/L)
(34631) | | | | | | | | | | | | NOV
27
FEB | <2 | <3 | <3 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | 26
MAY | | | | | | | | | | | | | | | 21
AUG | <2 | <1 | <5 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | 20 | | | | | | | | | | | | | | $[\]ensuremath{\mathrm{K--Results}}$ based on non-ideal colony count. $\ensuremath{\mathrm{E--Estimated}}$ # 03600085 CARTERS CREEK AT PETTY LANE NEAR CARTERS CREEK, TN--Continued | Date | BENZO-
A-
PYRENE
TOTAL
(UG/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34230) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(UG/L)
(34521) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34242) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(UG/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(UG/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(UG/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(UG/L)
(39100) | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34292) | CHRY-
SENE
TOTAL
(UG/L)
(34320) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34596) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(UG/L)
(34556) | |------------------|--|---|---|---|---|---|---|---|---|---|--|--|--| | NOV
27
FEB | <3 | <3 | <3 | <3 | <3 | <2 | <2 | <19 | <4 | <3 | <3 | <5 | <3 | | 26
MAY | | | | | | | | | | | | | | | 21 | <1 | <2 | <3 | <2 | <3 | <2 | <2 | <6 | <4 | <3 | <2 | <5 | <3 | | AUG
20 | | | | | | | | | | | | | | | Date | DIETHYL
PHTHAL-
ATE
TOTAL
(UG/L) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(UG/L) | FLUOR-
ANTHENE
TOTAL
(UG/L) | FLUOR-
ENE
TOTAL
(UG/L) | HEXA-
CHLORO-
BENZENE
TOTAL
(UG/L) |
HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(UG/L) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(UG/L) | ETHANE HEXA- CHLORO- WATER UNFLTRD RECOVER (UG/L) | INDENO (1,2,3- CD) PYRENE TOTAL (UG/L) | ISO-
PHORONE
TOTAL
(UG/L) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(UG/L) | N-NITRO -SODI- METHYL- AMINE TOTAL (UG/L) | N-NITRO -SODI- PHENYL- AMINE TOTAL (UG/L) | | | (34336) | (34341) | (34376) | (34381) | (39700) | (39702) | (34386) | (34396) | (34403) | (34408) | (34428) | (34438) | (34433) | | NOV 27 | (34336) | (34341) | (34376) | (34381) | (39700) | (39702) | (34386) | (34396) | (34403) | (34408) | (34428) | (34438) | (34433) | | 27
FEB
26 | | | | | | , | | | | | | | | | 27
FEB | <2 | <2 | <2 | <2 | <2 | <3 | <2 | <2 | <3 | <2 | | <3 | | | Date | NAPHTH-
ALENE
TOTAL
(UG/L)
(34696) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(UG/L)
(34447) | PENTA-
CHLORO-
PHENOL
TOTAL
(UG/L)
(39032) | PHENAN-
THRENE
TOTAL
(UG/L)
(34461) | |-----------|--|---|---|---| | NOV
27 | <5 | <2 | <4 | <2 | | 26 | | | | | | MAY
21 | <5 | <2 | <4 | <2 | | AUG
20 | | | | | ## 03600086 CARTERS CREEK TRIBUTARY NEAR CARTERS CREEK, TN LOCATION.--Lat 35°43'34", long 86°59'19", Maury County, Hydrologic Unit 06040003, at culvert on Carters Creek Road, 0.7 mile north of Carters Creek. DRAINAGE AREA.--2.94 mi². PERIOD OF RECORD.--October 1986 to current year. | Date NOV 27 FEB 26 MAY | Time
1020
1000 | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028)
80020 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
16.0
9.5 | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 7.2 7.6 | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
10.9 | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
5900 | FECAL
STREP,
KF STRP
MF,
WATER
(COL/
100 ML)
(31673)
K1800 | ARSENIC
TOTAL
(UG/L
AS AS)
(01002)
E1 | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007)
16.3
12.9 | |-------------------------|--|---|---|---|---|---|--|--|---|---|--|---|--| | MAY
21 | 1010 | 80020 | 3.2 | 555 | 15.5 | 7.8 | 760 | 10.8 | 109 | 80 | 52 | E1 | 12.7 | | AUG
20 | 1040 | 80020 | .46 | 601 | 25.5 | 7.5 | 750 | | | 400 | 1900 | 2 | 18.7 | | Date | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | CYANIDE
TOTAL
(MG/L
AS CN)
(00720) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | NOV
27 | <.1 | E.8 | 1.9 | 1 | E.01 | E1.3 | <2 | <.3 | <20 | <.01 | <7 | 50 | 2.5 | | FEB 26 | <.1 | E.8 | 1.5 | <1 | E.01 | E1.2 | <2 | <.3 | <20 | <.01 | <7 | 4.0 | .06 | | MAY
21 | <.1 | <.8 | <1.0 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 28 | .24 | | AUG
20 | <.1 | <.8 | <1.0 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 4.0 | .0 | | Date | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(UG/L)
(34551) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(UG/L)
(82626) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34621) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34601) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(UG/L)
(34606) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(UG/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34626) | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(UG/L)
(34581) | | NOV 27 | 90 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <3.0 | <20 | <3 | <2 | <2 | | FEB
26 | 82 | | | | | | | | | | | | | | MAY
21 | 83 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <.7 | <3 | <3 | <2 | <2 | | AUG
20 | 82 | | | | | | | | | | | | | | Date | 2-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(UG/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(UG/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(UG/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(UG/L)
(34636) | PARA-
CHLORO-
META
CRESOL
TOTAL
(UG/L)
(34452) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(UG/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(UG/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(UG/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(UG/L)
(34200) | ANTHRA-
CENE
TOTAL
(UG/L)
(34220) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(UG/L)
(34526) | BENZI-
DINE
TOTAL
(UG/L)
(39120) | | NOV 27 | <2 | <1 | <3 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | FEB
26 | | | | | | | | | | | | | | | MAY
21 | <2 | <1 | <5 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | AUG
20 | | | | | | | | | | | | | | $[\]ensuremath{\mathrm{K--Results}}$ based on non-ideal colony count. $\ensuremath{\mathrm{E--Estimated}}$ # 03600086 CARTERS CREEK TRIBUTARY NEAR CARTERS CREEK, TN--Continued | Date | BENZO-
A-
PYRENE
TOTAL
(UG/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34230) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(UG/L)
(34521) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34242) | BIS (2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(UG/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(UG/L)
(34273) | BIS (2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(UG/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(UG/L)
(39100) | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34292) | CHRY-
SENE
TOTAL
(UG/L)
(34320) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34596) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(UG/L)
(34556) | |------------------------|--|---|---|---|--|---|--|---|---|---|--|--|--| | NOV
27
FEB | <1 | <2 | <3 | <2 | <3 | <2 | <2 | <6 | <4 | <3 | <2 | <5 | <3 | | 26
MAY | | | | | | | | | | | | | | | 21 | <1 | <2 | <3 | <2 | <3 | <2 | <2 | <6 | <4 | <3 | <2 | <5 | <3 | | AUG
20 | | | | | | | | | | | | | | | | DIETHYL | DI- | | | | HEXA- | CYCLOPE
NTADIEN | ETHANE
HEXA- | INDENO | | N-
NITRO- | N-NITRO | N-NITRO | | Date | PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | METHYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | FLUOR-
ANTHENE
TOTAL
(UG/L)
(34376) | FLUOR-
ENE
TOTAL
(UG/L)
(34381) | HEXA-
CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | CHLORO-
BUT-
ADIENE
TOTAL
(UG/L)
(39702) | HEXA-
CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) |
CHLORO-
WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | (1,2,3-
CD)
PYRENE
TOTAL
(UG/L)
(34403) | ISO-
PHORONE
TOTAL
(UG/L)
(34408) | SODI-N-
PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | -SODI-
METHYL-
AMINE
TOTAL
(UG/L)
(34438) | -SODI-
PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | NOV 27 | PHTHAL-
ATE
TOTAL
(UG/L) | PHTHAL-
ATE
TOTAL
(UG/L) | ANTHENE
TOTAL
(UG/L) | ENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | BUT-
ADIENE
TOTAL
(UG/L) | CHLORO-
UNFLTRD
RECOVER
(UG/L) | WATER
UNFLTRD
RECOVER
(UG/L) | CD) PYRENE TOTAL (UG/L) | PHORONE
TOTAL
(UG/L) | PROPYL-
AMINE
TOTAL
(UG/L) | METHYL-
AMINE
TOTAL
(UG/L) | PHENYL-
AMINE
TOTAL
(UG/L) | | NOV
27
FEB
26 | PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | ANTHENE
TOTAL
(UG/L)
(34376) | ENE
TOTAL
(UG/L)
(34381) | CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | BUT-
ADIENE
TOTAL
(UG/L)
(39702) | CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) | WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | CD) PYRENE TOTAL (UG/L) (34403) | PHORONE
TOTAL
(UG/L)
(34408) | PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | METHYL-
AMINE
TOTAL
(UG/L)
(34438) | PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | NOV
27
FEB | PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | ANTHENE
TOTAL
(UG/L)
(34376) | ENE
TOTAL
(UG/L)
(34381) | CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | BUT-
ADIENE
TOTAL
(UG/L)
(39702) | CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) | WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | CD) PYRENE TOTAL (UG/L) (34403) | PHORONE
TOTAL
(UG/L)
(34408) | PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | METHYL-
AMINE
TOTAL
(UG/L)
(34438) | PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | | | BENZENE | | | |------|---------|---------|---------|---------| | | | NITRO- | PENTA- | | | | NAPHTH- | WATER | CHLORO- | PHENAN- | | | ALENE | UNFLTRD | PHENOL | THRENE | | Date | TOTAL | RECOVER | TOTAL | TOTAL | | | (UG/L) | (UG/L) | (UG/L) | (UG/L) | | | (34696) | (34447) | (39032) | (34461) | | | | | | | | NOV | | | | | | 27 | <5 | <2 | <4 | <2 | | FEB | | | | | | 26 | | | | | | MAY | _ | | | _ | | 21 | <5 | <2 | <4 | <2 | | AUG | | | | | | 20 | | | | | #### 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK, TN LOCATION.--Lat $35^{\circ}43^{\circ}02^{\circ}$, long $86^{\circ}59^{\circ}45^{\circ}$, Maury County, Hydrologic Unit 06040003, on left bank at end of Butler Road bridge, 0.1 mi west of Carters Creek, 0.3 mi upstream from Terrell Branch, 3.7 mi upstream from Rutherford Creek, and at mile 3.7. DRAINAGE AREA.--20.1 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1986 to current year. Occasional low-flow measurements, water year 1986. REVISED RECORD.--WDR TN-97-1: 1992-96 (M): 1992-96 (P). GAGE.--Data collection platform, crest-stage gage and concrete weir. Datum of gage is 605.94 ft above NGVD of 1929. REMARKS.--Records good except for estimated daily discharges, which are fair. Diurnal fluctuation caused by industrial development upstream. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $900~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 0045 | 1,200 | 8.65 | Jan 24 | 0730 | 2,390 | 12.66 | | Nov 29 | 1245 | 2,410 | 12.72 | Jan 24 | 1800 | 930 | 7.68 | | Nov 29 | 2115 | 1,810 | 10.72 | Mar 17 | 0630 | *2,640 | *13.53 | | Jan 23 | 0645 | 1,150 | 8.49 | Mar 18 | 0445 | 1,180 | 8.58 | | Jan 23 | 1600 | 991 | 7.90 | May 13 | 0915 | 1,060 | 8.14 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge, 0.22 ft³/s, several days. | | | DISCIA | NGE, COD. | IC PEBI IE | | Y MEAN VA | | ER ZUUI IC |) SELTENDE | IK 2002 | | | |--|--|---|--|---|--|--|---|---|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.96
0.88
0.83
0.93
9.6 | 6.9
6.3
5.7
5.2
4.9 | 121
82
63
51
41 | 17
15
15
14
13 | 88
63
53
45
38 | 17
16
16
14
13 | 165
106
78
62
50 | 50
102
80
139
73 | 5.3
4.5
4.2
4.0 | e1.3
e1.3
1.4
1.1
0.87 | 0.57
0.44
0.34
0.24
0.27 | 0.45
0.43
0.38
0.46
0.55 | | 6
7
8
9
10 | 36
6.6
3.9
2.8
2.2 | 4.6
4.4
4.2
3.9
3.7 | 35
41
343
137
92 | 15
13
12
11 | 38
42
41
38
37 | 13
12
12
16
15 | 42
37
34
33
29 | 53
41
33
29
29 | 10
6.6
5.2
5.2
4.2 | 0.76
0.68
0.63
2.1
2.0 | 0.24
0.22
e0.22
e0.22
e0.22 | 0.31
0.29
0.28
0.28
0.29 | | 11
12
13
14
15 | 1.9
49
64
340
74 | 3.6
3.4
3.3
3.3
3.2 | 73
63
188
194
109 | 12
11
10
9.5
8.6 | 34
31
29
27
24 | 14
70
66
49
39 | 28
29
25
22
20 | 28
24
188
92
50 | 3.4
3.4
3.8
3.3
2.7 | 1.8
1.4
1.4
2.0 | e0.22
e0.22
e0.22
0.34
0.87 | 0.25
0.24
0.22
0.27
2.5 | | 16
17
18
19
20 | 48
35
28
24
20 | 3.1
3.0
2.9
2.9
4.0 | 81
83
72
59
47 | 8.7
8.4
17
102
68 | 23
21
19
17
40 | 40
963
510
193
223 | 19
17
16
15 | 36
30
27
20
16 | 2.4
2.0
e2.1
e1.4
1.3 | 0.91
0.79
0.66
0.99
0.93 | 0.93
1.3
11
8.3
0.76 | 6.4
0.87
2.4
2.0
1.3 | | 21
22
23
24
25 | 16
14
13
12
20 | 2.9
2.7
2.8
11 | 40
35
46
39
34 | 49
39
612
952
269 | 32
27
24
22
20 | 137
93
76
62
54 | 13
15
12
15
18 | 14
13
11
9.8
9.0 | 1.0
1.1
e1.2
e1.5
1.8 | 0.65
2.3
2.9
1.2
0.84 | 0.64
0.54
1.9
4.1
2.5 | 5.8
2.2
1.3
0.79
0.73 | | 26
27
28
29
30
31 | 15
12
9.9
8.4
8.1
7.5 | 6.3
34
40
975
309 | 31
28
26
23
20
18 | 140
98
77
65
57
48 | 24
20
17
 | 69
56
44
43
97
370 | 12
10
11
12
10 | 8.4
7.5
6.7
6.3
6.9 | 1.6
1.2
1.3
e1.2
e1.3 | 0.71
0.72
0.72
0.70
0.67
0.70 | 0.82
0.65
0.80
0.58
0.53
0.50 | 35
90
28
14
10 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 884.50
28.53
340
0.83
1.42
1.64 | 1478.2
49.27
975
2.7
2.45
2.74 | 2315
74.68
343
18
3.72
4.28 | 2797.2
90.23
952
8.4
4.49
5.18 | 934
33.36
88
17
1.66
1.73 | 3412
110.1
963
12
5.48
6.31 | 969
32.30
165
10
1.61
1.79 | 1239.5
39.98
188
6.3
1.99
2.29 | 105.2
3.507
17
1.0
0.17
0.19 | 36.23
1.169
2.9
0.63
0.06
0.07 | 40.70
1.313
11
0.22
0.07
0.08 | 207.99
6.933
90
0.22
0.34
0.38 | e Estimated ## 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY)
MIN
(WY) | 8.427
44.8
1990
0.29
2001 | 28.08
64.7
1989
1.35
1999 | 55.08
126
1991
9.79
2000 | 61.10
119
1999
19.6
2000 | 71.13
146
1990
20.8
1995 | 68.47
138
1994
20.5
1988 | 37.39
98.7
1994
13.9
1992 | 28.75
93.4
1991
3.11
1988 | 16.06
54.2
1998
0.51
1988 | 9.350
45.5
1989
0.54
1988 | 4.060
13.8
2001
0.47
1987 | 5.970
20.3
1989
0.64
1999 | |--|---|---|--------------------------------------|--|--------------------------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------| | SUMMARY | Y STATIST | ICS | FOR | 2001 CALENI | DAR YEAR | | FOR 2002 WA | TER YEAR | | WATER YEARS | 3 1987 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL ANNUAL 10 PERC 50 PERC | MEAN F ANNUAL M ANNUAL M F DAILY M DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW CFSM) INCHES) EDS EDS | | 13983.20
38.31
1030
0.83
1.0
1.91
25.88
81
15
2.9 | Feb 16
Oct 3
Sep 28 | |
14419.52
39.51
975
0.22
0.22
1.97
26.69
79
12
0.66 | Nov 29
Aug 7
Aug 7 | | 32.65
50.0
17.4
1430
0.12
0.15
3300
15.90
b0.11
1.62
22.07
69
12 | Aug 15 | 1987
1988
1993
1993 | a Also occurred several days. b Also occurred Aug. 16, 1987, June 26, 1988. # 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK, TN--Continued PERIOD OF RECORD.--October 1986 to current year. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(COL/
100 ML)
(31673) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | |-----------|--|---|---|---|---|---|---|--|---|---|--|--|---| | NOV
27 | 1125 | 80020 | 38 | 509 | 15.0 | 7.5 | 752 | 10.9 | 110 | K7100 | 2300 | <2 | 21.3 | | FEB 26 | 1100 | 80020 | 24 | 418 | 8.5 | 8.0 | 750 | 11.9 | 103 | K680 | 250 | <2 | 13.9 | | MAY
21 | 1115 | 80020 | 16 | 385 | 14.5 | 8.1 | 760 | 11.3 | 111 | 260 | 290 | <2 | 14.9 | | AUG
20 | 1110 | 80020 | .66 | 493 | 25.0 | 7.6 | 750 | | | 280 | 1500 | 2 | 21.3 | | Date | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | CYANIDE
TOTAL
(MG/L
AS CN)
(00720) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | NOV 27 | <.1 | <.8 | 1.2 | <1 | E.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 17 | 1.7 | | FEB 26 | <.1 | E.5 | <1.0 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 4.0 | .26 | | MAY
21 | <.1 | <.8 | <1.0 | <1 | <.01 | <2.0 | <2 | <.3 | <20 | <.01 | <7 | 4.0 | .17 | | AUG
20 | <.1 | <.8 | <1.0 | <1 | <.01 | <2.0 | E2 | <.3 | <20 | <.01 | E4 | 4.0 | .01 | | Date | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(UG/L)
(34551) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(UG/L)
(82626) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34621) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34601) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(UG/L)
(34606) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(UG/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(UG/L)
(34626) | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(UG/L)
(34581) | | NOV 27 | 92 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <3.0 | <20 | <3 | <2 | <2 | | FEB
26 | 92 | | | | | | | | | | | | | | MAY
21 | 90 | <2 | <2 | <2 | <2 | <2 | <3 | <3 | <.7 | <3 | <3 | <2 | <2 | | AUG
20 | 93 | | | | | | | | | | | | | | Date | 2-
CHLORO-
PHENOL
TOTAL
(UG/L)
(34586) | | | | | PARA-
CHLORO-
META
CRESOL
TOTAL
(UG/L)
(34452) | | | | | | | BENZI-
DINE
TOTAL
(UG/L)
(39120) | | NOV
27 | <2 | <1 | <3 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | FEB 26 | | | | | | | | | | | | | | | MAY
21 | <2 | <1 | <5 | <3 | <2 | <3 | <2 | <3 | <2 | <2 | <2 | <2 | <40 | | AUG
20 | | | | | | | | | | | | | | $[\]ensuremath{\mathrm{K--Results}}$ based on non-ideal colony count. $\ensuremath{\mathrm{E--Estimated}}$ # 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK, TN--Continued | | | | | | | D = 0 (0 | D = 0 / 0 | D = 0 / 0 | | | | | | |------------------------|---|---|---|---|---|---|---|---|---|---|--|--|--| | Date | BENZO-
A-
PYRENE
TOTAL
(UG/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34230) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(UG/L)
(34521) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(UG/L)
(34242) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(UG/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(UG/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(UG/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(UG/L)
(39100) | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34292) | CHRY-
SENE
TOTAL
(UG/L)
(34320) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34596) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(UG/L)
(34556) | | | | | | | | | | | | | | | | | NOV
27
FEB | <3 | <3 | <3 | <3 | <3 | <2 | <2 | E3 | <4 | <3 | <3 | <5 | <3 | | 26 | | | | | | | | | | | | | | | MAY
21 | <1 | <2 | <3 | <2 | <3 | <2 | <2 | <6 | <4 | <3 | <2 | <5 | <3 | | AUG
20 | | | | | | | | | | | | | | | | | DI- | | | | HEXA- | CYCLOPE
NTADIEN | ETHANE
HEXA- | INDENO | | N-
NITRO- | N-NITRO | N-NITRO | | Date | DIETHYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | METHYL
PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | FLUOR-
ANTHENE
TOTAL
(UG/L)
(34376) | FLUOR-
ENE
TOTAL
(UG/L)
(34381) | HEXA-
CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | CHLORO-
BUT-
ADIENE
TOTAL
(UG/L)
(39702) | HEXA-
CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) | CHLORO-
WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | (1,2,3-
CD)
PYRENE
TOTAL
(UG/L)
(34403) | ISO-
PHORONE
TOTAL
(UG/L)
(34408) | SODI-N-
PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | -SODI-
METHYL-
AMINE
TOTAL
(UG/L)
(34438) | -SODI-
PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | NOV 27 | PHTHAL-
ATE
TOTAL
(UG/L) | PHTHAL-
ATE
TOTAL
(UG/L) | ANTHENE
TOTAL
(UG/L) | ENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | BUT-
ADIENE
TOTAL
(UG/L) | CHLORO-
UNFLTRD
RECOVER
(UG/L) | WATER
UNFLTRD
RECOVER
(UG/L) | CD) PYRENE TOTAL (UG/L) | PHORONE
TOTAL
(UG/L) | PROPYL-
AMINE
TOTAL
(UG/L) | METHYL-
AMINE
TOTAL
(UG/L) | PHENYL-
AMINE
TOTAL
(UG/L) | | NOV
27
FEB
26 | PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | ANTHENE
TOTAL
(UG/L)
(34376) | ENE
TOTAL
(UG/L)
(34381) | CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | BUT-
ADIENE
TOTAL
(UG/L)
(39702) | CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) | WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | CD) PYRENE TOTAL (UG/L) (34403) | PHORONE
TOTAL
(UG/L)
(34408) | PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | METHYL-
AMINE
TOTAL
(UG/L)
(34438) | PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | NOV
27
FEB | PHTHAL-
ATE
TOTAL
(UG/L)
(34336) | PHTHAL-
ATE
TOTAL
(UG/L)
(34341) | ANTHENE
TOTAL
(UG/L)
(34376) | ENE
TOTAL
(UG/L)
(34381) | CHLORO-
BENZENE
TOTAL
(UG/L)
(39700) | BUT-
ADIENE
TOTAL
(UG/L)
(39702) |
CHLORO-
UNFLTRD
RECOVER
(UG/L)
(34386) | WATER
UNFLTRD
RECOVER
(UG/L)
(34396) | CD) PYRENE TOTAL (UG/L) (34403) | PHORONE
TOTAL
(UG/L)
(34408) | PROPYL-
AMINE
TOTAL
(UG/L)
(34428) | METHYL-
AMINE
TOTAL
(UG/L)
(34438) | PHENYL-
AMINE
TOTAL
(UG/L)
(34433) | | Date | NAPHTH-
ALENE
TOTAL
(UG/L)
(34696) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(UG/L)
(34447) | PENTA-
CHLORO-
PHENOL
TOTAL
(UG/L)
(39032) | PHENAN-
THRENE
TOTAL
(UG/L)
(34461) | |------------------|--|---|---|---| | NOV
27
FEB | <5 | <2 | <4 | <2 | | 26 | | | | | | MAY
21
AUG | <5 | <2 | <4 | <2 | | 20 | | | | | #### 03601990 DUCK RIVER AT HIGHWAY 100 AT CENTERVILLE, TN LOCATION.--Lat 35°47'03", long 87°27'36", Hickman County, Hydrologic Unit 06040003, on downstream right bank side of bridge on US Highway 48/100, at Defeated Creek, 0.43 mi northeast of public square in Centerville, 3.5 mi downstream from Swan Creek and at mile 72.6. DRAINAGE AREA. -- 2,048 mi². PERIOD OF RECORD.--April 1919 to September 1955, published as "at Centerville." May 2001 to current year. GAGE.--Data collection platform. Datum of gage is 447.76 ft above NGVD of 1929. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 14, 1948, (from graph through bi-hourly gage readings) at site downstream, 03602000 Duck River at Centerville, TN, 37.58 ft (discharge 97,700 ft/s). EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $20,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Nov 30 | 1030 | 40,800 | 27.36 | Mar 20 | 2100 | 44,200 | 28.80 | | Jan 26 | 0530 | *53,500 | *32.72 | Apr 2 | 0800 | 36,400 | 25.39 | Minimum discharge, 407 ft³/s, Sept. 14. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|---|--|--|--------------------------|---|--------------------------------------|--|--|--|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 656 | 977 | 26300 | 2110 | 8090 | 1280 | 34000 | 1730 | 781 | 613 | 693 | 523 | | 2 | 593 | 953 | 11700 | 1910 | 7680 | 1200 | 36000 | 3140 | 865 | 594 | 634 | 494 | | 3 | 552 | 927 | 6620 | 1710 | 7360 | 1110 | 28900 | 5330 | 780 | 629 | 585 | 494 | | 4 | 520 | 910 | 4670 | 1570 | 5100 | 1030 | 12400 | 11600 | 695 | 644 | 565 | 483 | | 5 | 546 | 884 | 3670 | 1490 | 4160 | 965 | 8850 | 17300 | 666 | 610 | 559 | 470 | | 6 | 898 | 862 | 3100 | 1520 | 3540 | 924 | 6570 | 15700 | 720 | 578 | 545 | 459 | | 7 | 1140 | 840 | 2810 | 1520 | 3140 | 877 | 5230 | 9600 | 670 | 559 | 523 | 457 | | 8 | 949 | 825 | 5660 | 1430 | 3610 | 833 | 4590 | 7100 | 990 | 553 | 498 | 445 | | 9 | 732 | 813 | 8330 | 1490 | 4240 | 839 | 4210 | 5380 | 1400 | 579 | 488 | 451 | | 10 | 649 | 803 | 8900 | 1520 | 3880 | 912 | 3810 | 3650 | 1030 | 598 | 476 | 465 | | 11 | 605 | 797 | 7090 | 1490 | 3470 | 870 | 3340 | 3000 | 846 | 752 | 476 | 446 | | 12 | 1060 | 782 | 6120 | 1450 | 3170 | 1620 | 2590 | 2610 | 780 | 821 | 472 | 435 | | 13 | 2060 | 772 | 7710 | 1360 | 2870 | 5060 | 2270 | 2710 | 774 | 913 | 463 | 425 | | 14 | 9450 | 764 | 10500 | 1320 | 2560 | 6120 | 2060 | 5270 | 788 | 813 | 468 | 424 | | 15 | 10500 | 755 | 13400 | 1290 | 2330 | 4760 | 1900 | 5670 | 772 | 1320 | 509 | 431 | | 16 | 8540 | 749 | 12200 | 1240 | 2150 | 3820 | 1760 | 4300 | 739 | 1660 | 635 | 479 | | 17 | 4800 | 740 | 8270 | 1200 | 1980 | 21700 | 1630 | 3020 | 727 | 1190 | 602 | 543 | | 18 | 3090 | 734 | 6800 | 1250 | 1730 | 41300 | 1670 | 2510 | 713 | 905 | 652 | 539 | | 19 | 2340 | 736 | 7270 | 1870 | 1500 | 42200 | 1520 | 2250 | 687 | 774 | 565 | 536 | | 20 | 1920 | 751 | 6270 | 5500 | 1700 | 43200 | 1400 | 2370 | 662 | 703 | 580 | 584 | | 21 | 1620 | 744 | 4840 | 9850 | 2070 | 42300 | 1300 | 2210 | 638 | 655 | 579 | 634 | | 22 | 1400 | 729 | 3710 | 7060 | 2030 | 27300 | 1240 | 1680 | 611 | 633 | 693 | 694 | | 23 | 1240 | 723 | 3390 | 11100 | 2060 | 12700 | 1150 | 1400 | 590 | 670 | 658 | 655 | | 24 | 1130 | 778 | 3840 | 37100 | 1800 | 9060 | 1130 | 1240 | 578 | 1090 | 670 | 872 | | 25 | 1150 | 940 | 5230 | 51100 | 1610 | 7410 | 1250 | 1130 | 650 | 931 | 831 | 1050 | | 26
27
28
29
30
31 | 1180
1050
1030
1100
1050
1010 | 936
1300
3050
13700
38800 | 4370
3530
3070
2750
2490
2280 | 53100
51900
47700
33400
11700
9050 | 1550
1480
1350
 | 6830
7170
7540
5980
6460
19800 | 1230
1130
1170
1280
1220 | 1120
1040
946
866
817
786 | 728
723
776
721
652 | 1080
927
762
740
770
803 | 744
646
591
585
559
549 | 1230
5140
6890
6270
3370 | | TOTAL MEAN MAX MIN (†) MEAN(‡) CFSM(†) IN.(‡) | .99 | 78074
2602
38800
723
-8700
2310
1.1 | 206890
6674
26300
2280
-1200
6640 | 357300
11530
53100
1200
+2200
11600
24 5.66
74 6.53 | | 52 5.5 | 2.8 | 2 2.03 | 22752
758.4
1400
578
-1500
708
3 .35 | 24869
802.2
1660
553
-2700
715
.35 | 18093
583.6
831
463
-3000
487
5 .24 | | WTR YR 2002 MEAN(‡) 4190 CFSM(‡) 2.05 IN.(‡) 27.79 ^(†) Change in contents, in cfs-days in Normandy Lake.(‡) Adjusted for chage in content.NOTE.--Contents (cfs-days) for adjustments furnished by Tennessee Valley Authority. ## 03601990 DUCK RIVER AT HIGHWAY 100 AT CENTERVILLE, TN--Continued | | | | | | | | | | | | | | 4 | |------------|----|----------|------|-------|-----|-------|-------|------|--------|----|--------|------|-----------| | STATISTICS | OF | MONTHI V | MEAN | בידעת | FOR | MATER | VEARS | 2001 | - 2002 | RV | MATTER | AEVB | (\tatv) | | MEAN
MAX
(WY)
MIN
(WY) | 2083
2083
2002
2083
2002 | 2602
2602
2002
2602
2002 | 6674
6674
2002
6674
2002 | 11530
11530
2002
11530
2002 | 3150
3150
2002
3150
2002 | 10750
10750
2002
10750
2002 | 5893
2002 | 2594
4112
2002
1077
2001 | 1093
1427
2001
758
2002 | 843.6
885
2001
802
2002 | 1284
1984
2001
584
2002 | 975.0
1213
2002
737
2001 | |------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|---|--------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | SUMMARY | STATIST | ICS | | | FOR 2 | 002 WAT | ER YEAR | | | WATER YEARS | 2001 - | 2002 | | | | | | | 15345
42 | 81
04 | | | | 4204
4204
4204 | | 2002
2002 | | HIGHEST | DAILY M | EAN | | | 531 | .00 | Jan 26 | | | 53100 | Jan 26 | | | LOWEST I | DAILY MEA | AN | | | 4 | 24 | Sep 14 | | | 424 | Sep 14 | | | ANNUAL S | SEVEN-DAY | Y MINIMUM | | | 4 | 40 | Sep 9 | | | 440 | Sep 9 | 2002 | | MAXIMUM | PEAK FLO | DW . | | | 535 | 00 | Jan 26 | | | 53500 | Jan 26 | 2002 | | MAXIMUM | PEAK STA | AGE | | | | 32.72 | Jan 26 | | | 32.72 | Jan 26 | 2002 | | INSTANTA | ANEOUS LO | OW FLOW | | | 4 | .07 | Sep 14 | | | 407 | Sep 14 | 2002 | | 10 DEDGE | TOTAL COLOR | TDC | | | 0.0 | C 0 | | | | 00.00 | | | #### 03602219 PINEY RIVER AT CEDAR HILL, TN $\label{location.--Lat 35^059^43", long 87^26^22", Dickson County, Hydrologic Unit 06040003, on right bank 300 ft upstream of Interstate Highway 40 bridge, 0.2 mi southeast of Cedar Hill, 0.5 mi upstream from Double Branch, and at mile 22.$ DRAINAGE AREA. -- 46.6 mi². PERIOD OF RECORD.--October 1987 to current year, discharge for stage of 7.00 ft and below only. GAGE. -- Data collection platform. Datum of gage is 552.20 ft above NGVD of 1929. REMARKS.--No esitmated daily discharges. Records good. The City of Dickson diverts water for municipal water supply at confluence of West Piney River, 1.6 mi upstream from gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined; maximum gage height, 19.78 ft, May 27, 1991; minimum discharge, 6.8 ft 3 /s, Oct. 2, 3, 4, 5. EXTREMES FOR CURRENT YEAR.--Maximum discharge, not determined; maximum gage height, 19.70 ft, Mar. 17; minimum discharge, 6.8 ${\rm ft}^3/{\rm s}$, Oct. 2, 3, 4 5. DISCHARGE FROM THE DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV DEC FEB MAY SEP JAN 7.1 7.0 7.0 9.6 9.1 21 8.2 7.9 9.5 13 11 321 72 29 28 16 72 27 2.8
25 2.0 2.0 2.8 175 2.0 ---1228.1 TOTAL MEAN 39.62 39.13 145.1 101.6 85.04 147.1 86.87 65.77 29.50 23.55 20.48 30.23 MAX 7.0 MIN 0.44 CFSM 0.85 0.84 3.11 2.18 1.82 3.16 1.86 1.41 0.63 0.51 0.65 IN. 0.98 0.94 3.59 2.51 1.90 3.64 2.08 1.63 0.71 0.58 0.51 0.72 THIS PAGE IS INTENTIONALLY BLANK #### 03602500 PINEY RIVER AT VERNON, TN LOCATION.--Lat 35°52'17", long 87°30'00", Hickman County, Hydrologic Unit 06040003, on left bank upstream from county highway bridge, 375 ft upstream from Pretty Creek, 0.2 mi northwest of Vernon, 2.3 mi downstream from Mill Creek, 6.5 mi north of Centerville, and at mile 8.3. DRAINAGE AREA. -- 193 mi². PERIOD OF RECORD.--July 1925 to December 1993. January 1994 to October 2000, crest-stage partial record station. November 2000 to current year. REVISED RECORDS.--WSP 758: 1927(M). WSP 823: Drainage area. WSP 1306: Drainage area at site used Feb. 9, 1931, to May 10, 1934. WSP 1436: 1926(M), 1927, 1929, 1930-31(M), 1932, 1934(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 461.72 ft above NGVD of 1929. Prior to May 11, 1934, nonrecording gage; July 3, 1925, to Feb. 8, 1931, at site 350 ft upstream at datum 3.17 ft higher; Feb. 9, 1931, to May 10, 1934, at site 0.4 mi downstream at datum 0.40 ft higher. May 11, 1934, to Sept. 30, 1970, water-stage recorder at site 350 ft upstream; prior to June 29, 1965, at datum 3.17 ft higher, and 2.17 ft higher thereafter. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Flood of March 1897 reached a stage of 20.7 ft, present site and datum, discharge, $37,000 \text{ ft}^3/\text{s}$, from reports by Tennessee Valley Authority. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 0400 | 7,190 | 11.54 | Mar 18 | 0115 | *25,600 | *18.88 | | Nov 29 | 2315 | 19,700 | 16.96 | Mar 20 | 1230 | 11,000 | 13.51 | | Jan 24 | 1245 | 12,100 | 14.05 | Mar 31 | 1415 | 5,380 | 10.39 | | Mar 17 | 1015 | 1 200 | 9 5/ | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge, 55 ft³/s, Oct. 4, 5. | | | | , | | DAIL | Y MEAN VA | LUES | | | | | | |----------------------------------|--|-----------------------------------|--|---|-----------------------|---|---------------------------------|--|---------------------------------|-------------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 58 | 101 | 1660 | 259 | 720 | 196 | 1980 | 447 | 166 | 105 | 95 | 73 | | 2 | 58 | 99 | 972 | 241 | 642 | 196 | 1210 | 381 | 162 | 102 | 92 | 73 | | 3 | 57 | 102 | 701 | 228 | 580 | 197 | 897 | 352 | 156 | 103 | 89 | 72 | | 4 | 57 | 97 | 561 | 215 | 521 | 186 | 721 | 394 | 150 | 102 | 86 | 70 | | 5 | 59 | 93 | 464 | 207 | 457 | 180 | 618 | 398 | e190 | 99 | 84 | 70 | | 6 | 91 | 91 | 405 | 206 | 427 | 176 | 546 | 372 | e230 | 97 | 83 | 69 | | 7 | 73 | 89 | 375 | 196 | 416 | 174 | 495 | 345 | e255 | 94 | 81 | 69 | | 8 | 65 | 88 | 536 | 185 | 392 | 170 | 463 | 318 | 262 | 130 | 79 | 67 | | 9 | 64 | 87 | 626 | 179 | 368 | 199 | 451 | 297 | 223 | 116 | 78 | 66 | | 10 | 62 | 85 | 551 | 176 | 355 | 229 | 399 | 282 | 198 | e200 | 77 | 65 | | 11 | 68 | 85 | 478 | 193 | 330 | 214 | 366 | 261 | 182 | e290 | 77 | 64 | | 12 | 293 | 83 | 450 | 181 | 313 | 261 | 347 | 244 | 172 | 134 | 76 | 64 | | 13 | 417 | 82 | 2040 | 172 | 299 | 295 | 329 | 1050 | 171 | 163 | 76 | 63 | | 14 | 3200 | 81 | 1600 | 167 | 281 | 302 | 327 | 821 | 161 | 150 | 76 | 64 | | 15 | 805 | 81 | 1100 | 162 | 271 | 316 | 310 | 573 | 149 | 122 | 83 | 66 | | 16 | 469 | 80 | 822 | 155 | 265 | 358 | 294 | 464 | 143 | 112 | 138 | 70 | | 17 | 338 | 80 | 764 | 153 | 252 | 4070 | 283 | 412 | 138 | 108 | 185 | 70 | | 18 | 271 | 79 | 730 | 173 | 239 | 9720 | 269 | 390 | 131 | 104 | 99 | 73 | | 19 | 230 | 80 | 636 | 292 | 230 | 2590 | 257 | 332 | 126 | 106 | 90 | 72 | | 20 | 198 | 82 | 548 | 392 | 252 | 5820 | 249 | 299 | 122 | 100 | 86 | 77 | | 21 | 176 | 78 | 477 | 373 | 237 | 2450 | 242 | 273 | 118 | 97 | 84 | 97 | | 22 | 157 | 77 | 433 | 339 | 224 | 1350 | 235 | 254 | 115 | 96 | 81 | 78 | | 23 | 144 | 78 | 585 | 645 | 216 | 994 | 224 | 238 | 114 | 128 | 81 | 72 | | 24 | 140 | 100 | 552 | 5480 | 208 | 813 | 235 | 223 | 114 | 203 | 81 | 69 | | 25 | 171 | 146 | 489 | 2340 | 207 | 690 | 253 | 210 | 111 | 122 | 82 | 71 | | 26
27
28
29
30
31 | 141
127
119
113
109
104 | 109
675
682
9860
7330 | 445
411
379
347
312
287 | 1260
887
696
594
561
504 | 221
209
200
 | 981
813
698
635
747
2900 | 223
215
253
226
217 | 235
209
194
187
182
173 | 110
111
120
111
108 | 108
101
97
95
94
100 | 85
80
79
77
75
74 | 261
1550
484
276
199 | | TOTAL | 8434 | 20880 | 20736 | 17811 | 9332 | 38920 | 13134 | 10810 | 4619 | 3778 | 2709 | 4534 | | MEAN | 272.1 | 696.0 | 668.9 | 574.5 | 333.3 | 1255 | 437.8 | 348.7 | 154.0 | 121.9 | 87.39 | 151.1 | | MAX | 3200 | 9860 | 2040 | 5480 | 720 | 9720 | 1980 | 1050 | 262 | 290 | 185 | 1550 | | MIN | 57 | 77 | 287 | 153 | 200 | 170 | 215 | 173 | 108 | 94 | 74 | 63 | | CFSM | 1.41 | 3.61 | 3.47 | 2.98 | 1.73 | 6.51 | 2.27 | 1.81 | 0.80 | 0.63 | 0.45 | 0.78 | | IN. | 1.63 | 4.02 | 4.00 | 3.43 | 1.80 | 7.50 | 2.53 | 2.08 | 0.89 | 0.73 | 0.52 | 0.87 | e Estimated ## 03602500 PINEY RIVER AT VERNON, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002, BY WATER YEAR (WY) | MEAN 103.4 177.9 MAX 272 749 (WY) 2002 1958 MIN 52.5 64.9 (WY) 1932 1957 | 359.7 493.4 565.2 2535 1930 1704 1927 1937 1932 66.2 84.4 115 1936 1940 1941 | 619.8 498.7 393.9
2091 1393 1715
1975 1927 1983
109 137 84.9
1941 1967 1941 | 212.8 139.3 113.5 106.3 1041 340 258 685 1974 1972 1938 1979 59.8 61.4 49.3 47.0 1941 1942 1936 1936 | |--|--|--|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1925 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 101786
278.9
9860 Nov 29
57 Oct 3
58 Sep 29
1.44
19.62
472
120
70 | 155697
426.6
9860 Nov 29
57 Oct 3
65 Sep 9
25600 Mar 18
18.88 Mar 18
a55 Oct 4
2.21
30.01
709
198
76 | 316.6 684 1927 102 1941 31200 Dec 21 1926 38 Aug 19 1936 38 Aug 19 1936 49400 May 27 1991 24.42 May 27 1991 b35 Sep 19 1936 1.64 22.29 619 151 73 | a Also occurred Oct. 5. b Also occurred Sept. 20, 1936. #### 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN LOCATION.--Lat 35°29'45", long 87°49'58", Perry County, Hydrologic Unit 06040004, on right bank 0.4 mi downstream from Little Opossum Creek, 0.5 mi downstream from bridge on State Highway 13, 1.3 mi north of Flat Woods, 3.9 mi upstream from Sinking Creek, and at mile 58.7. DRAINAGE AREA. -- 447 mi². PERIOD OF RECORD. -- May 1920 to current year. REVISED RECORDS.--WSP 758: 1933. WSP 803: 1935. WSP 823: Drainage area. WSP 1436: 1921(M), 1922-24, 1925(M), 1927(M), 1934(M), WRD TN-71: 1970. GAGE.--Data collection platform. Datum of gage is 513.58 ft above NGVD of 1929, determined by levels run by Army Engineers December 1926 and July 1927, from BM-39, datum of 1929. Prior to May 27, 1934, nonrecording gage at same site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1897, that of May 27, 1991. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|---------|-----------------------------------|---------------------| | Oct 14 | 1900 | 9,030 | 12.94 | Mar 18 | unknown | 12,300 | 15.55 | | Nov 30 | 0630 | 27,100 | 23.97 | Apr 1 | 0115 | 9,060 | 12.97 | | Jan 24 | 1900 | *29,500 | *24.84 | May 4 | 1645 | 5,740 | 9.94 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum daily discharge, 172
ft³/s, Sept. 13, 14. | | | | | | DAII | LY MEAN VA | LUES | | | | | | |-------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|--------------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 253 | 328 | 5590 | 515 | 1170 | 696 | 7290 | 700 | 422 | 277 | 417 | 215 | | 2 | 244 | 319 | 2310 | 495 | 1160 | 685 | 3060 | 891 | 395 | 292 | 341 | 210 | | 2
3
4 | 238 | 313 | 1570 | 484 | 1080 | 683 | 2010 | 1320 | 376 | 376 | 287 | 207 | | 4 | 232 | 306 | 1250 | 475 | 1030 | 647 | 1530 | 4600 | 363 | 336 | 263 | 203 | | 5 | 229 | 300 | 1060 | 459 | 975 | 622 | 1260 | 3530 | 362 | 296 | 247 | 198 | | 6 | 239 | 291 | 907 | 459 | 927 | 608 | 1080 | 1880 | 382 | 267 | 235 | 191 | | 7 | 282 | 285 | 825 | 473 | 937 | 599 | 973 | 1440 | 362 | 252 | 229 | 186 | | 8 | 274 | 282 | 1070 | 456 | 956 | 587 | 908 | 1210 | 350 | 243 | 218 | 181 | | 9 | 255 | 282 | 1780 | 432 | 944 | 592 | 911 | 1050 | 340 | 332 | 210 | 179 | | 10 | 244 | 290 | 1560 | 420 | 921 | 639 | 825 | 955 | 331 | 286 | 208 | 178 | | 11 | 243 | 300 | 1250 | 420 | 908 | 621 | 728 | 910 | 324 | 273 | 217 | 176 | | 12 | 463 | 298 | 1090 | 416 | 868 | 1080 | 684 | 811 | 321 | 296 | 222 | 174 | | 13 | 1960 | 294 | 1410 | 403 | 819 | 2000 | 663 | 867 | 323 | 357 | 209 | 172 | | 14 | 6760 | 291 | 2870 | 396 | 776 | 1630 | 630 | 1330 | 353 | 454 | 214 | 173 | | 15 | 4360 | 288 | 2820 | 389 | 745 | e1350 | 601 | 1110 | 352 | 516 | 220 | 175 | | 16 | 1940 | 286 | 1850 | 376 | 729 | e3300 | 574 | 943 | 326 | 475 | 256 | 181 | | 17 | 1270 | 283 | 1470 | 367 | 704 | e8000 | 550 | 828 | 313 | 403 | 270 | 188 | | 18 | 975 | 280 | 1460 | 368 | 678 | e12000 | 538 | 784 | 307 | 335 | 278 | 193 | | 19 | 806 | 278 | 1310 | 503 | 656 | 7420 | 517 | 747 | 297 | 302 | 266 | 200 | | 20 | 688 | 281 | 1130 | 1090 | 801 | 3460 | 500 | 652 | 287 | 315 | 239 | 215 | | 21 | 602 | 281 | 997 | 1060 | 1080 | 3080 | 476 | 602 | 279 | 307 | 253 | 231 | | 22 | 536 | 276 | 895 | 908 | 979 | 2150 | 470 | 555 | 271 | 280 | 259 | 250 | | 23 | 487 | 274 | 892 | 5820 | 909 | 1670 | 461 | 523 | 264 | 311 | 236 | 228 | | 24 | 452 | 295 | 943 | 25400 | 857 | 1400 | 445 | 503 | 261 | 342 | 272 | 210 | | 25 | 455 | 380 | 867 | e15000 | 806 | 1230 | 479 | 481 | 272 | 533 | 346 | 202 | | 26 | 483 | 408 | 774 | e7000 | 801 | 1250 | 484 | 476 | 343 | 450 | 302 | 278 | | 27 | 434 | 480 | 715 | e4000 | 781 | 1370 | 447 | 470 | 330 | 360 | 258 | 2460 | | 28 | 398 | 1310 | 651 | 1900 | 730 | 1190 | 455 | 443 | 333 | 310 | 246 | 1670 | | 29 | 371 | 7770 | 610 | 1590 | | 1080 | 495 | 435 | 313 | 279 | 235 | 966 | | 30 | 354 | 22300 | 574 | 1390 | | 1200 | 512 | 417 | 290 | 264 | 226 | 655 | | 31 | 339 | | 542 | 1210 | | 4780 | | 466 | | 327 | 221 | | | TOTAL | 26866 | 39649 | 43042 | 74674 | 24727 | 67619 | 30556 | 31929 | 9842 | 10446 | 7900 | 10945 | | MEAN | 866.6 | 1322 | 1388 | 2409 | 883.1 | 2181 | 1019 | 1030 | 328.1 | 337.0 | 254.8 | 364.8 | | MAX | 6760 | 22300 | 5590 | 25400 | 1170 | 12000 | 7290 | 4600 | 422 | 533 | 417 | 2460 | | MIN | 229 | 274 | 542 | 367 | 656 | 587 | 445 | 417 | 261 | 243 | 208 | 172 | | MED | 434
1.94 | 293
2.96 | 1090
3.11 | 484 | 888
1.98 | 1230 | 588
2.28 | 811
2.30 | 328
0.73 | 311
0.75 | 246 | 201
0.82 | | CFSM
IN. | 2.24 | 2.96
3.30 | 3.11 | 5.39
6.21 | 2.06 | 4.88
5.63 | 2.28 | 2.30 | 0.73 | 0.75 | 0.57
0.66 | 0.82 | | TIN. | 2.24 | 3.30 | 3.58 | 0.∠⊥ | ∠.06 | 5.03 | ∠.54 | ∠.00 | 0.82 | 0.8/ | 0.00 | 0.91 | e Estimated ## 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY) | 288.6
1418
1933 | 528.1
2554
1958 | 928.5
3568
1927 | 1218
3854
1937 | 1363
4901
1948 | 1477
4405
1973 | 1174
3034
1964 | 879.3
5227
1991 | 464.0
1642
1974 | 369.7
1824
1932 | 288.4
1008
1923 | 273.7
1286
1979 | | | |------------------------|---------------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--| | MIN | 112 | 174 | 213 | 234 | 316 | 458 | 303 | 210 | 146 | 121 | 117 | 94.2 | | | | (WY) | 1932 | 1925 | 1964 | 1940 | 1926 | 1966 | 1986 | 1942 | 1941 | 1943 | 1925 | 1925 | | | | SUMMAR | Y STATIST | rics | FOR 2 | 2001 CALE | NDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | S 1920 - | 2002 | | | | ANNUAL | TOTAL | | | 327658 | | | 378195 | | | | | | | | | ANNUAL | MEAN | | | 897.7 | | | 1036 | | | 766.6 | | | | | | | T ANNUAL | | | | | | | | | 1583 | | 1973 | | | | | ANNUAL M | | | | | | | | | 323 | | 1942 | | | | | T DAILY M | | | 22300 | Nov 30 | | 25400 | Jan 24 | | 75800 | May 27 | | | | | | DAILY ME | | | 229 | Oct 5 | | 172 | Sep 13 | | 65 | Sep 9 | | | | | | | MUMINIM YA | | 243 | Sep 30 | | 175 | Sep 9 | | 71 | Sep 5 | | | | | | M PEAK FL | | | | | | 29500 | Jan 24 | | a96300 | May 27 | | | | | | M PEAK ST | | | | | | 24.84 | | | b32.19 | May 27 | | | | | | TANEOUS L | | | | | | c172 | | | 65 | Sep 9 | 1925 | | | | | ANNUAL RUNOFF (CFSM) 2.01 | | | | 2.32 | | 1.71 | | | | | | | | | ANNUAL | RUNOFF (| INCHES) | | 27.2 | 7 | | 31.47 | | | 23.30 | | | | | | | CENT EXCE | | | 1460 | | | 1650 | | | 1440 | | | | | | | CENT EXCE | | | 476 | | | 470 | | | 395 | | | | | | 90 PERCENT EXCEEDS 282 | | | | | | 232 | | 179 | | | | | | | a From rating curve extended above 50,000 ft³/s, on basis of slope-area and contracted opening measurements and rainfall-runoff study. b From high-water mark in gage house. c Also occurred Sept. 14. #### 03605078 CYPRESS CREEK AT CAMDEN, TN LOCATION.--Lat $36^{\circ}02^{\circ}49^{\circ}$, long $88^{\circ}04^{\circ}33^{\circ}$, Benton County, Hydrologic Unit 06040005, on left bank, adjacent to southwest corner of third sewage lagoon at Camden Sewage Treatment Plant, 1.5 mi southeast of Camden, and 1.4 mi upstream from Kentucky Lake. DRAINAGE AREA. -- 27.3 mi². PERIOD OF RECORD.--January 1992 to current year, discharge for stage of 4.30 ft and below only. GAGE.--Water-stage recorder. Datum of gage is 360.00 ft above NGVD of 1929, determined by the city of Camden, Tennessee. REMARKS.--No estimated daily discharges. Records good. Periodic observations of specific conductance and water temperature are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined; maximum gage height, 11.41 ft, Sept. 27, 2002; minimum discharge, 0.0 ft³/s, Sept. 2-19, 1999. EXTREMES FOR CURRENT YEAR.--Maximum discharge, not determined; maximum gage height, 11.41 ft, Sept. 27; minimum discharge, 0.32 ft³/s, Sept. 25. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES NOV DAY DEC FEB MAR APR MAY JUN JUL AUG SEP OCT JAN 1.1 6.0 15 3.4 2.4 1.4 1 15 16 2 68 49 77 2.0 3.6 10 13 16 1.4 1.1 15 0.98 31 44 14 15 56 12 40 4.5 1.5 38 4 0.87 13 34 13 29 11 40 14 23 4 3 1 3 1 2 5 9.9 27 1.2 3.6 12 26 11 33 13 14 4.1 1.2 7.8 7.8 2.3 6 28 23 25 11 28 10 13 4.0 1.1 1.2 7.3 37 25 8.5 3.5 0.97 17 11 13 1.0 25 47 8 1.7 6.5 ___ 14 32 11 6.6 12 0.94 0.82 20 8.5 9 1.5 6.0 13 26 6.2 3.2 0.85 0.76 10 1.9 5.7 65 14 25 14 32 6.6 6.7 3.4 0.83 0.77 0.78 0.70 11 23 5.7 42 25 20 12 26 6.0 6.2 6.6 12 12 16 18 32 23 5.6 6.1 0.71 0.70 5.7 25 19 20 19 5.8 13 ___ 14 16 3.9 0.74 0.70 14 13 15 3.4 1.0 0.81 15 5.3 47 12 15 16 18 5.3 3.4 1.2 1.4 37 5.3 11 17 30 15 22 5.1 3.1 2.0 1.3 16 21 5.3 11 14 4.0 1.4 5.3 7.9 ___ 2.7 1.4 1.3 18 15 32 13 ___ 13 4.9 2.6 2.5 12 4.6 19 59 12 95 14 20 12 10 70 11 2.3 2.0 41 4.5 4.1 21 9.7 6.9 32 42 37 10 4.1 2.1 1.9 13 3.9 3.7 3.4 7.9 25 83 ---1.9 8.9 23 7.4 5.9 ___ ___ 22 54 ___ 5.4 1.8 2.9 24 14 19 42 11 0.98 19 25 27 ---53 ---17 36 15 ---3.7 6.3 3.2 0.40 30 9.3 26 10 35 39 8.1 ---2.7 7.8 32 19 8.3 29 5.0 2.1 5.0 ---6.9 6.8 64 ___ 4.6 4.2 1.8 1.7 ---28 27 36 16 33 2.8 29 ---24 ---2.4 12 30 6.5 18 39 15 3.7 1.9 5.8 31 6.3 ---16 34 ------------3.0 1.7 218.7 TOTAL 265.15 649 540 614 548 608.5 312.5 301.6 121.4 62.95 67.01 23.62 26.10 9.113 38.18 22.50 MEAN 9.470 21.73 19.53 10.40 3.916 2.031 2.482 37 35 68 70 49 83 56 95 77 13 MTN 0.87 5.3 16 11 13 11 8.3 5.6 3.4 1.7 0.71 0.40 0.33 1.40 0.82 0.87 0.96 0.80 0.72 0.38 0.14 0.07 CFSM 0.35 0.09 IN. 0.36 0.30 0.88 0.74 0.84 0.43 0.41 0.17 0.09 0.09 THIS PAGE IS INTENTIONALLY BLANK #### 03606500 BIG SANDY RIVER AT BRUCETON, TN LOCATION.--Lat 36°02'19", long 88°13'42", Carroll County, Hydrologic Unit 06040005, on right bank on downstream end of abutment of county bridge, 700 ft downstream from bridge on U.S. Highway 70, 0.6 mi upstream from Cherry Creek, 0.9 mi east of Bruceton, and at mile 31.6 DRAINAGE AREA. -- 205 mi². PERIOD OF RECORD. -- July 1929 to November 1988, January 2002 to September 2002. REVISED RECORDS.--WSP 853: Drainage area. WSP 923: 1929-35. GAGE.--Data collection platform. Datum of gage is 380.58 ft above NGVD of 1929. Prior to March 1, 1940, nonrecording gage at same site REMARKS.--Records good except for estimated discharges, which are poor. Periodic observations of water temperature and specific conductance are published in the report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1897 reached a stage of 18 ft, discharge 25,000 $\rm ft^3/s$, and flood in March 1919 reaced a stage of 17 ft, discharge, 21,000 $\rm ft^3/s$, from reports by Tennessee Valley Authority. EXTREMES FOR CURRENT YEAr.--Peak discharges greater than base discharge of 2,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |----------------------------|----------------------
-----------------------------------|-------------------------|------------------|--------------|-----------------------------------|---------------------| | Jan 26
Mar 19
Mar 22 | 1036
0100
1130 | 2,390
9,760
2,220 | 12.15
15.27
11.93 | Mar 31
Sep 28 | 2100
0445 | 2,010
*12,500 | 11.60
*15.76 | Minimum discharge, 54 ft³/s, on several days. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR JANUARY
LUES | 2002 TC | SEPTEMBER | 2002 | | | |-------|-----|-----------|---------|--------------|-------|-----------------------|--------------------|---------|------------|-------|-------|-----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | 167 | 647 | 154 | 1880 | 149 | 176 | 71 | 84 | 69 | | 2 | | | | 159 | 570 | 150 | 1720 | 160 | 144 | 75 | 71 | 67 | | 3 | | | | 161 | 301 | 162 | 613 | 142 | 128 | 79 | 66 | 63 | | 4 | | | | 153 | 248 | 144 | 288 | 178 | e120 | 80 | 62 | 61 | | 5 | | | | 152 | 207 | 138 | 234 | 168 | e118 | 73 | 59 | 59 | | - | | | | 132 | 207 | 130 | 231 | 100 | 0110 | , , | 33 | 33 | | 6 | | | | 223 | 205 | 136 | 211 | 132 | e160 | 70 | 57 | 58 | | 7 | | | | 232 | 272 | 137 | 196 | 115 | 156 | 70 | 56 | 58 | | 8 | | | | 180 | 311 | 135 | 202 | 105 | 125 | 71 | 56 | 56 | | 9 | | | | 169 | 239 | 163 | 316 | 104 | e105 | 83 | 56 | 55 | | 10 | | | | e168 | 220 | 229 | 231 | 115 | e100 | 141 | 56 | 55 | | 11 | | | | e230 | 198 | 165 | 192 | 134 | e115 | 218 | 94 | 54 | | 12 | | | | e215 | 182 | 361 | 182 | 117 | e140 | 104 | 76 | 54 | | 13 | | | | e215 | 170 | 506 | 177 | 424 | e150 | 138 | 61 | 54 | | 14 | | | | e175
e168 | 161 | 277 | 171 | 342 | 151 | 158 | 77 | 54
58 | | 15 | | | | e162 | 160 | 197 | 164 | 169 | e115 | 100 | 87 | 75 | | 13 | | | | e162 | 100 | 197 | 104 | 169 | ello | 100 | 87 | /5 | | 16 | | | | e160 | 187 | 245 | 152 | 126 | e96 | 83 | 99 | 72 | | 17 | | | | e160 | 177 | 1230 | 147 | 350 | e90 | 74 | 188 | 69 | | 18 | | | | e450 | 161 | 4640 | 165 | 410 | e90 | 71 | 112 | 70 | | 19 | | | | 682 | 157 | 7200 | 145 | 194 | e92 | 73 | 85 | 64 | | 20 | | | | 590 | 405 | 3410 | 134 | 152 | e90 | 97 | 77 | 90 | | 21 | | | | 309 | 301 | 2530 | 126 | 135 | e88 | 77 | 72 | 349 | | 22 | | | | 225 | 195 | 2180 | 119 | 123 | e85 | 69 | 67 | | | 23 | | | | 457 | 172 | 2180
967 | 110 | 123 | e83 | 87 | 63 | 156
93 | | 24 | | | | 1720 | 162 | 346 | 118 | 122 | e83
e81 | 104 | 61 | 93
75 | | 25 | | | | 2120 | 158 | 271 | 213 | 120 | e81
e95 | 89 | 309 | 69 | | 25 | | | | 2120 | 128 | 2/1 | 213 | 120 | 695 | 89 | 309 | 69 | | 26 | | | | 2300 | 212 | 884 | 146 | 204 | e100 | 77 | 495 | 734 | | 27 | | | | 1210 | 185 | 707 | 127 | 210 | 88 | 69 | 411 | 7600 | | 28 | | | | 339 | 161 | 357 | 197 | 186 | 90 | 64 | 119 | 10300 | | 29 | | | | 272 | | 280 | 138 | 436 | 87 | 62 | 86 | 4200 | | 30 | | | | 288 | | 490 | 114 | 448 | 83 | 74 | 77 | 1700 | | 31 | | | | 274 | | 1630 | | 267 | | 142 | 72 | | | TOTAL | | | | 14270 | 6724 | 30421 | 8928 | 6157 | 3341 | 2844 | 3411 | 26537 | | MEAN | | | | 460.3 | 240.1 | 981.3 | 297.6 | 198.6 | 111.4 | 91.74 | 110.0 | 884.6 | | MAX | | | | 2300 | 647 | 7200 | 1880 | 448 | 176 | 218 | 495 | 10300 | | MIN | | | | 152 | 157 | 135 | 110 | 104 | 81 | 62 | 56 | 54 | | CFSM | | | | 2.25 | 1.17 | 4.79 | 1.45 | 0.97 | 0.54 | 0.45 | 0.54 | 4.31 | | IN. | | | | 2.59 | 1.22 | 5.52 | 1.62 | 1.12 | 0.61 | 0.52 | 0.62 | 4.82 | e Estimated ## 03606500 BIG SANDY RIVER AT BRUCETON, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------| | MEAN 121.1 259.1
MAX 534 995
(WY) 1973 1958
MIN 42.0 65.7
(WY) 1944 1955 | 1011
1950
88.1 | 508.8
2712
1937
90.8
1963 | 443.7
1235
1950
96.4
1941 | 502.8
1478
1975
84.6
1941 | 396.6
1292
1979
89.2
1967 | 304.0
1423
1983
51.6
1941 | 181.1
956
1974
41.8
1941 | 152.3
929
1972
32.9
1943 | 126.9
613
1971
39.7
1956 | 147.3
885
2002
35.7
1942 | | SUMMARY STATISTICS | | | FOR 2 | 002 WATE | R YEAR | | | WATER YEAR | s 1929 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | AL TOTAL 102633 AL MEAN 375.9 EST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 10300 Sep 28 ST DAILY MEAN 54 Sep 11 AL SEVEN-DAY MINIMUM 55 Sep 7 MUM PEAK FLOW a19600 Nov 29 ANTANEOUS LOW FLOW c54 Sep 9 AL RUNOFF (CFSM) 1.83 AL RUNOFF (INCHES) 18.62 ERCENT EXCEEDS 502 | | | | | | | 290.1
632
77.8
15500
28
29
a19600
b16.60
c28
1.41
19.22
640
124
53 | Aug 17 | 1943
1943
2001
2001 | a From rating curve extended above 9,200 ft³/s. b Peak stage from crest-stage gage, outside period of recroded stage. c Also occurred Aug. 18, 19, 22, Sept. 1, 1943. #### RESERVOIRS IN TENNESSEE RIVER BASIN 03468500 DOUGLAS LAKE.--Lat 35°57'40", long 83°32'20", Sevier County, Hydrologic Unit 06010107, at Douglas Dam on French Broad River, 6.5 mi north of Sevierville, and at mile 32.3. DRAINAGE AREA, 4,541 mi². PERIOD OF RECORD, February 1943 to current year. GAGE,water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir formed by concrete main dam and 10 saddle dams. Spillway equipped with 11 radial gates, each 32 ft high by 40 ft wide and 8 sluice gates 10 ft high by 5.67 ft wide. Closure of dam was made Feb. 19, 1943; water in reservoir first reached minimum pool elevation Feb. 25, 1943. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,002.00 ft, top of gates, is 743,600 cfs-days, of which 631,200 cfs-days is controlled storage above elevation 940.00 ft, normal minimum pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 760,000 cfs-days, July 25, 1949, elevation, 1,001.79 ft; minimum after first filling, 1,000 cfs-days, Jan. 16, 1956, elevation, 883.7 ft, estimated. EXTREMES FOR CURRENT YEAR.--Maximum contents, 598,200 cfs-days, June 10, elevation, 992.69 ft; minimum, 106,300 cfs-days, Dec. 21, elevation, 940.08 ft. 03476000 SOUTH HOLSTON LAKE.--Lat 36°31'15", long 82°05'11", Sullivan County, Hydrologic Unit 06010102, 470 ft upstream from South Holston Dam on South Fork Holston River, 7.0 mi southeast of Bristol, Virginia-Tennessee, and at mile 49.8. DRAINAGE AREA, 703 mi². PERIOD OF RECORD, November 1950 to current year. GAGE, water-stage recorder. Datum of gage is sea level. Prior to May 11, 1951, non-recording gage at same site and datum. REMARKS.--Reservoir is formed by rock and rolled earthfill dam. Spillway is uncontrolled morning-glory type, 128 ft in diameter with six piers, each 3 ft wide to guide flow spilling into a concrete-lined shaft and tunnel 34 ft in diameter. Closure of dam was made Nov. 20, 1950; water in reservoir first reached minimum pool elevation Jan. 25, 1951. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,742.00 ft, spillway crest, is 385,200 cfs-days, of which 220,800 cfs-days is controlled storage above elevation 1,675.00 ft, normal minimum pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 363,800 cfs-days, May 10, 1984, elevation, 1,736.86 ft; minimum after first filling, 57,700 cfs-days, Jan. 13, 1956, elevation, 1,614.15 ft. EXTREMES FOR CURRENT YEAR.--Maximim contents, 327,800 cfs-days, May 14, elevation 1,727.97 ft: minimum, 232,000 cfs-days, Jan. 18, elevation, 1,699.74 ft. 03483500 WATAUGA LAKE.--Lat 36°19'20", long 82°07'16", Carter County, Hydrologic Unit 06010103, at Watauga Dam on Watauga River, 5 mi east of Elizabethton, and at mile 36.7. DRAINAGE AREA, 468 mi². PERIOD OF RECORD, December 1948 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by rock and rolled earthfill dam. Spillway is uncontrolled morning-glory type, 128 ft in diameter with six piers, each 3 ft wide to guide flow spilling into a concrete-lined shaft and tunnel 34 ft in diameter. Closure of dam was made Dec. 1, 1948; water in reservoir first reached minimum pool elevation Dec. 31, 1948. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,975.00 ft, spillway crest, is 341,300 cfs-days, of which 178,500 cfs-days is controlled storage above elevation 1,915.00 ft, normal minimum pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 300,800 cfs-days, Apr. 19, 1987, elevation, 1,963.28 ft; minimum after first
filling, 25,100 cfs-days, Jan. 13, 1956, elevation, 1,813.47 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 268,000 cfs-days, May 30, elevation, 1,953.20 ft; minimum, 224,000 cfs-days, Mar. 13, elevation, 1,938.26 ft. #### MONTHEND ELEVATION AND CONTENTS AT 2400. WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | Elevation Conten
(feet) (cfs-da | Change in
ts contents
ys)(cfs-days) | Elevation (| Contents | Change in
contents
cfs-days) | Elevation
(feet) (| Contents
cfs-days) | Change in
contents
(cfs-days) | |---|--|---|--|---|---|--|---|---| | | 03468500 DOUGLA | S LAKE | 03476000 \$ | SOUTH HOLST | ON LAKE | 034835 | 00 WATAUGA | A LAKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 976.24 394,600
961.34 249,300
947.74 148,800
941.52 113,400 | -145,300
-100,500 | 1,715.14
1,709.88
1,704.54
1,701.95 | 281,500
263,900
246,800
238,700 | -17,600
-17,100
-8,100 | 1,944.28
1,942.74
1,940.51
1,940.33 | 241,200
236,700
230,300
229,800 | -4,500
-6,400
-500 | | CAL YR 2001 | - | -5,500 | - | - | +4,000 | - | - | +4,800 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 950.20 164,700 949.66 161,100 974.20 372,700 984.04 484,500 992.24 591,900 992.46 595,000 990.08 562,200 976.56 398,100 971.19 341,600 | -3,600
+211,600
+111,800
+107,400
+3,100
-32,800
-164,100 | 1,704.17
1,703.85
1,718.96
1,725.70
1,727.28
1,723.17
1,721.70
1,713.97
1,708.93 | 245,600
244,600
294,800
319,200
325,200
309,900
304,600
277,500
260,800 | +6,900
-1,000
+50,200
+24,400
+6,000
-15,300
-5,300
-27,100
-16,700 | 1,943.97
1,940.20
1,945.17
1,950.16
1,953.10
1,951.59
1,948.87
1,943.73 | 240,300
229,600
244,900
258,600
267,700
263,000
254,700
239,600
237,800 | +10,500
-10,700
+15,300
+13,700
+9,100
-4,700
-8,300
-15,100
-1,800 | | WTR YR 2002 | - | -53,000 | - | - | -20,700 | - | - | -3,400 | #### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03486800 BOONE LAKE.--Lat 36°26'26", long 82°26'16", Sullivan County, Hydrologic Unit 06010102, at Boone Dam on South Fork Holston River, 0.7 mi northeast of Spurgeon, 1.3 mi downstream from Watauga River, and at mile 18.6. DRAINAGE AREA, 1,840 mi². PERIOD OF RECORD, December 1952 to current year. GAGE, water-stage recorder. Datum of gage is sea level REMARKS.--Reservoir is formed by gravity nonover-flow type concrete dam. Spillway is equipped with five radial gates, each 35 ft high by 35 ft wide. Storage began Dec. 16, 1952; water in reservoir first reached minimum pool elevation Jan. 5, 1953. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,385.0 ft, top of gates, is 97,500 cfs-days, of which 74,800 cfs-days is controlled storage above elevation 1,330 ft, normal minimum pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 99,100 cfs-days, May 19, 1964, elevation 1,384.99 ft; minimum after first filling, 21,300 cfs-days, Jan. 23, 1956, elevation, 1,327.06 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 93,500 cfs-days, July 5, elevation, 1,383.16 ft; minimum, 38,100 cfs-days, Dec. 20, elevation, 1,347.00 ft. 03487000 FORT PATRICK HENRY LAKE.--Lat 36°29'53", long 82°30'32", Sullivan County, Hydrologic Unit 06010102, at Fort Patrick Henry Dam on South Fork Holston River, 0.2 mi upstream from bridge on U. S. Highway 23, 4.5 mi southeast of Kingsport, and at mile 8.2. DRAINAGE AREA, 1,903 mi². PERIOD OF RECORD, October 1953 to current year. GAGE, waterstage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by gravity nonover-flow type concrete dam. Spillway is equipped with five radial gates, each 35 ft high by 35 ft wide. Storage began Oct. 27, 1953; water in reservoir first reached minimum pool elevation Dec. 8, 1953. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,263 ft, top of gates, is 13,600 cfs-days, of which 2,200 cfs-days is controlled storage above elevation 1,258 ft, normal minimum pool. Reservoir is used for navigation, flood control and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 14,000 cfs-days, Feb. 11, 1954, elevation, 1,263.80 ft, minimum after first filling, 2,690 cfs-days, Sept. 19, 1986, elevation, 1,226.33 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,600 cfs-days, June 3, elevation, 1,263.07 ft; minimum, 11,400 cfs-days, Aug. 13, elevation, 1,257.84 ft. 03493500 CHEROKEE LAKE.--Lat $36^{\circ}10^{\circ}00^{\circ}$, long $83^{\circ}29^{\circ}55^{\circ}$, Jefferson County, Hydrologic Unit 06010104, at Cherokee Dam on Holston River, 0.3 mi upstream from bridge on State Highway 92, 2.7 mi upstream from Mill Spring Creek, 2.8 mi north of Jefferson City, and at mile 52.3. DRAINAGE AREA, 3,429 mi². PERIOD OF RECORD, December 1941 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with riprapped earth embankments. Spillway equipped with nine radial gates, each 32 ft high by 40 ft wide. Storage began Dec. 5, 1941; water in reservoir first reached minimum pool elevation Jan. 6, 1942. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,075.0 ft, top of gates, is 778,400 cfs-days, of which 580,300 cfs-days is controlled storage above elevation 1,020.0 ft, normal minimum pool. Reservoir is used for navigation, flood control, and power. ${\tt COOPERATION.--Records} \ \ {\tt furnished} \ \ {\tt by} \ \ {\tt Tennessee} \ \ {\tt Valley} \ \ {\tt Authority}.$ EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 779,400 cfs-days, May 11, 1944, maximum elevation, 1,074.47 ft May 30, 1973; minimum after first filling, 48,400 cfs-days, Jan. 7, 1954, elevation, 980.77 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 644,400 cfs-days, June 3, elevation, 1,065.80 ft; minimum, 251,100 cfs-days, Jan. 18, elevation, 1,027.90 ft. MONTHEND ELEVATION AND CONTENTS AT 2400. WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | Elevation
(feet) | | Change in
contents
(cfs-days) | Elevation | Contents
(cfs-days) | Change in
contents
(cfs-days) | Elevation
(feet) (| Contents
cfs-days) | Change in
contents
(cfs-days) | |---|--|--|--|--|--|--|--|---|---| | | 03486800 | BOONE LAK | E C | 3487000 FOF | RT PATRICK | HENRY LAKE | 03493500 | CHEROKEE L | AKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 1,378.60
1,372.58
1,353.17
1,348.76 | 84,100
73,000
45,000
40,000 | -11,100
-28,000
-5,000 | 1,261.01
1,259.38
1,262.08
1,261.75 | 12,700
12,000
13,200
13,000 | -700
+1,200
-200 | 1,055.00
1,043.60
1,036.60
1,031.91 | 505,000
385,200
320,500
281,600 | -119,800
-64,700
-38,900 | | CAL YR 2001 | - | - | -8,300 | - | - | +300 | - | - | 33,400 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 1,354.67
1,364.12
1,371.59
1,375.33
1,381.50
1,381.37
1,381.52
1,381.95
1,376.01 | 46,800
59,500
71,400
77,900
90,000
89,700
90,000
90,900
79,200 | +6,800
+12,700
+11,900
+6,500
+12,100
-300
+300
+900
-11,700 | 1,261.42
1,261.25
1,258.69
1,260.91
1,261.77
1,260.94
1,261.42
1,262.05
1,261.87 | 12,900
12,800
11,700
12,600
13,000
12,700
12,900
13,100
13,100 | -100
-100
-1,100
+900
+400
-300
+200
+200 | 1,035.19
1,038.54
1,056.29
1,061.21
1,065.53
1,063.15
1,060.18
1,051.54 | 308,400
337,600
523,200
584,000
640,800
609,100
571,000
468,400
424,300 | +26,800
+29,200
+185,600
+60,800
+56,800
-31,700
-38,100
-102,600
-44,100 | | WTR YR 2002 | _ | - | -4,900 | - | - | +400 | _ | _ | -80,700 | #### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03499500 FORT LOUDOUN LAKE.--Lat 35°47'30", long 84°14'35", Loudon County, Hydrologic Unit 06010201, at Fort Loudoun Dam on Tennessee
River, 1 mi northeast of Lenoir City, and at mile 602.3. DRAINAGE AREA, 9,550 mi². PERIOD OF RECORD, July 1943 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir formed by concrete dam with earth embankment. Spillway equipped with 14 radial gates, each 32 ft high by 40 ft wide. Closure of dam was made Aug. 2, 1943; water in reservoir first reached ordinary minimum pool elevation Sept. 4, 1943. Revised capacity table put into use Jan. 19, 1980. Total level pool capacity at elevation 815.00 ft, top of gates, is 424,000 cfs-days, of which 120,000 cfs-days is controlled flood storage above elevation 807.00 ft, minimum navigation pool. Reservoir is used for navigation, flood control, and power. Tellico-Fort Loudoun canal was opened Jan. 19, 1980. Canal is 1,000 ft long, and interconnects Tellico and Fort Loudoun Lakes at the dam. Spillway gates of Tellico Dam were closed Feb. 7, 1980, diverting all flow from Little Tennessee River. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 815.14 ft, May 8, 1984; minimum after first filling, 805.54 ft, Jan. 18, 1954. EXTREMES FOR CURRENT YEAR.--Maximum contents, 186,800 cfs-days, Mar. 18; maximum elevation, 813.55 ft, May 6; minimum contents, 149,200 cfs-days, Mar. 14, minimum elevation, 807.98 ft, Mar. 14. Contents based on backwater profile. 03519800 TELLICO LAKE.--Lat 35°46'53", long 84°15'10", Loudon County, Hydrologic Unit 06010201, at Tellico Dam on Little Tennessee River, 1.1 mi south of Lenoir City, and at mile 0.4. DRAINAGE AREA, 2,627 mi². PERIOD OF RECORD, December 1979 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir formed by concrete dam with earth embankment. Spillway equipped with 3 radial gates, each 42 ft high by 40 ft wide. Closure of dam was made Nov. 29, 1979; water in reservoir first reached ordinary minimum pool elevation Dec. 24, 1979. Total capacity at elevation 815.00 ft, top of gates, is 225,500 cfs-days, of which 63,800 cfs-days is controlled storage above elevation 807.00 ft, minimum navigation pool. Reservoir is used for navigation, flood control, and indirectly, power. Tellico-Fort Loudoun canal was opened Jan. 19, 1980. Canal is 1,000 ft long, and interconnects Tellico and Fort Loudoun Lakes at the dam. Spillway gates of Tellico Dam were closed Feb. 7, 1980, diverting all flow from Little Tennessee River. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 228,700 cfs-days, May 8, 1984, elevation, 815.37 ft; minimum after first filling, 155,300 cfs-days, Feb. 17, 1997, elevation, 807.30 ft; minimum elevation, 806.96 ft, Jan. 14, 1980. EXTREMES FOR CURRENT YEAR.--Maximum contents, 203,000 cfs-days, May 6, elevation, 813.68 ft; minimum, 161,300 cfs-days, Mar. 14, elevation, 808.15 ft. 03532500 NORRIS LAKE.--Lat 36°13'29", long 84°05'29", Anderson County, Hydrologic Unit 06010205, at Norris Dam on Clinch River, 2.5 mi northwest of Norris, and at mile 79.8. DRAINAGE AREA, 2,912 mi². PERIOD OF RECORD, June 1935 to current year. GAGE, water-stage recorder. Datum of stage is 0.11 ft above sea level. Gage readings have been reduced to sea level. REMARKS.--Reservoir is formed by concrete gravity dam with three drum gates, each 100 ft wide by 14 ft high. Some storage began in June 1935; dam was completely closed and placed in operation Mar. 4, 1936; water in reservoir first reached minimum pool elevation Mar. 24, 1936 Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 1,034.11 ft, top of gates, is 1,286,600 cfs-days, of which 969,000 cfs-days is controlled storage above elevation 960.11 ft normal minimum pool. Reservoir is used for navigation, flood control, and power. COOPERATION.--Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,236,700 cfs-days, Feb. 11, 1937, elevation, 1,031.21 ft; minimum after first filling, 75,500 cfs-days, Jan. 24, 1956, elevation, 909.46 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,017,000 cfs-days, May 28, elevation, 1019.32 ft; minimum, 542,100 cfs-days, Jan. 17, elevation, 984.82 ft. MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | Elevation
(feet) | | Change in
contents
)(cfs-days) | Elevation
(feet) | Contents
(cfs-days) | Change in
contents
(cfs-days) | | Contents
(cfs-days) | Change in
contents
(cfs-days) | |---|--|---|---|--|---|---|--|---|--| | | *03499500 | FORT LOUD | OUN LAKE | 035198 | 300 TELLIC | CO LAKE | 0353 | 32500 NORR | IS LAKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 812.85
812.55
809.07
808.93 | 181,900
179,700
155,400
154,500 | -2,200
-24,300
-900 | 813.01
812.73
809.25
809.10 | 197,700
195,500
169,200
168,100 | -2,200
-26,300
-1,100 | 1,007.01
997.92
993.12
988.32 | 823,300
698,100
637,700
581,100 | -125,200
-60,400
-56,600 | | CAL YR 2001 | - | - | -300 | - | - | 0 | - | - | +56,000 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 809.21
808.83
809.65
812.57
812.60
812.43
812.04
812.23
811.14 | 156,300
153,800
159,300
179,900
180,100
178,800
176,000
177,400
169,600 | +1,800
-2,500
+5,500
+20,600
+200
-1,300
-2,800
+1,400
-7,800 | 809.40
808.95
809.86
812.64
812.74
812.56
812.16
812.35
811.30 | 170,300
167,000
173,700
194,800
195,600
194,200
191,100
192,600
184,500 | +2,200
-3,300
+6,700
+21,100
+800
-1,400
-3,100
+1,500
-8,100 | 997.93
997.09
1,012.83
1,015.88
1,016.06
1,010.44
1,003.27
997.06 | 698,200
687,400
911,200
959,900
1,017,400
962,800
874,300
770,000
687,000 | +117,700
-10,800
+223,800
+48,700
+57,500
-54,600
-88,500
-104,300
-83,000 | | WTR YR 2002 | - | - | -12,300 | - | - | -13,200 | - | - | -135,700 | $^{^{\}star}$ Contents based on backwater profile. ### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03535900 MELTON HILL LAKE.--Lat 35°53'04", long 84°18'01", Loudon-Roane County line, Hydrologic Unit 06010207, 9 mi southwest of Oak Ridge, 19 mi west of Knoxville, 57 mi downstream from Norris Dam on Clinch River, and at mile 23.1. DRAINAGE AREA, 3,343 mi². PERIOD OF RECORD, August 1962 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete gravity dam. Spillway is equipped with three radial gates, each 42 ft high by 40 ft wide. Dam completed and storage began May 1, 1963; water in reservoir first reached minimum pool elevation May 23, 1963. Revised capacity table put into use Jan. 1, 1971. Total capacity at elevation 796 ft, top of gates, is 63,500 cfs-days, of which 16,100 cfs-days is controlled storage above elevation 790.0 ft, normal minimum pool. Reservoir is used for navigation, power, and recreation. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 64,900 cfs-days, Mar. 16, 1973, elevation, 796.45 ft; minimum after first filling, 35,100 cfs-days, Feb. 9, 1966, elevation, 784.10 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 63,200 cfs-days, Mar. 18, elevation, 795.90 ft; minimum, 47,400 cfs-days, Apr. 7, elevation, 789.98 ft. 03543000 WATTS BAR LAKE.--Lat 35°37'13", long 84°47'00", Rhea County, Hydrologic Unit 06010201, at Watts Bar Dam on Tennessee River, 6.5 mi southeast of Spring City, 72.4 mi downstream from Fort Loudoun Dam, and at mile 529.9. DRAINAGE AREA, 17,310 mi², approximately. PERIOD OF RECORD, October 1941 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with riprapped earth embankments. Spillway equipped with 20 radial gates, each 32 ft high by 40 ft wide, also one 2-section leaf trashway gate 16.3 ft high by 24 ft wide. Storage began with partial closure Dec. 12, 1941, and final closure Jan. 1, 1942; water in reservoir first reached minimum navigation pool elevation Feb. 17, 1942. Revised capacity table put into use Jan. 1, 1971. Total level pool capacity at elevation 745.0 ft, top of gates, is 592,400 cfs-days, of which 191,000 cfs-days is controlled flood storage above elevation 735.0 ft, minimum navigation pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 745.40 ft, Mar. 17, 1973; minimum after first filling, 733.44 ft, Mar. 20, 1945. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 576,900 cfs-days, Mar. 18; maximum elevation, 744.36 ft, Mar. 19; minimum midnight contents, 404,900 cfs-days, Mar. 10; minimum elevation, 734.80 ft, Mar. 11. Contents based on backwater profile. 03564000 LAKE OCOEE.--Lat 35°05'40", long 84°38'53", Polk County, Hydrologic Unit 06020003, at Lake Ocoee Dam on
Ocoee River at Parksville, 13.8 mi east of Cleveland, and at mile 11.9. DRAINAGE AREA, 595 mi². PERIOD OF RECORD, June 1914 to current year. Prior to October 1953, published as "Parksville (Ocoee No. 1) Reservoir," and October 1953 to September 1968, as "Parksville Lake." GAGE, nonrecording gage. Datum of gage is 6.89 ft above sea level. Gage readings have been reduced to sea level. REMARKS.--Reservoir is formed by concrete dam with 347 ft of spillway. Spillway is equipped with four floodgates, each 6 ft high by 20 ft wide and 265 ft of flashboards about 5.7 ft high. Crest of spillway under gates is at elevation 830.82 ft; remainder of spillway is 1.0 ft higher. Dam completed and storage began in 1911. Capacity of reservoir has been considerably reduced by silting. Revised capacity table put into use Jan. 1, 1979. Total capacity at elevation 837.55 ft, about top of flashboards, is 42,300 cfs-days, of which 15,600 cfs-days is controlled storage above elevation 817.9 ft, normal minimum pool. Reservoir is used for power. COOPERATION.--Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum midnight contents observed, 53,300 cfs-days, July 9, 1916; maximum midnight elevation observed, 840.2 ft, Feb. 10, 1946; minimum contents observed, 27,300 cfs-days, Jan. 27, 1956, elevation, 817.7 ft; minimum midnight elevation observed, 814.8 ft, Dec. 14, 1934. EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 41,000 cfs-days, Sept. 28, elevation, 836.59 ft; minimum 32,400 cfs-days, Dec. 31, elevation, 826.89 ft. | DATE | Elevation
(feet) | | Change in
contents
)(cfs-days) | Elevation
(feet) (| Contents | Change in
contents
cfs-days) | Elevation (feet) (d | | Change in
contents
(cfs-days) | |---|--|--|--|--|---|---|--|--|--| | | 03535900 | MELTON H | ILL LAKE | *035430 | 00 WATTS BA | AR LAKE | 03564 | 000 LAKE | OCOEE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 793.99
793.68
793.28
792.79 | 57,600
56,700
55,600
54,300 | -900
-1,100
-1,300 | 740.04
739.52
737.94
735.73 | 490,600
480,700
451,600
413,400 | -29,100 | 835.49
834.09
831.89
827.39 | 39,900
38,500
36,500
32,800 | -1,400
-2,000
-3,700 | | CAL YR 2001 | - | - | -2,200 | - | - | -1,800 | - | - | 0 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 791.21
793.36
792.65
793.33
794.48
794.82
793.72
793.84
793.96 | 50,300
55,900
54,000
55,800
59,000
60,000
56,800
57,200
57,500 | -4,000
+5,600
-1,900
+1,800
+3,200
+1,000
-3,200
+400
+300 | 735.97
736.12
739.52
740.40
740.71
740.06
740.13
740.09
739.90 | 417,400
419,900
480,700
497,500
503,500
490,900
492,300
491,500
487,900 | +2,500
+60,800
+16,800
+6,000
-12,600
+1,400 | 827.99
827.79
831.99
824.59
834.99
835.39
834.59
834.99 | 33,300
33,100
36,600
39,000
39,400
39,800
39,000
39,400
39,400 | +500
-200
+3,500
+2,400
+400
+400
-800
+400 | | WTR YR 2002 | - | - | -100 | - | _ | -2,700 | _ | - | -500 | ^{*} Contents based on backwater profile. ### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03566500 CHICKAMAUGA LAKE.--Lat 35°06'07", long 85°13'42", Hamilton County, Hydrologic Unit 06020001, at Chickamauga Dam on Tennessee River, 5.8 mi northeast of Chattanooga, 58.9 mi downstream from Watts Bar Dam, and at mile 471.0. DRAINAGE AREA, 20,790 mi², approximately. PERIOD OF RECORD, October 1939 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with riprapped earth embankments. Spillway equipped with eighteen 2-section lift gates, each 40.44 ft high by 40 ft wide. Storage began Feb. 6, 1940; water in reservoir first reached minimum navigation pool elevation Mar. 10, 1940. Revised capacity table put into use Jan. 1, 1971. Total level pool capacity at elevation 685.44 ft, top of gates, is 372,600 cfs-days, of which 175,000 cfs-days is controlled flood storage above elevation 675.0 ft, minimum navigation pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 686.19 ft, Mar. 29, 1994; minimum after first filling, 673.27 ft, Jan. 21, 1942. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 336,400 cfs-days, May 4; maximum elevation, 683.81 ft, May 9; minimum midnight contents, 206,500 cfs-days, Mar. 11; minimum elevation, 675.05 ft, Jan. 7. Contents based on backwater profile. 03570520 NICKAJACK LAKE.--Lat 35°00'07", long 85°37'14", Marion County, Hydrologic Unit 06020001, at Nickajack Dam on Tennessee River, 2 mi upstream from Sequatchie River, 5 mi south of Jasper, 46.3 mi downstream from Chickamauga Dam, and at mile 424.7. DRAINAGE AREA, 21,870 mi², approximately. PERIOD OF RECORD, December 1967 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with earth embankments on each side. The spillway, with crest at elevation 595.0 ft, is equipped with 10 radial gates, each 40 ft high by 40 ft wide. A trash gate, 5.5 ft high by 15 ft wide, is located between the spillway and powerhouse. Dam was completed and storage began on Dec. 14, 1967. Revised capacity table put into use Jan. 1, 1971. Total level pool capacity at elevation 635.0 ft, top of gates, is 127,200 cfs-days, of which 16,200 cfs-days is controlled storage above elevation 632.0 ft, ordinary minimum. Reservoir is used for navigation and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 634.99 ft, Apr. 19, 1969; minimum after first filling, 630.82 ft, Feb. 20, 1968. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 152,700 cfs-days, Jan. 25; maximum elevation, 634.54 ft, July 31; minimum midnight contents, 116,100 cfs-days, Nov. 12; minimum elevation, 632.00 ft, Dec. 13. Contents based on backwater profile. 03579000 WOODS RESERVOIR.--Lat 35°17'54", long 86°05'48", Franklin County, Hydrologic Unit 06030003, at Elk River Dam on Elk River, 1.2 mi upstream from Spring Creek, 2.5 mi northeast of Estill Springs, 6.8 mi upstream from bridge on U.S. Highway 41-A, and at mile 170.0. DRAINAGE AREA, 263 mi². PERIOD OF RECORD, May 1952 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete gravity and earthfill-type dam with riprapped embankments. Spillway equipped with three radial gates, each 25 ft high by 50 ft wide, and two sluice gates, each 6 ft high by 4 ft wide. Closure of dam was made May 1, 1952; water in reservoir first reached minimum pool elevation Feb. 6, 1953. Total capacity at elevation 962.0 ft, surcharge pool, is 44,400 cfs-days, of which 9,900 cfs- days is controlled storage above elevation 957.0 ft, normal minimum pool. Reservoir is used for cooling water, flood control, and recreational purposes. COOPERATION.--Twice-daily gage readings (0600 and 2400 hours) furnished by U.S. Air Force. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 42,300 cfs-days, April 21 and 22, 1956, elevation, 960.98 ft; minimum after first filling, 26,300 cfs-days, Nov. 8-11, 1953, elevation, 951.93 ft. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 145,900 cfs-days, May 7, elevation, 959.92 ft; minimum midnight contents, 35,900 cfs-days, Jan. 27; elevation, 957.73 ft. | DATE | Elevation
(feet) | Contents
(cfs-days) | Change in
contents
(cfs-days) | Elevatior
(feet) | n Contents
(cfs-days) | Change in
contents
(cfs-days) | Elevation
(feet) (| Contents
cfs-days) | Change in
contents
(cfs-days) | |---|--|---|---|--|---|--|--|--|--| | | *035665 | 00 CHICKAN | MAUGA LAKE | *035705 | 520 NICKAJ | JACK LAKE | 03579 | 000 WOODS | RESERVOIR | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 681.15
680.00
676.49
676.01 | 290,000
270,700
217,600
211,000 | -19,300
-53,100
-6,600 | 633.77
633.59
633.86
633.48 | 120,200
119,200
121,000
119,100 | -1,000
+1,800
-1,900 | 959.53
958.30
958.00
958.11 | 39,300
37,000
36,400
36,600 | -2,300
-600
+200 | | CAL YR 2001 | - | - | -4,400 | - | - |
-200 | - | - | +200 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 678.93
677.06
680.90
682.89
682.70
681.72
681.82
681.41
680.84 | 253,700
255,700
285,700
321,000
317,500
299,900
301,600
294,400
284,700 | +42,700
-28,000
+60,000
+35,300
-3,500
-17,600
+1,700
-7,200
-9,700 | 632.81
633.98
633.57
634.00
633.65
634.33
633.97
633.69 | 119,600
121,300
123,500
121,400
119,500
118,500
123,900
121,200
120,900 | +500
+1,700
+2,200
-2,100
-1,900
-1,000
+5,400
-2,700
-300 | 958.09
957.97
959.48
959.52
959.51
959.53
959.55
959.45 | 36,600
36,300
39,300
39,200
39,300
39,300
39,400
39,200 | 0
-300
+3,000
-100
+100
0
+100
-100 | | WTR YR 2002 | - | - | -5,300 | - | - | +700 | - | - | +100 | ^{*} Contents based on backwater profile. ### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03580740 TIMS FORD LAKE.--Lat 35°11'51", long 86°16'41", Franklin County, Hydrologic Unit 06030003, in intake tower near left bank at Tims Ford Dam on Elk River, 0.4 mi upstream from bridge on State Highway 50, 9.5 mi west of Winchester, and at mile 133.4. DRAINAGE AREA, 529 mi². PERIOD OF RECORD, December 1970 to current year. GAGE, waterstage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with compacted rockfill impervious earth core embankments. Spillway equipped with three radial gates, each 42 ft high by 40 ft wide. Storage began Dec. 1, 1970; water in reservoir first reached minimum pool elevation Feb. 23, 1971, and first filling was completed June 3, 1971. Total capacity at elevation 895 ft, top of gates, is 306,500 cfs-days, of which 142,400 cfs-days is controlled storage above elevation 865 ft, normal minimum pool. Reservoir is used for flood control, power, and recreation. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 298,600 cfs-days, Dec. 23, 1990, elevation, 893.62 ft; minimum after first filling 130,600 cfs-days, Dec. 1, 1997, elevation, 855.25 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 280,600 cfs-days, May 6, elevation, 890.45 ft; minimum, 191,600 cfs-days, Jan. 5, elevation, 871.99 ft. 03593000 PICKWICK LAKE.--Lat 35°04'16", long 88°15'04", Hardin County, Hydrologic Unit 06040001, at Pickwick Landing Dam on Tennessee River, 1.5 mi north of town of Pickwick Dam, 6.1 mi upstream from Lick Creek, 52.7 mi downstream from Wilson Dam, and at mile 206.7. DRAINAGE AREA, 38,820 mi², approximately. PERIOD OF RECORD, October 1937 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with riprapped earth embankments. Spillway equipped with twenty-two 2-section lift gates, each 40 ft high by 40 ft wide, one of which is used as a trash gate. Dam completed and storage began Feb. 8, 1938; water in reservoir first reached minimum pool elevation Feb. 18, 1938. Revised capacity table put into use Jan. 1, 1971. Total level pool capacity at elevation 418.0 ft, top of gates, is 557,100 cfs-days, of which 210,200 cfs-days is controlled flood storage above elevation 408.0 ft, minimum navigation pool. Reservoir is used for navigation, flood control, and power. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 419.49 ft, Mar. 30, 1944; minimum after first filling, 407.12 ft, Dec. 18, 1944. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 644,500 cfs-days, Jan. 26; maximum elevation, 416.83 ft; May 6, minimum midnight contents, 438,500 cfs-days, Nov. 15, minimum elevation, 407.94 ft, Nov. 15. Contents based on backwater profile. Duck River, 1.5 mi northeast of Normandy, 2.6 mi downstream from Riley Creek, 8 mi north of Tullahoma, and at mile 248.6. DRAINAGE AREA, 195 mi². PERIOD OF RECORD, January 1976 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete gravity dam with riprapped and rolled earthfill embankment on left side. Spillway is equipped with two radial gates, each 40 ft high by 36 ft wide. Storage began Jan. 5, 1976; water in reservoir first reached minimum pool elevation Mar. 22, 1976. Revised capacity table put into use Jan. 1, 1977. Total capacity at elevation 880 ft, top of gates, is 64,000 cfs-days, of which 30,400 cfs-days is controlled storage above elevation 859 ft, normal minimum pool. Reservoir is used for flood control, water supply, water-quality control, recreation, and shoreline development. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 63,800 cfs-days, Feb. 20, 1991, elevation, 880.12 ft; minimum after first filling, 26,800 cfs-days, Nov. 27, 1981, elevation, 853.12 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 61,900 cfs-days, Jan. 25, elevation, 879.06 ft; minimum 39,500 cfs-days, Jan. 5, elevation, 864.12 ft. | DATE | Elevation
(feet) | | Change in
contents
(cfs-days) | Elevation
(feet) | Contents
(cfs-days) | | Elevation (feet) (| Contents
cfs-days) | Change in
contents
(cfs-days) | |---|--|---|---|--|---|--|--|--|--| | | 03580 | 740 TIMS F | ORD LAKE | *0359 | 3000 PICKV | WICK LAKE | 035964 | 60 NORMAN | DY LAKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 885.28
881.76
877.61
873.71 | 252,900
235,300
215,900
198,800 | -17,600
-19,400
-17,100 | 411.80
412.96
413.49
408.97 | 508,900
537,500
550,500
446,800 | +28,600
+13,000
-103,700 | 872.59
871.35
865.19
864.29 | 51,600
49,700
41,000
39,800 | -1,900
-8,700
-1,200 | | CAL YR 2001 | - | - | +3,700 | - | - | -800 | - | - | -700 | | Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | 879.76
877.92
887.15
886.41
888.04
888.04
886.36
885.13
883.88 | 225,800
217,300
262,700
258,800
269,400
267,400
258,500
252,100
245,800 | +27,000
-8,500
+45,400
-3,900
+10,600
-2,000
-8,900
-6,400
-6,300 | 410.32
409.77
415.11
413.40
413.01
413.53
413.89
411.98
410.08 | 494,300
460,200
601,100
547,400
540,000
552,400
559,000
515,200
484,000 | +47,500
-34,100
+140,900
-53,700
-7,400
+12,400
+6,600
-43,800
-31,200 | 865.93
865.37
876.56
875.41
874.46
872.71
870.75
869.72 | 42,000
41,200
57,900
54,600
56,000
54,500
51,800
48,800
47,300 | 2,200
-800
+16,700
-3,300
-1,400
-1,500
-2,700
-3,000
-1,500 | | WTR YR 2002 | - | - | -7,100 | - | - | -24,900 | - | - | -4,300 | ^{*} Contents based on backwater profile. ### RESERVOIRS IN TENNESSEE RIVER BASIN--Continued 03609000 KENTUCKY LAKE.--Lat 37°00'49", long 88°16'06", Marshall County, KY, Hydrologic Unit 06040006, at Kentucky Dam on Tennessee River at Gilbertsville, KY, and at mile 22.4. DRAINAGE AREA, 40,200 mi², approximately. PERIOD OF RECORD, July 1944 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by concrete dam with 24 lift gates 50 ft high by 40 ft wide. Storage began Aug. 16, 1944, and final closure was Aug. 30, 1944. Water in reservoir reached minimum pool elevation Apr. 7, 1945. Revised capacity table put into use Jan. 1, 1971. Total level pool capacity at elevation 375.0 ft, top of gates, is 3,090,000 cfs-days, of which 2,020,700 cfs-days is controlled storage above 354.0 ft, ordinary minimum pool. Reservoir is used for navigation, flood control, and power. Barkley-Kentucky Canal opened July 13, 1966, for navigation and power use. Canal is 1.75 miles long and interconnects Lake Barkley and Kentucky Lake at a point 2.2 mi upstream from Barkley Dam. For daily discharges through the canal, see Kentucky reports. COOPERATION. -- Records furnished by Tennessee Valley Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 369.87 ft, May 24, 1983; minimum after first filling, 348.02 ft, Mar. 11, 1961. EXTREMES FOR CURRENT YEAR.--Maximum midnight contents, 1,956,200 cfs-days May 21; maximum elevation, 365.32 ft, May 23; minimum midnight contents, 1,089,500 cfs-days, Feb. 22, minimum elevation, 353.52 ft, Feb. 4. | Date | Elevation (feet) | Content
(cfs-days) | Change
contents
(cfs-days) | |---|--|---|---| | | *03609000 | KENTUCKY L | AKE | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | . 354.68
. 359.92 | 1,172,700
1,119,200
1,681,200
1,137,300 | -53,000
+561,500
-543,900 | | CAL YR 200 | 1 - | - | -31,100 | | Jan. 31 Feb. 28
Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 | . 354.80
. 355.84
. 359.21
. 361.42
. 359.11
. 357.75
. 356.23 | 1,618,900
1,119,900
1,288,000
1,421,100
1,628,200
1,422,200
1,321,300
1,220,600
1,305,100 | +481,600
-499,000
+168,100
+133,100
+207,100
-206,000
-100,900
-100,700
-84,500 | | WTR YR 200 | 2 - | - | +132,400 | ^{*} Contents based on backwater profile. - OTHER RESERVOIRS.--The following small reservoirs in the Tennessee River basin are described below, but records of contents are not published herein. - 03466400 DAVY CROCKETT LAKE on Nolichucky River at Nolichucky Dam, with a total capacity of 1,300 cfs-days, none of which is controlled storage. - 03517900 CALDERWOOD LAKE on Little Tennessee River at Calderwood, with a total capacity of 20,800 cfs-days of which 840 cfs-days is controlled storage. - 03518200 CHILHOWEE LAKE on Little Tennessee River at Chilhowee Dam, with a total capacity of 24,800 cfs-days of which 3,400 cfs-days is controlled storage. - 03562500 OCOEE NO. 3 LAKE on Ocoee River at Ocoee No. 3 Dam, 5.0 miles west of Ducktown, with a total capacity of 1,660 cfs-days, of which 1,550 cfs-days is controlled storage. Records of contents previous to 1971 water year published as Ocoee No. 3 Lake near Ducktown, TN. THIS PAGE IS INTENTIONALLY BLANK ### 07024305 BEAVER CREEK AT HIGHWAY 22 BYPASS NEAR HUNTINGDON, TN LOCATION.--Lat $36^{\circ}00'47"$, long $88^{\circ}26'42"$, Carroll County, Hydrologic Unit 08010203, on the upstream side of the main channel bridge on Highway 22 Bypass, 0.8 mi northwest of Huntingdon, 3 mi upstream of Crooked Creek, and at mile 4.5. DRAINAGE AREA. -- 58.6 mi². PERIOD OF RECORD.--June 1994 to April 1996, December 2000 to current year. Prior to June 1994, occasional low-flow measurements, water years 1946, 1948, 1952-54, 1956-61 and annual maximum, water years 1954-62, 1989-91. October 1962 to February 1988, July 1988 to September 1989. October 1991 to April 14, 1994, continuous stage at bridge 1.0 mi upstream of present location. REVISED RECORDS. -- WSP 1920: 1956(M). GAGE.--Data collection platform. Datum of gage is 350 ft above NGVD of 1929, from topographic map. Prior to June 1994 water-stage recorder at site 1.0 mi upstream at datum 14.2 higher. REMARKS.--Records fair except for estimated daily discharges, which are poor. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,800 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | | Discharge
(ft ³ /s) | | height
(ft) | | Date | Time | | Discharge
(ft ³ /s) | | height
ft) | |----------------------------|----------------------------------|-----------------------------|-----------------------------------|-------------------------------|------------------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------|-----------------------------------|-----------------------------|-----------------------------| | Nov 29 | 1915 | | *8,130 | *2 | 1.82 | | Sep 27 | 1030 | | 7,810 | 21 | .66 | | Minimum daily | discharg | e, 20 ft | t ³ /s, July | 7. | | | | | | | | | | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEA
Y MEAN VAI | | 2001 TO S | SEPTEMBI | ER 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 28
27
25
25
29 | 34
35
107
68
46 | 1010
342
115
85
77 | 64
57
58
55
56 | 161
98
81
75
68 | 61
60
63
54
53 | 805
349
113
81
71 | 50
47
46
55
48 | 43
39
37
35
34 | 24
24
25
24
22 | 36
42
36
23
25 | 23
22
23
22
21 | | 6
7
8
9
10 | 55
35
31
30
30 | 43
39
37
37
38 | 79
98
385
510
218 | 92
88
70
67
67 | 72
113
123
87
81 | 50
50
50
65
61 | 67
62
66
89
69 | 42
39
37
41
41 | 41
38
34
33
32 | 21
20
21
22
79 | 23
22
21
21
22 | 21
22
24
25
25 | | 11
12
13
14
15 | 93
123
266
e518
e444 | 38
38
37
37
37 | 99
314
1400
987
442 | 101
76
68
63
58 | 72
67
63
59
58 | 55
131
107
77
69 | 62
59
59
58
54 | 40
37
224
131
55 | 33
35
40
39
30 | 147
49
53
64
36 | 152
64
34
56
59 | 26
25
27
49
50 | | 16
17
18
19
20 | 154
59
40
35
33 | 39
38
36
39
52 | 327
485
490
232
112 | 55
55
111
305
264 | 69
67
55
57
173 | 147
357
1090
827
715 | 50
56
52
47
45 | 47
262
479
288
76 | 30
29
29
28
27 | 29
26
26
28
26 | 80
77
43
40
36 | 44
38
35
33
123 | 2.8 TOTAL MEAN MAX MIN IN. CFSM 1.41 1.62 82.52 454.4 34 7.75 8.65 e90 e82 e800 e400 e93 e74 e70 5.39 6.22 315.9 2.51 2.89 147.1 --- --- 1.41 1.46 82.39 228.1 3.89 4.49 --- 1.65 1.84 96.40 1.44 1.66 84.45 2.8 --- 32.00 0.55 0.61 e22 e36 0.60 0.69 34.94 0.69 0.79 40.19 --- 6.13 5.49 321.7 e Estimated # 07024305 BEAVER CREEK AT HIGHWAY 22 BYPASS NEAR HUNTINGDON, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------------|---------------------------------------|---|--------------------------------------|---| | MEAN
MAX
(WY)
MIN
(WY) | 56.27
82.5
2002
43.1
1994 | 180.4
454
2002
77.8
1994 | 138.5
316
2002
68.1
2001 | 156.4
264
1994
67.6
2001 | 184.9
376
1994
82.4
2002 | 195.6
381
1994
79.2
2001 | 97.53
254
1994
61.4
1995 | 80.98
87.9
1995
70.5
2001 | 63.47
96.8
1994
32.0
2002 | 68.77
86.9
1994
34.9
2002 | 62.27
120
1995
40.2
2002 | 107.0
322
2002
30.5
2001 | | SUMMARY | STATIST | ICS | FOR | 2001 CALE | ENDAR YEAR | | FOR 2002 | WATER YEAR | | WATER YEARS | 1994 | - 2002 | | ANNUAL
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMU MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW | | | 48681
133.4
5430
24
25 | Nov 29
Sep 26
Sep 23 | | 58371
159.
5940
20
22
8130
21. | Sep 27
Jul 7
Sep 1
Nov 29 | | 120.2
160
81.6
5940
20
22
a8350
b15.20 | Jul
Sep
Sep
Sep | 2002
2001
7 2002
7 2002
1 2002
9 1970
13 1982
9 1993 | | ANNUAL
10 PERC
50 PERC | RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE | INCHES)
EDS
EDS | | 2.2
30.9
222
48
30 | | | 2.
37.
309
53
26 | | | 2.05
27.86
239
56
33 | | | From rating curve extended above $3,600~{\rm ft}^3/{\rm s}$ on basis of contracted opening measurement of peak flow; at site 1 mile upstream of present location. At site 1 mi upstream of present location and at datum 14.2 ft higher than present datum. ### 07024500 SOUTH FORK OBION RIVER NEAR GREENFIELD, TN LOCATION.--Lat 36°07'05", long 88°48'39", Weakly County, Hydrologic Unit 08010203, on left bank downstream from bridge on U.S. Highway 45E, 1.1 mi downstream from Mosley Branch, 2.5 mi south of Greenfield, and 9.7 mi upstream from confluence with Middle Fork. DRAINAGE AREA.--383 mi². PERIOD OF RECORD.--July 1929 to February 1988, July 1988 to April 1989, October 2001 to September 2002. Water years 1990-93, 1997-2001, annual maximum. REVISED RECORDS.--WSP 1311: 1936(M). WSP 1920: Drainage area. GAGE.--Data collection platform. Datum of gage is 300.36 ft above NGVD of 1929. REMARKS.--Records poor. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,600 $\rm ft^3/s$, Jan. 22, 1937, gage height, 17.82 ft, from floodmarks, from rating curve extended above 14,000 $\rm ft^3/s$; minimum, 61 $\rm ft^3/s$, Aug. 21, 1944. EXTREMES FOR CURRENT YEAr.--Peak discharges greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|---------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 30 | unknown | *13,100 | *17.43 | Mar 31 | 1000 | 4,170 | 12.59 | | Dec 14 | unknown | 6,020 | 14.76 | Sep 20 | 1445 | 3,170 | 10.72 | | Jan 24 | unknown | 5,610 | 14.39 | Sep 29 | 2100 | 7,800 | 15.94 | | Mar 20 | 0330 | 4,620 | 13.23 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge not determined, minimum observed 120 $\mathrm{ft}^3/\mathrm{s},$ Oct. 3. | DAILY MEAN VALUES | | | | | | | | |
| | | | |----------------------------------|--|---|---|---|-----------------------|---|---------------------------------|--|---------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e130 | e152 | e11000 | e350 | 1440 | 362 | 3020 | 273 | 541 | 147 | 155 | 148 | | 2 | e129 | e250 | e8400 | e320 | 820 | 355 | 2700 | 259 | 444 | 145 | 157 | 146 | | 3 | e122 | e350 | e7000 | e300 | 730 | 349 | 2180 | 247 | 373 | 149 | 158 | 144 | | 4 | e120 | e345 | e4000 | e300 | 622 | 313 | 1190 | 254 | 317 | 146 | 160 | e140 | | 5 | e160 | e260 | e2700 | e350 | 528 | 303 | 790 | 248 | 279 | 142 | 155 | e139 | | 6 | e160 | e250 | e1500 | e410 | 482 | 297 | 629 | 243 | 287 | 140 | 148 | e140 | | 7 | e140 | e230 | e2000 | e390 | 482 | 294 | 529 | 238 | 241 | 137 | 145 | e138 | | 8 | e130 | e210 | e2150 | e340 | 473 | 301 | 471 | 232 | 220 | 134 | 141 | e155 | | 9 | e125 | e200 | e1950 | e290 | 483 | 318 | 461 | 229 | 210 | 132 | 139 | e160 | | 10 | e130 | e190 | e1590 | e380 | 488 | 309 | 442 | 224 | 214 | 133 | 138 | e152 | | 11 | e300 | e180 | e640 | e470 | 454 | 313 | 406 | 218 | 199 | 143 | 137 | e145 | | 12 | e1300 | e170 | e1700 | e470 | 428 | 354 | 385 | 213 | 193 | 177 | 144 | e140 | | 13 | e1700 | e165 | e5000 | e340 | 400 | 371 | 369 | 991 | 224 | 227 | 173 | e140 | | 14 | e1700 | e160 | e5500 | e320 | 371 | 384 | 362 | 633 | 199 | 192 | 213 | e160 | | 15 | e1500 | e160 | e5100 | e290 | 350 | 382 | 339 | 665 | 187 | 187 | 197 | 239 | | 16 | e1100 | e160 | e2400 | e235 | 356 | 365 | 316 | 700 | 178 | 185 | 185 | 244 | | 17 | e580 | e160 | e4400 | e200 | 352 | 1220 | 301 | 1460 | 172 | 177 | 194 | 173 | | 18 | e490 | e165 | e4200 | e1100 | 347 | 2950 | 291 | 1490 | 169 | 172 | 487 | 168 | | 19 | e200 | e190 | e4000 | e1250 | 343 | 2710 | 283 | 1360 | 167 | 165 | 407 | 167 | | 20 | e165 | e210 | 2640 | e1100 | 620 | 4140 | 277 | 1280 | 163 | 161 | 238 | 1400 | | 21 | e140 | 152 | 1360 | e760 | 471 | 4090 | 272 | 1040 | 158 | 159 | 199 | 543 | | 22 | e140 | 154 | 901 | e680 | 474 | 3850 | 265 | 713 | 155 | 155 | 184 | 305 | | 23 | e130 | 157 | 2480 | e3200 | 454 | 2890 | 248 | 504 | 152 | 160 | 175 | 271 | | 24 | e260 | 196 | 1880 | e3400 | 429 | 1350 | 240 | 390 | 150 | 165 | 169 | 247 | | 25 | e330 | e300 | 1750 | 3290 | 382 | 880 | 275 | 314 | 150 | 163 | 168 | 220 | | 26
27
28
29
30
31 | e320
e240
e170
e150
e135
e130 | e400
e2000
e4260
e8420
e12500 | 1320
876
e704
e560
e460
e400 | 3150
2680
1330
852
686
696 | 407
376
372
 | 1970
1330
1180
952
1010
3160 | 271
282
318
287
281 | 452
335
360
755
1270
1030 | 150
157
156
152
150 | 169
172
166
160
156
155 | 165
165
163
159
154
151 | 1320
4850
4930
6710
6850 | | TOTAL | 12526 | 32696 | 90561 | 29929 | 13934 | 39052 | 18480 | 18620 | 6507 | 4971 | 5723 | 30684 | | MEAN | 404.1 | 1090 | 2921 | 965.5 | 497.6 | 1260 | 616.0 | 600.6 | 216.9 | 160.4 | 184.6 | 1023 | | MAX | 1700 | 12500 | 11000 | 3400 | 1440 | 4140 | 3020 | 1490 | 541 | 227 | 487 | 6850 | | MIN | 120 | 152 | 400 | 200 | 343 | 294 | 240 | 213 | 150 | 132 | 137 | 138 | | CFSM | 1.05 | 2.85 | 7.63 | 2.52 | 1.30 | 3.29 | 1.61 | 1.57 | 0.57 | 0.42 | 0.48 | 2.67 | | IN. | 1.22 | 3.18 | 8.80 | 2.91 | 1.35 | 3.79 | 1.79 | 1.81 | 0.63 | 0.48 | 0.56 | 2.98 | e Estimated # 07024500 SOUTH FORK OBION RIVER NEAR GREENFIELD, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2002, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|---|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 207.9
921
1973
85.0
1944 | 467.9
2921
1958
108
1955 | 811.0
2921
2002
135
1966 | 1069
5853
1937
153
1940 | 988.9
3608
1956
147
1941 | 1035
2638
1975
132
1941 | 797.5
3185
1979
156
1967 | 640.1
3085
1983
120
1941 | 354.3
1858
1981
99.7
1936 | 274.3
1055
1972
90.7
1943 | 233.0
1763
1971
91.8
1987 | 249.4
1310
1950
83.9
1956 | | SUMMAR | Y STATIST | ics | | | FOR 2 | 002 WATE | ER YEAR | | | WATER YEA | RS 1929 - | - 2002 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL ANNUAL | MEAN
T ANNUAL
ANNUAL M
T DAILY M
DAILY ME | IEAN IEAN CAN LY MINIMUM LOW CAGE CFSM) INCHES) | | | 125
1
a131
a | 32.0
00
37
00 | Nov 30
Oct 3
Nov 30
Nov 30 | | | 592.5
1432
136
25000
61
70
1.5
21.0
1440 | Jan 22
Aug 23
Aug 22 | L 1944 | | | CENT EXCE | | | | | 00
46 | | | | 220
105 | | | a Peak stage determined from crest-stage gage. ### 07025400 NORTH FORK OBION RIVER NEAR MARTIN, TN LOCATION.--Lat 36°24'20", long 88°51'20", Weakly County, Hydrologic Unit 08010203, on right bank on U.S. Highway 45E, 4.0 miles north of Martin. DRAINAGE AREA. -- 372 mi². PERIOD OF RECORD.--October 2001 to September 2002. Annual maximum at unknown datum, 1939 to 1967. Periodic measurements of discharge and miscellaneous water-quality data, 1979 to 1987. Annual maximum at present datum, 1997 to 2001. GAGE.--Data collection platform, operated in cooperation of the Memphis District Corps of Engineers. Datum of gage is 303.46 ft above NGVD of 1929, determined by the Memphis District Corps of Engineers. REMARKS.--No estimated daily discharges. Records are good. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. COOPERATION.--Gage operated jointly with the Memphis District U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAr.--Peak discharges greater than base discharge of $6,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|------------------| | Nov 30 | 1700 | *14,000 | *21.46 | Mar 20 | 0500 | 6,690 | 17.98 | | Dec 13 | 0100 | 6,610 | 17.87 | Mar 26 | 0700 | 6,180 | 17.21 | | Dec 18 | 0500 | 9,210 | 20.20 | May 18 | 2000 | 9,020 | 20.14 | | Jan 24 | 0500 | 7,480 | 18.97 | Sep 27 | 0200 | 6,480 | 17.67 | | Feb 1 | 0300 | 6 300 | 17 40 | | | ., | | Minimum daily discharge, 145 ft³/s, Sept. 13. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN VA | | ER 2001 TO |) SEPTEMBE | ER 2002 | | | |----------------------------------|--|--------------------------------------|--|--|-----------------------|---|----------------------------------|---|---------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 156 | 175 | 12300 | 277 | 5080 | 310 | 1950 | 1250 | 362 | 186 | 166 | 158 | | 2 | 156 | 177 | 7350 | 265 | 1980 | 335 | 764 | 596 | 282 | 180 | 167 | 157 | | 3 | 156 | 185 | 1490 | 263 | 762 | 667 | 507 | 363 | 245 | 413 | 165 | 157 | | 4 | 157 | 180 | 625 | 257 | 535 | 370 | 395 | 309 | 218 | 216 | 162 | 154 | | 5 | 160 | 174 | 437 | 256 | 436 | 315 | 351 | 289 | 210 | 180 | 161 | 155 | | 6 | 183 | 171 | 436 | 308 | 405 | 304 | 319 | 262 | 1090 | 169 | 161 | 155 | | 7 | 172 | 167 | 582 | 343 | 410 | 297 | 302 | 247 | 631 | 162 | 160 | 150 | | 8 | 163 | 168 | 4710 | 290 | 402 | 291 | 301 | 240 | 348 | 159 | 154 | 149 | | 9 | 160 | 167 | 1460 | 284 | 375 | 346 | 345 | 235 | 288 | 156 | 153 | 150 | | 10 | 159 | 168 | 524 | 290 | 356 | 412 | 308 | 234 | 267 | 158 | 153 | 150 | | 11 | 514 | 168 | 369 | 304 | 341 | 310 | 285 | 269 | 256 | 227 | 153 | 149 | | 12 | 438 | 166 | 1740 | 279 | 316 | 432 | 282 | 235 | 317 | 183 | 155 | 147 | | 13 | 393 | 166 | 5960 | 264 | 306 | 424 | 301 | 2600 | 1180 | 174 | 168 | 145 | | 14 | 2550 | 166 | 5390 | 255 | 292 | 344 | 2240 | 1580 | 507 | 181 | 330 | 149 | | 15 | 751 | 165 | 2660 | 240 | 291 | 310 | 2080 | 455 | 295 | 180 | 236 | 163 | | 16 | 373 | 164 | 5420 | 228 | 301 | 357 | 603 | 305 | 249 | 169 | 181 | 578 | | 17 | 275 | 163 | 8620 | 228 | 296 | 2740 | 411 | 5500 | 234 | 167 | 182 | 201 | | 18 | 231 | 162 | 8830 | 236 | 283 | 3200 | 346 | 8640 | 223 | 182 | 754 | 198 | | 19 | 217 | 169 | 6940 | 254 | 287 | 1850 | 311 | 8410 | 214 | 194 | 573 | 176 | | 20 | 210 | 178 | 1670 | 274 | 825 | 6000 | 291 | 5710 | 211 | 178 | 250 | 2080 | | 21 | 206 | 170 | 824 | 263 | 495 | 4660 | 277 | 1010 | 208 | 170 | 213 | 2930 | | 22 | 203 | 166 | 703 | 324 | 353 | 1710 | 258 | 507 | 200 | 166 | 183 | 701 | | 23 | 203 | 166 | 4030 | 5610 | 309 | 669 | 239 | 403 | 195 | 170 | 175 | 310 | | 24 | 215 | 301 | 1620 | 6700 | 296 | 513 | 1980 | 336 | 193 |
251 | 190 | 238 | | 25 | 285 | 329 | 726 | 5720 | 296 | 447 | 1660 | 309 | 461 | 188 | 182 | 214 | | 26
27
28
29
30
31 | 234
206
195
188
184
179 | 234
2800
5100
8300
12200 | 522
444
409
377
322
295 | 2210
792
587
508
462
1010 | 618
408
322
 | 4920
3010
879
686
956
2850 | 454
328
2120
924
386 | 1370
595
543
3040
2320
720 | 371
338
259
213
195 | 170
166
166
168
163
172 | 180
176
169
164
160
158 | 826
5740
4320
2280
558 | | TOTAL | 9872 | 33165 | 87785 | 29581 | 17376 | 40914 | 21318 | 48882 | 10260 | 5764 | 6534 | 23638 | | MEAN | 318.5 | 1106 | 2832 | 954.2 | 620.6 | 1320 | 710.6 | 1577 | 342.0 | 185.9 | 210.8 | 787.9 | | MAX | 2550 | 12200 | 12300 | 6700 | 5080 | 6000 | 2240 | 8640 | 1180 | 413 | 754 | 5740 | | MIN | 156 | 162 | 295 | 228 | 283 | 291 | 239 | 234 | 193 | 156 | 153 | 145 | | CFSM | 0.86 | 2.97 | 7.61 | 2.57 | 1.67 | 3.55 | 1.91 | 4.24 | 0.92 | 0.50 | 0.57 | 2.12 | | IN. | 0.99 | 3.32 | 8.78 | 2.96 | 1.74 | 4.09 | 2.13 | 4.89 | 1.03 | 0.58 | 0.65 | 2.36 | # 07025400 NORTH FORK OBION RIVER NEAR MARTIN, TN--Continued | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1939 | - 2002, | BY WATER | YEAR (WY | .) | | | | |--------|-----------|-----------|-----------|----------|------------|---------|----------|----------|-------|-------|-------|-------| | MEAN | 196.5 | 432.4 | 679.1 | 697.9 | 882.3 | 1067 | 751.5 | 571.3 | 341.0 | 278.2 | 248.9 | 214.2 | | MAX | 1196 | 3135 | 2832 | 2457 | 2476 | 4157 | 2276 | 1655 | 1346 | 928 | 1267 | 788 | | (WY) | 1950 | 1958 | 2002 | 1949 | 1956 | 1975 | 1973 | 1973 | 1981 | 1975 | 1971 | 2002 | | MIN | 70.3 | 85.6 | 119 | 125 | 115 | 175 | 165 | 121 | 82.4 | 69.3 | 83.4 | 73.5 | | (WY)
MIN
(WY) | 1950
70.3
1945 | 1958
85.6
1945 | 2002
119
1957 | 1949
125
1943 | 1956
115
1941 | 1975
175
1947 | 1973
165
1941 | 1973
121
1941 | 1981
82.4
1944 | 1975
69.3
1946 | 1971
83.4
1944 | 2002
73.5
1939 | |--|---|-------------------------------------|---------------------|---------------------|--------------------------|------------------------------|------------------------------------|---------------------|----------------------|---|---------------------------|----------------------| | SUMMARY | STATIST: | ICS | | | FOR 20 | 002 WATER | R YEAR | | | WATER YEAR | S 1939 - | 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM | MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MEA | EAN
EAN
AN
Y MINIMUM
WO | | | 1230
14
14
1400 | 18.1
00 I
45 S
48 S | Dec 1
Sep 13
Sep 8
Nov 30 | | | 526.9
1062
164
25700
40
43 | Nov 19
Feb 7
Feb 27 | 1946 | | ANNUAL
ANNUAL
10 PERC
50 PERC | RUNOFF (CRUNOFF (CENT EXCE) CENT EXCE CENT EXCE | CFSM)
INCHES)
EDS
EDS | | | 241
241 | 2.47
33.51 | | | | 1.42
19.24
1050
182
104 | | | ### 07026040 OBION RIVER AT U.S. HIGHWAY 51 NEAR OBION, TN LOCATION.--Lat 36°14'27", long 89°13'03", Obion County, Hydrologic Unit 08010202, on right downstream bank, at end of main channel bridge on U.S. Highway 51, 3.2 mi northeast of Trimble, 2.0 mi southwest of Obion and 1.6 river miles downstream of the former gage location, Obion River at Obion. DRAINAGE AREA. -- 1,875 mi². PERIOD OF RECORD.--July 1929 to September 1958, October 1966 to September 1995, October 2001 to September 2002. Gage height and discharge records at this site from 1964 to 1975 are in reports of U.S. Army Corps of Engineers. Prior to Oct. 1990 published as "at Obion." REVISED RECORD. -- WSP 1211: 1930, 1943. WSP 2120: Drainage area. GAGE.--Data collection platform. Datum of gage is 245.17 ft above NGVD of 1929. Prior to Oct. 1990 water-stage recorder at site 1.6 mi upstream at a datum 1.31 ft higher (levels by the U.S. Army Corps of Engineers). Prior to Oct. 1, 1932, nonrecording gage at site 1.6 mi upstream at datum 6.31 ft higher; Oct. 1, 1932 to Aug. 2, 1939, nonrecording gage, and Aug. 3, 1939, to Sept. 1958, water-state recorder at site 1.6 mi upstream at datum 16.31 ft higher. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 99,500 ft³/s, Jan. 24, 1937 gage height, 40.4 ft present datum; minimum under conditions of no backwater, 230 ft³/s, Oct. 7-9, 1943, minimum daily discharge, 15 ft³/s, backwater from Mississippi River, Feb. 4, 1937, reverse flow of 57 ft³/s, measured by current meter on that date. REMARKS .-- Records good . COOPERATION.--Gage operated jointly with the Memphis District U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 55,800 ft³/s, Dec. 3, gage height 38.78 ft; minimum daily discharge, 397 ft³/s, Oct. 1. | | | DISCH | ARGE, CUB | IC FEET PE | | , WATER YI
LY MEAN V | | ER 2001 T | O SEPTEMBI | ER 2002 | | | |----------------------------------|--|---------------------------------------|---|---|--------------------------|--|--|---|-----------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 397 | 634 | 35200 | 3290 | 10800 | 1460 | 11200 | 1270 | 3590 | 803 | 660 | 743 | | 2 | 400 | 655 | 50100 | 2010 | 11400 | 1600 | 11600 | 1850 | 2330 | 774 | 638 | 690 | | 3 | 399 | 888 | 55000 | 1610 | 9990 | 2280 | 11000 | 1220 | 1700 | 847 | 640 | 677 | | 4 | 399 | 1150 | 50300 | 1460 | 7800 | 1730 | 9190 | 1110 | 1420 | 889 | 651 | 673 | | 5 | 403 | 752 | e20000 | 1380 | 5950 | 1430 | 7200 | 1110 | 1300 | 757 | 696 | 669 | | 6 | 437 | 698 | e9000 | 1480 | 4200 | 1390 | 5640 | 1050 | 2440 | 710 | 720 | 664 | | 7 | 428 | 677 | e15000 | 1680 | 2780 | 1350 | 4010 | 1020 | 2600 | 683 | 675 | 660 | | 8 | 413 | 669 | e20000 | 1540 | 2290 | 1320 | 2830 | 995 | 1640 | 664 | 667 | 653 | | 9 | 405 | 661 | 21600 | 1430 | 2020 | 1380 | 2290 | 983 | 1400 | 648 | 660 | 650 | | 10 | 400 | 649 | 18500 | 1410 | 1900 | 1640 | 2000 | 991 | 1320 | 639 | 657 | 651 | | 11 | 2750 | 652 | e12000 | 1430 | 1830 | 1490 | 1740 | 1020 | 1410 | 800 | 651 | 651 | | 12 | 4420 | 639 | e8200 | 1460 | 1800 | 1700 | 1620 | 995 | 1410 | 818 | 654 | 647 | | 13 | 2190 | 625 | 14500 | 1320 | 1890 | 2010 | 1670 | 4970 | 5190 | 777 | 694 | 645 | | 14 | 6480 | 618 | 17300 | 1280 | 1730 | 1640 | 2980 | 7120 | 3610 | 829 | 1430 | 647 | | 15 | 6320 | 606 | e15000 | 1210 | 1650 | 1490 | 5220 | 3980 | 1770 | 862 | 1330 | 662 | | 16 | 2930 | 601 | 25400 | 1160 | 1630 | 1430 | 2610 | 2310 | 1330 | 855 | 868 | 1120 | | 17 | 1820 | 603 | 34500 | 1130 | 1550 | 4980 | 1630 | 8060 | 1200 | 734 | 816 | 1010 | | 18 | 1460 | 587 | 39600 | 1130 | 1490 | 8950 | 1420 | 12400 | 1120 | 705 | 902 | 784 | | 19 | 1130 | 584 | 41300 | 1450 | 1430 | 9600 | 1300 | 16600 | 1070 | 708 | 3730 | 806 | | 20 | 946 | 609 | 40000 | 2200 | 3510 | 11300 | 1220 | 19700 | 1030 | 704 | 1430 | 4310 | | 21 | 845 | 622 | e20000 | 1700 | 3000 | 13000 | 1190 | e17000 | 1010 | 689 | 925 | 8490 | | 22 | 773 | 626 | e12000 | 1680 | 1970 | 14800 | 1140 | e10000 | 976 | 670 | 819 | 5480 | | 23 | 717 | 626 | e17000 | 9240 | 1700 | e13000 | 1080 | e7000 | 936 | 730 | 786 | 2070 | | 24 | 694 | 977 | e18000 | 11600 | 1620 | e9000 | 1670 | e5000 | 911 | 719 | 787 | 1130 | | 25 | 799 | 1240 | 18500 | 13500 | 1550 | 10800 | 3480 | e4000 | 895 | 783 | 788 | 954 | | 26
27
28
29
30
31 | 779
701
672
657
649
640 | 951
6250
9590
12500
19100 | 15000
12400
10400
8570
6820
5230 | 15600
15200
e11000
e7000
e5000
e5000 | 2120
2000
1590
 | 11700
12400
12000
10200
e7200
e9500 | 1770
1240
e2800
e3500
1440 | e5600
6810
5540
6330
6150
5530 | 1140
995
1000
886
835 | 702
677
662
648
638
640 | 931
781
733
715
703
704 | 1310
9450
10400
11500
12800 | | TOTAL | 42453 | 66039 | 686420 | 127580 | 93190 | 183770 | 107680 | 167714 | 48464 | 22764 | 27841 | 81596 | | MEAN | 1369 | 2201 | 22140 | 4115 | 3328 | 5928 | 3589 | 5410 | 1615 | 734.3 | 898.1 | 2720 | | MAX | 6480 | 19100 | 55000 | 15600 | 11400 | 14800 | 11600 | 19700 | 5190 | 889 | 3730 | 12800 | | MIN | 397 | 584 | 5230 | 1130 | 1430 | 1320 | 1080 | 983 | 835 | 638 | 638 | 645 | | CFSM | 0.73 | 1.17 | 11.8 | 2.19 | 1.78 | 3.16 | 1.91 | 2.89 | 0.86 | 0.39 | 0.48 | 1.45 | | IN. | 0.84 | 1.31 | 13.62 | 2.53 | 1.85 | 3.65 | 2.14 | 3.33 | 0.96 | 0.45 | 0.55 | 1.62 | e Estimated # 07026040 OBION RIVER AT U.S. HIGHWAY 51 NEAR OBION, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2002, BY WATER YEAR (WY) | MEAN 933.9
MAX 3576 (WY) 1991
MIN 249
(WY) 1944 | 15500 22
1958 2
372 | 2140 266
2002 19
495 5 | | 15810
1975
628 | 0 1
5
8 | 3900
1770
1973
678
1941 | 2961
15540
1983
487
1936 | 1902
10970
1970
323
1936 | 1411
4783
1975
301
1944 | 1043
6643
1971
277
1936 | 959.7
5041
1950
264
1956 | |---|--------------------------------|------------------------------|-----|--
---------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|-------------------------------------|--------------------------------------| | SUMMARY STATISTICS | 5 | | FOI | R 2002 WA | TER YE | AR | | | WATER YEARS | 1929 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAI LOWEST ANNUAL MEAI HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY I MAXIMUM PEAK STAGI INSTANTANEOUS LOW ANNUAL RUNOFF (CF ANNUAL RUNOFF (IN 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | N N MINIMUM E FLOW SM) CHES) S | | | 55511
4536
55000
397
409
55800
38.78
2.42
32.85
2400
1430
650 | Dec
Oct
Oct
Dec
Dec | 3
1
1
3
3 | | | 2739 5351 569 99500 15 233 99500 40.40 a230 1.46 19.85 7040 1030 413 | Oct 6
Jan 24
Jan 24 | 1937
1943
1937 | 2.42 32.85 12400 1430 650 ### 07027000 REELFOOT LAKE NEAR TIPTONVILLE, TN LOCATION.--Lat 36°21'09", long 89°25'07", Lake County, Hydrologic Unit 08010202, at Middle Landing in Reelfoot Lake State Park, 0.4 mi east of Blue Bank, 0.8 mi west of the spillway, and 3.3 mi southeast of Tiptonville. DRAINAGE AREA.--240 mi². PERIOD OF RECORD.--July 1940 to current year. GAGE.--Data collection platform. Datum of gage is 270.22 ft above NGVD of 1929 based on Benchmark E-13, supplementary adjustment of 1958. REMARKS.--Records good. Estimated record is based on once daily observer readings from U.S. Fish and Wildlife Service. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 15.65 ft, from recorded range in stage, about Apr. 26, 1973; minimum, 9.59 ft, July 6, 7, 8, 1985. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1937 reached a stage of about 17.0 ft, at spillway, present datum, from information by local resident. Minimum stage at spillway, 9.30 ft, Nov. 20, 21, 1953 at a datum of 270.29 ft above sea level. EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 14.37 ft, Dec. 19; minimum, 11.11 ft, Oct. 5. GAGE HEIGHT, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---|--|---|---|---|---|--|--|---|--|--| | | | OCTOBE | R | I | OVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 11.24
11.23
11.20
11.18
11.33 | 11.23
11.19
11.16
11.15
11.11 | 11.23
11.21
11.18
11.17
11.19 | 12.43
12.52
12.53
12.51
12.52 | 12.35
12.41
12.50
12.49
12.49 | 12.41
12.46
12.52
12.50
12.51 | 13.29
13.30
13.28
13.23
13.17 | 13.20
13.27
13.23
13.16
13.11 | 13.26
13.29
13.25
13.19
13.14 | 13.32
13.21
13.17
13.07
13.00 | 13.21
13.15
13.07
13.00
12.98 | 13.26
13.18
13.11
13.04
12.99 | | 6
7
8
9
10 | 11.26
11.23
11.22
11.19 | 11.22
11.22
11.19
11.15 | 11.24
11.22
11.20
11.16
e11.13 | 12.50
12.48
12.58
12.51
12.45 | 12.48
12.47
12.45
12.45
12.42 | 12.49
12.47
12.48
12.47
12.44 | 13.21 | 13.14 | 13.19
e13.19
 | 13.03
13.03
12.93
12.87
12.88 | 12.98
12.92
12.83
12.82
12.82 | 13.00
12.98
12.87
12.85
12.85 | | 11
12
13
14
15 |

 |

 | e11.28
e11.38
e11.49
e12.03
e12.35 | 12.48
12.46
12.43
12.41
12.41 | 12.44
12.43
12.39
12.39
12.40 | 12.46
12.44
12.41
12.40
12.41 |

 |

 |

 | 12.87
12.81
12.77
12.73
12.71 | 12.81
12.77
12.73
12.67
12.69 | 12.84
12.79
12.75
12.70
12.70 | | 16
17
18
19
20 |

 |

 |

 | 12.41
12.40
12.40
12.47
12.43 | 12.40
12.40
12.37
12.35
12.40 | 12.40
12.40
12.38
12.41
12.42 | 14.30
14.37
14.36 | 14.02
14.30
14.28 | e13.90
14.18
14.34
14.32 | 12.69
12.72
12.70
12.70
12.62 | 12.62
12.64
12.64
12.62
12.57 | 12.66
12.69
12.66
12.66
12.59 | | 21
22
23
24
25 |

12.58
12.53 |

12.33
12.45 | e12.56
e12.44
12.46
12.51 | 12.40
12.39
12.38
12.43 | 12.36
12.35
12.33
12.28
12.33 | 12.38
12.37
12.36
12.34
12.41 | 14.31
14.26
14.26
14.15
14.15 | 14.26
14.11
14.12
14.04
13.96 | 14.29
14.19
14.18
14.12
14.03 | 12.58
12.64
12.79
13.11
13.20 | 12.52
12.54
12.64
12.79
13.11 | 12.56
12.57
12.68
13.00
13.15 | | 26
27
28
29
30
31 | 12.55
12.55
12.51
12.49
12.48
12.47 | 12.49
12.51
12.48
12.46
12.47
0.12 | 12.52
12.53
12.49
12.47
12.47
11.93 | 12.47
12.59
12.83
12.97
13.21 | 12.40
12.46
12.51
12.75
12.92 | 12.42
12.49
12.67
12.87
13.10 | 13.96
13.84
13.76
13.72
13.57 | 13.84
13.76
13.64
13.57
13.43
13.32 | 13.91
13.79
13.68
13.63
13.49
13.37 | 13.24
13.26
13.25
13.17
13.12 | 13.20
13.24
13.15
13.09
13.06
13.01 | 13.22
13.25
13.20
13.12
13.10
13.15 | | MONTH | 12.58 | 0.12 | 11.79 | 13.21 | 12.28 | 12.48 | 14.37 | 13.11 | 13.72 | 13.32 | 12.52 | 12.91 | # 07027000 REELFOOT LAKE NEAR TIPTONVILLE, TN--Continued GAGE HEIGHT, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | JAGE HELC | , III PE | JI, WIII | .c illinc oc | CIOBER 2001 | . 10 551 | I LINDLIN 20 | 02 | | | |---|---|--|---
---|---|---|--|---|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | FEBRUAR! | Z | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 13.48
13.50
13.49
13.52
13.42 | 13.25
13.48
13.44
13.41
13.30 | 13.38
13.49
13.46
13.46
13.35 | 12.79
12.84
12.88
12.87
12.82 | 12.73
12.73
12.80
12.75
12.78 | 12.77
12.79
12.84
12.80
12.80 | 13.11
13.14
13.14
13.03
12.99 | 12.96
13.01
12.98 | 13.07
13.02
13.05
13.01
12.96 | | 12.62
12.64
12.62
12.57 | 12.68
12.67
12.67
12.63
12.59 | | 6
7
8
9
10 | 13.30
13.25
13.18
13.14
13.11 | 13.13
13.05 | 13.28
13.21
13.15
13.09
13.07 | 12.80
12.79
12.76
12.80
12.84 | 12.67 | 12.78
12.77
12.73
12.71
12.81 | 12.94
12.90
12.85
12.91
12.87 | 12.90
12.83
12.71
12.84
12.82 | 12.92
12.86
12.80
12.87
12.85 | 12.58
12.61
12.59
12.60
12.64 | 12.38
12.53
12.43
12.47
12.59 | 12.51
12.57
12.51
12.56
12.61 | | 11
12
13
14
15 | 13.11
13.03
13.06
12.97
12.91 | 12.97
12.91 | 13.06
13.01
13.01
12.94
12.89 | 12.82
12.86
12.82
12.78
12.82 | 12.78
12.70 | 12.79
12.84
12.80
12.74
12.75 | 12.83
12.78
12.79
12.84
12.89 | | 12.79
12.76
12.78
12.81
12.85 | 12.60
12.55
12.85
12.72
12.72 | 12.43
12.47
12.67 | 12.56
12.49
12.71
12.70
12.71 | | 16
17
18
19
20 | 12.88
12.88
12.84
12.86
12.90 | 12.76
12.69 | 12.85
12.86
12.80
12.76
12.85 | 12.83
12.78
12.78
12.99
13.14 | 12.73 | 12.81
12.75
12.76
12.83
13.08 | 12.89
12.89
12.86
12.80
12.76 | 12.84
12.83
12.79
12.76
12.70 | 12.87
12.86
12.83
12.78
12.73 | 12.71
13.22
13.28
13.24
13.23 | 12.69
13.19
13.22 | 12.69
13.06
13.24
13.23
13.21 | | 21
22
23
24
25 | 13.00
13.00
12.93
12.90
12.96 | 12.90 | 12.94
12.96
12.91
12.87
12.86 | 13.25
13.23
13.06
12.98
13.07 | 12.98
12.87 | 13.18
13.12
13.01
12.92
12.90 | 12.70
12.64
12.61
12.74
12.75 | 12.50 | 12.60
12.61
12.58
12.61
12.70 | 13.19
13.09
12.97
12.86
12.75 | 12.97
12.85
12.75 | 13.15
13.03
12.90
12.80
12.69 | | 26
27
28
29
30
31 | 12.91
12.84
12.81
 | | 12.85
12.81
12.77
 | 13.11
13.11
13.11
13.10
13.09
13.15 | 13.06
12.94
13.06 | 13.10
13.10
13.09
13.05
13.08
13.11 | 12.73
12.68
12.77
12.78
12.76 | 12.66
12.58
12.52
12.75
12.71 | 12.68
12.64
12.66
12.76
12.74 | 12.72
12.66
12.72
12.69
12.69 | 12.63
12.64
12.67
12.68 | 12.69
12.65
12.67
12.69
12.68
12.68 | | MONTH | 13.52 | 12.69 | 13.03 | 13.25 | 12.58 | 12.89 | 13.14 | 12.50 | 12.80 | 13.28 | 12.38 | 12.75 | | | | | | | | | | | | | | | | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBI | MEAN
ER | | DAY 1 2 3 4 5 | MAX
12.66
12.65
12.62
12.60
12.66 | | 12.65
12.63
12.61
12.57 | MAX
12.19
12.16
12.15
12.13
12.11 | | MEAN 12.18 12.15 12.13 12.12 12.10 | 11.87 | AUGUST | 11.87 | | SEPTEMBI
11.61
11.59
11.57
11.57 | | | 1
2
3
4 | 12.66
12.65
12.62
12.60 | JUNE 12.62 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.51 | 12.65
12.63
12.61
12.57 | 12.19
12.16
12.15
12.13 | JULY 12.16 12.12 12.12 12.11 12.09 12.06 12.02 11.97 11.95 | 12.18
12.15
12.13
12.12 | 11.87
11.88
11.85
11.84 | AUGUST 11.86 11.85 11.83 11.78 11.78 11.78 11.75 11.76 | 11.87
11.86
11.85
11.82
11.80 | 11.64
11.62
11.60
11.59
11.59 | SEPTEMBI
11.61
11.59
11.57
11.57
11.55
11.51
11.49
11.48
11.46 | 11.63
11.60
11.58
11.58 | | 1
2
3
4
5
6
7
8
9 | 12.66
12.65
12.62
12.60
12.66
12.66
12.62
12.60
12.55 | JUNE 12.62 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.51 12.49 | 12.65
12.63
12.61
12.57
12.57
12.65
12.61
12.57
12.53
12.51 | 12.19
12.16
12.15
12.13
12.11
12.11
12.07
12.02
11.98
12.05 | JULY 12.16 12.12 12.12 12.11 12.09 12.06 12.02 11.97 11.95 11.90 | 12.18
12.15
12.13
12.12
12.10
12.09
12.05
12.01
11.97
11.97 | 11.87
11.88
11.85
11.84
11.81
11.84
11.75 | AUGUST 11.86 11.85 11.83 11.78 11.78 11.78 11.76 11.66 11.62 | 11.87
11.86
11.85
11.82
11.80
11.78
11.73
11.68
11.64 | 11.64
11.62
11.60
11.59
11.59
11.55
11.52
11.49
11.47 |
SEPTEMBI
11.61
11.59
11.57
11.57
11.55
11.49
11.48
11.46
11.45 | 11.63
11.60
11.58
11.57
11.57
11.54
11.50
11.49
11.48
11.47 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.66
12.65
12.62
12.60
12.66
12.66
12.55
12.55
12.55
12.51
12.51
12.56 | JUNE 12.62 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.54 12.51 12.49 12.46 12.46 12.49 12.55 | 12.65
12.63
12.61
12.57
12.57
12.65
12.61
12.53
12.51
12.49
12.48
12.52
12.54 | 12.19
12.16
12.15
12.13
12.11
12.07
12.02
11.98
12.05
12.08
12.07
12.11
12.11 | JULY 12.16 12.12 12.12 12.11 12.09 12.06 12.02 11.97 11.95 11.90 12.02 12.04 12.05 12.06 12.02 | 12.18
12.15
12.15
12.12
12.10
12.09
12.05
12.01
11.97
11.97
12.06
12.06
12.07
12.08 | 11.87
11.88
11.85
11.84
11.81
11.81
11.75
11.71
11.66
11.62
11.62
11.72 | AUGUST 11.86 11.85 11.78 11.78 11.78 11.79 11.66 11.62 11.61 11.52 11.57 11.70 | 11.87
11.86
11.85
11.82
11.80
11.78
11.73
11.68
11.64
11.62
11.59
11.63
11.74 | 11.64
11.62
11.60
11.59
11.55
11.52
11.50
11.49
11.47 | SEPTEMBI 11.61 11.59 11.57 11.57 11.55 11.49 11.48 11.46 11.45 11.43 11.40 11.37 | 11.63
11.60
11.58
11.57
11.57
11.54
11.40
11.49
11.47
11.46
11.42
11.37 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 12.66
12.65
12.62
12.60
12.66
12.62
12.55
12.55
12.51
12.51
12.56
12.52
12.49
12.49
12.44 | JUNE 12.62 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.51 12.49 12.46 12.46 12.49 12.52 12.49 12.46 12.47 12.44 12.47 | 12.65
12.63
12.61
12.57
12.57
12.65
12.61
12.53
12.51
12.49
12.48
12.52
12.54
12.51
12.49
12.48
12.52 | 12.19
12.16
12.15
12.13
12.11
12.11
12.07
12.02
11.98
12.05
12.08
12.07
12.11
12.17
12.19
12.19 | JULY 12.16 12.12 12.12 12.11 12.09 12.06 12.02 11.97 11.95 11.90 12.02 12.04 12.05 12.06 12.08 12.14 12.10 12.08 | 12.18
12.15
12.15
12.12
12.10
12.09
12.05
12.01
11.97
11.97
12.06
12.06
12.06
12.07
12.08
12.13
12.12
12.13 | 11.87
11.88
11.84
11.81
11.84
11.81
11.75
11.71
11.66
11.62
11.72
11.77
11.76
11.77 | AUGUST 11.86 11.85 11.83 11.78 11.78 11.78 11.76 11.66 11.62 11.61 11.52 11.70 11.69 11.72 11.64 11.69 11.72 | 11.87
11.86
11.85
11.82
11.80
11.78
11.68
11.64
11.62
11.69
11.63
11.74
11.73
11.73
11.73 | 11.64
11.62
11.59
11.59
11.55
11.52
11.50
11.49
11.47
11.48
11.44
11.40
11.59 | SEPTEMBI 11.61 11.59 11.57 11.57 11.55 11.49 11.48 11.46 11.45 11.43 11.40 11.37 11.34 11.39 11.56 11.54 11.55 | 11.63
11.60
11.58
11.57
11.54
11.59
11.49
11.47
11.46
11.42
11.39
11.37
11.45 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 12.66 12.65 12.62 12.60 12.66 12.62 12.55 12.52 12.51 12.56 12.52 12.51 12.49 12.42 12.42 12.42 12.32 12.31 | JUNE 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.51 12.49 12.46 12.46 12.49 12.46 12.49 12.32 12.44 12.41 12.40 12.37 12.35 12.32 12.32 12.32 12.32 12.32 12.32 | 12.65
12.63
12.61
12.57
12.57
12.65
12.61
12.53
12.51
12.49
12.48
12.52
12.54
12.51
12.49
12.48
12.52
12.54
12.51
12.49
12.48
12.52
12.54
12.45
12.45
12.45
12.45
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34
12.34 | 12.19 12.16 12.15 12.13 12.11 12.07 12.02 11.98 12.05 12.08 12.07 12.11 12.17 12.19 12.18 12.15 12.11 12.17 12.19 12.18 12.15 12.11 12.10 12.08 12.07 12.11 12.10 12.08 12.07 12.11 12.10 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.07 12.08 12.09 12.09 12.09 | JULY 12.16 12.12 12.12 12.11 12.09 12.06 12.02 11.97 11.95 11.90 12.02 12.04 12.05 12.08 12.14 12.10 12.08 12.14 12.10 12.08 12.14 12.10 12.08 12.14 12.10 11.80 12.18 12.88 12.99 | 12.18 12.15 12.13 12.12 12.10 12.09 12.05 12.01 11.97 11.97 12.06 12.06 12.07 12.08 12.13 12.12 12.10 | 11.87
11.88
11.84
11.81
11.84
11.81
11.75
11.71
11.66
11.62
11.62
11.72
11.77
11.76
11.78
11.78
11.78
11.81
11.78
11.78
11.79
11.79
11.79
11.79
11.77
11.76 | AUGUST 11.86 11.85 11.78 11.78 11.78 11.75 11.70 11.66 11.62 11.17 11.70 11.69 11.71 11.77 11.77 11.77 11.77 11.77 11.77 | 11.87
11.86
11.85
11.82
11.80
11.78
11.68
11.64
11.62
11.59
11.63
11.74
11.73
11.73
11.73
11.74
11.75
11.77
11.75
11.77
11.75
11.77
11.78 | 11.64
11.62
11.60
11.59
11.59
11.55
11.52
11.49
11.47
11.48
11.44
11.40
11.59
11.59
11.58
11.64
11.71
11.90
11.97
12.06
12.04
12.05
12.04 | SEPTEMBI 11.61 11.59 11.57 11.55 11.51 11.49 11.48 11.46 11.45 11.37 11.37 11.34 11.39 11.56 11.51 11.57 11.55 11.71 11.90 11.97 12.00 12.01 12.02 12.03 12.32 12.38 12.46 12.49 | 11.63
11.63
11.58
11.58
11.57
11.54
11.50
11.49
11.48
11.47
11.46
11.47
11.45
11.37
11.59
11.59
11.58
11.58
11.60
11.81 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31
31
31
31 | 12.66 12.65 12.62 12.60 12.66 12.62 12.55 12.52 12.51 12.51 12.56 12.52 12.51 12.47 12.44 12.42 12.40 12.42 12.30 12.26 12.26 | JUNE 12.62 12.62 12.59 12.53 12.49 12.61 12.59 12.54 12.51 12.49 12.46 12.46 12.49 12.52 12.49 12.46 12.47 12.41 12.40 12.37 12.35 12.32 12.28 12.28 12.28 | 12.65
12.63
12.61
12.57
12.57
12.65
12.61
12.57
12.53
12.51
12.48
12.52
12.54
12.51
12.48
12.52
12.48
12.51
12.49
12.48
12.52
12.54
12.51 | 12.19 12.16 12.15 12.13 12.11 12.11 12.07 12.08 12.07 12.11 12.17 12.19 12.18 12.15 12.19 12.18 12.15 12.11 12.17 12.19 | JULY 12.16 12.12 12.11 12.09 12.06 12.02 11.97 11.95 11.90 12.02 12.04 12.10 12.08 12.09 12.04 12.01 12.04 12.01 11.96 11.88 11.86 |
12.18
12.15
12.15
12.12
12.10
12.09
12.05
12.01
11.97
11.97
12.06
12.06
12.06
12.13
12.13
12.12
12.10
12.10
12.06
12.06
12.07
12.08
12.13 | 11.87
11.88
11.84
11.81
11.84
11.81
11.81
11.75
11.71
11.66
11.62
11.72
11.77
11.76
11.74
11.73
11.81
11.78
11.78
11.78
11.78
11.79
11.79
11.79
11.79 | AUGUST 11. 86 11.85 11. 78 11. 78 11. 78 11. 78 11. 70 11. 66 11. 62 11. 61 11. 57 11. 70 11. 69 11. 72 11. 64 11. 77 11. 77 11. 77 11. 77 11. 77 11. 77 11. 77 11. 76 11. 71 11. 70 11. 68 11. 77 11. 77 11. 77 | 11.87
11.86
11.85
11.82
11.80
11.78
11.68
11.64
11.62
11.59
11.63
11.74
11.73
11.73
11.73
11.70
11.74
11.79
11.79
11.77
11.75
11.77
11.78 | 11.64
11.62
11.59
11.59
11.55
11.52
11.50
11.49
11.47
11.48
11.44
11.40
11.59
11.58
11.64
11.60
11.71
11.90
11.97
12.06
12.04
12.05
12.04 | SEPTEMBI 11.61 11.59 11.57 11.57 11.55 11.51 11.49 11.48 11.46 11.45 11.43 11.40 11.37 11.34 11.39 11.56 11.57 11.55 11.71 11.90 11.97 12.00 12.01 12.02 12.03 12.02 12.03 12.32 12.38 12.46 | 11.63
11.60
11.58
11.57
11.54
11.59
11.48
11.47
11.46
11.42
11.39
11.37
11.45
11.57
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59
11.59 | e Estimated # 07027720 SOUTH FORK FORKED DEER RIVER NEAR OWL CITY, TN LOCATION.--Lat 35°43'08", long 89°12'43", Haywood County, Hydrologic Unit 08010205, on left bank downstream side of the State Highway 54 bridge, 9.2 mi north of Brownsville, and 1.2 miles southwest of Owl City, Tennessee. DRAINAGE AREA.--718 mi^2 . PERIOD OF RECORD. -- February 2001 to current year. GAGE.--Data collection platform. Datum of gage is 297 ft above NGVD of 1929, from topographic map. REMARKS.--Records poor. Periodic observation of specific conductance and water temperature are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|---------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 20 | 0030 | 3,540 | 17.17 | May 17 | 2000 | 3,230 | 16.73 | | Dec 1 | unknown | *25,800 | *22.27 | Aug 25 | 0200 | 4,210 | 17.83 | | Dec 27 | unknown | unknown | unknown | Sep 20 | 1945 | 4,320 | 17.93 | | Jan 29 | 0945 | 4,330 | 17.94 | | | | | Minimum discharge, 194 ft³/s, Oct. 4, 5. | | | DISCH | ARGE, CUBI | C FEET PEI | | WATER YE
Y MEAN VA | | R 2001 TC | SEPTEMBE | R 2002 | | | |----------------------------------|--|--|--|--|-----------------------|--|---------------------------------|---|---------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 207 | 427 | e18300 | 710 | 2440 | 558 | e4400 | 410 | 661 | 252 | e470 | 264 | | 2 | 206 | 410 | e21500 | 634 | 2270 | 529 | e4200 | 443 | 515 | 244 | e360 | e240 | | 3 | 204 | 400 | e25000 | 591 | 2200 | 514 | e4200 | 430 | 443 | 261 | e285 | e235 | | 4 | 201 | 389 | e23000 | 572 | 1810 | 472 | e4100 | 742 | 393 | 261 | e250 | e230 | | 5 | 201 | 371 | e16700 | 542 | 1340 | 420 | 3720 | 1120 | 367 | 250 | e240 | e228 | | 6 | 379 | 364 | e9740 | 643 | 1030 | 412 | 3170 | 910 | 381 | 237 | e240 | e228 | | 7 | 349 | 359 | e9600 | 983 | 1180 | 405 | 1860 | 625 | 378 | 232 | e235 | 225 | | 8 | 264 | 358 | e3420 | 882 | 1430 | 407 | 1120 | 491 | 354 | 233 | e235 | 235 | | 9 | 235 | 352 | e2660 | 756 | 1230 | 562 | 1050 | 421 | 332 | 244 | e230 | 226 | | 10 | 224 | 348 | e2130 | 688 | 996 | 887 | 1110 | 406 | 333 | 270 | e590 | 221 | | 11 | 1420 | 346 | e1840 | 742 | 926 | 644 | 900 | 505 | 616 | 243 | e550 | 220 | | 12 | 2370 | 342 | e2340 | 739 | 801 | 2060 | 796 | 459 | 523 | 262 | e274 | 216 | | 13 | 2250 | 317 | e3610 | 646 | 695 | 2360 | 738 | 735 | 480 | 445 | e245 | 213 | | 14 | 2850 | 315 | e5260 | 594 | 624 | 2430 | 680 | 826 | 525 | 487 | e291 | 215 | | 15 | 2760 | 323 | e5870 | 556 | 586 | 2500 | 640 | 605 | 650 | 456 | 301 | 328 | | 16 | 2790 | 336 | e6760 | 515 | 646 | 2450 | 596 | 461 | 445 | 315 | 651 | 344 | | 17 | 2960 | 332 | e7060 | 490 | 618 | 3490 | 556 | 1230 | 360 | 300 | 509 | 305 | | 18 | 3200 | 331 | e6910 | 1010 | 557 | 4570 | 819 | 1650 | 329 | 262 | 443 | 388 | | 19 | 3430 | 338 | 5540 | 2110 | 542 | 7110 | 658 | 940 | 315 | 249 | 933 | 323 | | 20 | 3450 | e384 | 4610 | 2130 | 1550 | 12000 | 553 | 632 | 292 | 242 | 378 | 2030 | | 21 | 2390 | e377 | 3970 | 2190 | 1620 | 13500 | 505 | 501 | 278 | 240 | 285 | 2650 | | 22 | 1140 | e377 | 2860 | 1820 | 1290 | 10700 | 467 | 443 | 269 | 266 | 317 | 1150 | | 23 | 723 | e372 | 4020 | 1490 | 876 | 8340 | 493 | 409 | 261 | 461 | 376 | 624 | | 24 | 595 | e855 | 3650 | 3370 | 688 | 6690 | 431 | 387 | 256 | 411 | 980 | 403 | | 25 | 676 | e1450 | 3480 | 3560 | 602 | 5500 | 528 | 370 | 255 | 288 | 2710 | 327 | | 26
27
28
29
30
31 | 722
565
493
452
442
437 | e1020
e2130
e1930
e4470
e13900 | 3430
3260
2290
1310
940
782 | 3630
3880
4140
4200
3830
2740 | 639
779
596
 | 4820
4090
3320
2280
1880
2850 | 620
471
439
416
397 | 372
590
678
1270
1810
1080 | 283
280
261
277
266 | 272
247
234
234
e270
e490 | 952
573
391
335
290
272 | 1460
5430
5720
6210
8060 | | MEAN | 1245 | 1134 | 6834 | 1658 | 1091 | 3508 | 1354 | 708.1 | 379.3 | 295.4 | 490.0 | 1298 | | MAX | 3450 | 13900 | 25000 | 4200 | 2440 | 13500 | 4400 | 1810 | 661 | 490 | 2710 | 8060 | | MIN | 201 | 315 | 782 | 490 | 542 | 405 | 397 | 370 | 255 | 232 | 230 | 213 | e Estimated # 07027720 SOUTH FORK FORKED DEER RIVER NEAR OWL CITY, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2002, BY WATER YEAR (WY) | OCT | NOV | DEC | JAN | FEB | MAR | APR | | MAY | JUN | JUL | AUG | Š | SEP | |--|----------------------------|----------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------|------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------|--------------------------------------| | MAX 1245 1
(WY)
2002 2
MIN 1245 1 | L134 6
2002 2
L134 6 | 6834
2002
6834 | 1658
1658
2002
1658
2002 | 2212
4303
2001
1091
2002 | 2200
3508
2002
891
2001 | 1071
1354
2002
788
2001 | | 08.7
708
2002
509
2001 | 846.7
1314
2001
379
2002 | 292.3
295
2002
289
2001 | 406.6
490
2002
323
2001 |)
2 | 812.6
1298
2002
327
2001 | | SUMMARY STATISTICS | | FOR 200 | 1 CALENDA | AR YEAR | 1 | FOR 2002 | WATE | R YEA | R | WATER YEARS | 2001 | | 2002 | | ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 1 | | 1509 | | | 1678 | | | | 1367
1678
873 | | | 2002
2001 | | HIGHEST DAILY MEAN | | 2 | 5000 | Dec 3 | | 25000 | | Dec | 3 | 25000 | Dec | | 2001 | | LOWEST DAILY MEAN | | | 120 | Jul 16 | | 201 | | | 4 | 120 | | | 2001 | | ANNUAL SEVEN-DAY MI | INIMUM | | 131 | Jul 14 | | 221 | | | 8 | 131 | | | 2001 | | MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE | | | | | | 25800
22. | | Dec | 1 | 25800
a22.27 | Dec | 1 | 2001 | | INSTANTANEOUS LOW F | T.OM | | | | | b194 | | Dec
Oct | 4 | 120 | Dec
Jul | | 2001 | | 10 PERCENT EXCEEDS | LOW | | 3960 | | | 4050 | | occ | - | 3620 | our | 10 | 2001 | | 50 PERCENT EXCEEDS | | | 430 | | | 572 | | | | 490 | | | | | 90 PERCENT EXCEEDS | | | 199 | | | 246 | | | | 220 | | | | a Peak stage from crest-stage gage. b Also occurred Oct. 5. ### 07028960 MIDDLE FORK FORKED DEER RIVER NEAR FAIRVIEW, TN $\label{location.--Lat 35^44'39", long 88^50'47", Madison County, Hydrologic Unit 08010204, at upstream side of bridge on Highway 45 bypass, 5 mi north of Jackson, and at mile 30.5.$ DRAINAGE AREA. -- 211 mi². PERIOD OF RECORD.--October 1967 and April 1989 (discharge measurements only), October 1997 to current year. GAGE.--Data collection platform. Datum of gage is 327 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of specific conductance and water temperature are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|---------|-----------------------------------|---------------------|--------|---------|-----------------------------------|---------------------| | Oct 14 | 0615 | 3,350 | 12.18 | Mar 19 | 0845 | 6,710 | 16.24 | | Nov 29 | unknown | 10,400 | 19.01 | Mar 31 | 0815 | 3,490 | 11.96 | | Dec 13 | 0100 | 4,280 | 13.19 | Aug 24 | 2315 | 3,520 | 12.01 | | Dec 23 | 0145 | 4,030 | 12.82 | Sep 20 | 1615 | 3,150 | 11.36 | | Jan 24 | 0515 | 4,320 | 13.25 | Sep 28 | unknown | *10,800 | *19.21 | Minimum discharge, $53 \text{ ft}^3/\text{s}$, Oct. 3, 4, 5. REVISIONS.--The maximum discharge for water year 1999 has been revised to 6,800 ft³/s, Jan. 24, 1999, gage height 16.34 ft. They supersede figures published in WDR-TN report for 1999. | | | DISCHA | ARGE, CUBI | C FEET PE | | WATER YE
Y MEAN V | | ER 2001 T | O SEPTEMB | ER 2002 | | | |----------------------------------|----------------------------------|--------------------------------------|--|--|---------------------------------|---|---------------------------------|--|-------------------------------|-----------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 56 | 65 | e6730 | 147 | 371 | 150 | 1690 | 164 | 192 | 72 | 143 | 107 | | 2 | 55 | 65 | e4530 | 137 | 387 | 146 | 1410 | 169 | 140 | 69 | 125 | 103 | | 3 | 55 | 124 | e1230 | 135 | 496 | 145 | 747 | 180 | 111 | 73 | 113 | 100 | | 4 | 54 | 107 | 604 | 125 | 351 | 137 | 405 | 166 | 97 | 68 | 105 | 97 | | 5 | 64 | 102 | 372 | 128 | 258 | 133 | 261 | 161 | 98 | 67 | 101 | 95 | | 6
7
8
9
10 | 96
80
74
68
69 | 90
82
79
83
81 | 289
356
1200
678
571 | 187
197
190
168
153 | 224
241
246
263
231 | 129
128
124
161
169 | 193
162
155
175
169 | 167
133
110
102
105 | 109
103
97
91
262 | 66
64
63
64
69 | 98
97
96
95
155 | 92
91
91
91 | | 11 | 434 | 79 | 388 | e230 | 216 | 212 | 159 | 106 | 168 | 98 | 93 | 90 | | 12 | 273 | 77 | 1670 | e225 | 204 | 824 | 144 | 102 | 150 | 394 | 78 | 90 | | 13 | 490 | 78 | 3420 | e180 | 177 | 519 | 141 | 196 | 193 | 152 | 83 | 88 | | 14 | 1470 | 78 | 3070 | e170 | 155 | 602 | 133 | 176 | 134 | 169 | 109 | 127 | | 15 | 597 | 81 | 2530 | 161 | 150 | 442 | 122 | 219 | 119 | 196 | 109 | 173 | | 16 | 684 | 80 | 2560 | 153 | 153 | 347 | 114 | 157 | 99 | 158 | 208 | 185 | | 17 | 658 | 81 | 2650 | 149 | 150 | 3420 | 110 | 552 | 89 | 126 | 171 | 189 | | 18 | 376 | 81 | 1200 | 226 | 149 | 5210 | 108 | 343 | 83 | 103 | 294 | 138 | | 19 | 219 | 87 | 840 | 654 | 145 | 6400 | 101 | 247 | 80 | 102 | 171 | 116 | | 20 | 146 | 107 | 565 | 497 | 294 | 5350 | 99 | 174 | 75 | 104 | 115 | 928 | | 21 | 108 | 106 | 359 | 501 | 277 | 3530 | 95 | 133 | 74 | 96 | 93 | 403 | | 22 | 88 | 104 | 317 | 378 | 278 | 2420 | 86 | 116 | 73 | 89 | 103 | 327 | | 23 | 79 | 97 | 2380 | 350 | 220 | 956 | 78 | 106 | 71 | 92 | 105 | 244 | | 24 | 75 | 246 | 1100 | 2900 | 185 | 518 | 80 | 101 | 72 | 87 | 475 | 146 | | 25 | 94 | 202 | 1050 | 2030 | 166 | 350 | 113 | 96 | 72 | 91 | 1160 | 108 | | 26
27
28
29
30
31 | 87
80
74
70
68
67 | 257
1410
1500
9550
e9940 | 630
380
282
227
187
165 | 2260
1110
519
334
260
244 | 195
173
161
 | 775
472
464
351
445
2630 | 102
105
97
86
85 | 119
120
176
178
170
208 | 105
78
81
80
76 | 93
91
88
83
88
156 | 441
384
257
165
131
117 | 2340
e10500
e9000
e2000
e720 | | TOTAL | 6908 | 25119 | 42530 | 15098 | 6516 | 37659 | 7525 | 5252 | 3272 | 3331 | 5990 | 28870 | | MEAN | 222.8 | 837.3 | 1372 | 487.0 | 232.7 | 1215 | 250.8 | 169.4 | 109.1 | 107.5 | 193.2 | 962.3 | | MAX | 1470 | 9940 | 6730 | 2900 | 496 | 6400 | 1690 | 552 | 262 | 394 | 1160 | 10500 | | MIN | 54 | 65 | 165 | 125 | 145 | 124 | 78 | 96 | 71 | 63 | 78 | 88 | | CFSM | 1.06 | 3.97 | 6.50 | 2.31 | 1.10 | 5.76 | 1.19 | 0.80 | 0.52 | 0.51 | 0.92 | 4.56 | | IN. | 1.22 | 4.43 | 7.50 | 2.66 | 1.15 | 6.64 | 1.33 | 0.93 | 0.58 | 0.59 | 1.06 | 5.09 | e Estimated # 07028960 MIDDLE FORK FORKED DEER RIVER NEAR FAIRVIEW, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY) | MEAN 122.4 290.6
MAX 223 837
(WY) 2002 2002
MIN 60.1 97.5
(WY) 2001 2001 | 503.2 525.8 375.3 1372 1099 574 2002 1999 1998 128 121 201 2001 2001 2000 | 527.8 305.8 432.4 170.1 1215 458 1431 290 2002 1998 1998 1998 189 199 120 93.7 2001 2001 2000 2000 | 1998 1998 2002
63.4 58.6 56.6 | |--|---|--|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1997 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 124022
339.8
9940 Nov 30
41 Jul 15
45 Jul 13
1.61
21.87
629
95 | 188070
515.3
10500 Sep 27
54 Oct 4
66 Oct 1
10800 Sep 28
a19.21 Sep 28
b53 Oct 3
2.44
33.16
1070
150 | 317.8 515 2002 145 2000 10500 Sep 27 2002 41 Jul 15 2001 45 Jul 13 2001 10800 Sep 28 2002 a19.21 Sep 28 2002 40 Jul 15 2001 1.51 20.46 520 133 | Peak stage determined from crest-stage gage. Also occurred Oct. 4, 5. 284 HATCHIE RIVER BASIN ## 07029500 HATCHIE RIVER AT BOLIVAR, TN LOCATION.--Lat 35°16'31", long 88°58'36", Hardeman County, Hydrologic Unit 08010208, on left bank 25 ft upstream from bridge on State Highway 18, 250 ft upstream from Illinois Central Gulf Railroad bridge, 0.6 mi downstream from Spring Creek, 1.5 mi northeast of Bolivar, and at mile 135.1. DRAINAGE AREA. -- 1,480 mi². PERIOD OF RECORD.--July 1929 to current year. GAGE.--Data collection platform. Datum of gage is 323.49 ft above NGVD of 1929, determined using benchmark Q-64, April 14, 1966. REMARKS.--Records good except for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $8,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-----------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct
18
Dec 1 | 1530
2315 | 16,600
*52,300 | 16.89
*21.02 | Mar 21 | 1815 | 10,800 | 16.87 | | Jan 26 | 1900 | 31,600 | 19.46 | | | | | Minimum discharge, 223 ft³/s, Sept. 13, 14. | | | DISCH | ARGE, CUB | IC FEET PI | | , WATER Y
LY MEAN V | YEAR OCTOBE
VALUES | ER 2001 TO |) SEPTEMBE | R 2002 | | | |----------------------------------|---|---|--|---|--------------------------|--|--------------------------------------|---|---------------------------------|--|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 387 | 820 | 49200 | 3140 | 7180 | 3680 | 6700 | 1110 | 2210 | 429 | 471 | 275 | | 2 | 369 | 771 | 45800 | 2530 | 6300 | 3350 | 7190 | 1260 | 2220 | 412 | 533 | 264 | | 3 | 355 | 738 | 35000 | 2010 | 5670 | 2860 | 8490 | 1520 | 2180 | 421 | 494 | 259 | | 4 | 341 | e700 | 23200 | 1660 | 5190 | 2320 | 9020 | 2440 | 2030 | 444 | 439 | 253 | | 5 | 326 | e650 | 15300 | 1480 | 4780 | 1940 | 8150 | 3450 | 1620 | 510 | 396 | 255 | | 6 | 340 | e610 | 10900 | 1530 | 4470 | 1670 | 7070 | 3770 | 1200 | 472 | 364 | 251 | | 7 | 376 | e590 | 8610 | 1840 | 4190 | 1520 | 6180 | 3800 | 992 | 422 | 345 | 253 | | 8 | 398 | e560 | 7980 | 2170 | 3980 | 1440 | 5470 | 3950 | 888 | 396 | 337 | 243 | | 9 | 401 | e557 | 7200 | 2270 | 3830 | e1390 | 5020 | 4250 | 787 | 388 | 318 | 240 | | 10 | 369 | 555 | 6540 | 2170 | 3750 | e1360 | 4650 | 4500 | 708 | 401 | 304 | 238 | | 11 | 576 | 556 | 5860 | 2030 | 3690 | e1700 | 4310 | 4460 | 965 | 451 | 289 | 234 | | 12 | 1790 | 556 | 5500 | 1840 | 3610 | e3150 | 4020 | 4220 | 1380 | 522 | 279 | 231 | | 13 | 2920 | 556 | 6170 | 1670 | 3500 | 4470 | 3800 | 4010 | 1330 | 786 | 285 | 226 | | 14 | 4950 | 557 | 6200 | 1550 | 3330 | 4760 | 3610 | 3820 | 1130 | 817 | 332 | 230 | | 15 | 5320 | 557 | 6120 | 1420 | 3040 | 4910 | 3420 | 3630 | 1240 | 682 | 356 | 258 | | 16 | 5920 | 557 | 6370 | 1350 | 2640 | 5550 | 3160 | 3350 | 1390 | 694 | 446 | 271 | | 17 | 10800 | 557 | 7880 | 1270 | 2230 | 7060 | 2810 | 3030 | 1460 | 861 | 500 | 291 | | 18 | 16100 | 556 | 9200 | 1290 | 1960 | 7870 | 2410 | 2590 | 1240 | 847 | 535 | 336 | | 19 | 15200 | 557 | 9010 | 1850 | 1770 | 7700 | 2090 | 2190 | 951 | 714 | 549 | 405 | | 20 | 12900 | e620 | 7710 | 2950 | 2200 | 9300 | 1830 | 1940 | 779 | 597 | 525 | 378 | | 21 | 10600 | e750 | 6720 | 3560 | 3090 | 10400 | 1600 | 1520 | 671 | 554 | 548 | 378 | | 22 | 8850 | e890 | 6010 | 3670 | 3510 | 10300 | 1480 | 1200 | 595 | 610 | 448 | 407 | | 23 | 7500 | e980 | 6170 | 3870 | 3570 | 8680 | 1410 | 1010 | 541 | 766 | 373 | 495 | | 24 | 6460 | e1010 | 5770 | 5340 | 3700 | 7260 | 1360 | 900 | 505 | 838 | 340 | 457 | | 25 | 5680 | e1150 | 5420 | 13500 | 3870 | 6350 | 1270 | 819 | 477 | 760 | 349 | 380 | | 26
27
28
29
30
31 | 4770
3730
2360
1380
1010
893 | e1380
e2360
e4990
16600
37700 | 4940
4640
4410
4170
3890
3610 | 28600
27700
20400
14100
10400
8200 | 4090
4090
3920
 | e5570
e5310
4950
4560
4490
5650 | 1170
1100
1060
1050
1060 | 915
890
919
1290
1770
2100 | 461
452
461
459
444 | 738
732
634
569
490
456 | 396
411
358
316
291
278 | 1050
5730
5770
5910
11400 | | TOTAL | 133371 | 79990 | 335500 | 177360 | 107150 | 151520 | 111960 | 76623 | 31766 | 18413 | 12205 | 37368 | | MEAN | 4302 | 2666 | 10820 | 5721 | 3827 | 4888 | 3732 | 2472 | 1059 | 594.0 | 393.7 | 1246 | | MAX | 16100 | 37700 | 49200 | 28600 | 7180 | 10400 | 9020 | 4500 | 2220 | 861 | 549 | 11400 | | MIN | 326 | 555 | 3610 | 1270 | 1770 | 1360 | 1050 | 819 | 444 | 388 | 278 | 226 | | CFSM | 2.91 | 1.80 | 7.31 | 3.87 | 2.59 | 3.30 | 2.52 | 1.67 | 0.72 | 0.40 | 0.27 | 0.84 | | IN. | 3.35 | 2.01 | 8.43 | 4.46 | 2.69 | 3.81 | 2.81 | 1.93 | 0.80 | 0.46 | 0.31 | 0.94 | e Estimated #### 285 HATCHIE RIVER BASIN # 07029500 HATCHIE RIVER AT BOLIVAR, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2002, BY WATER YEAR (WY) | MEAN 757.9 1670
MAX 4447 7457
(WY) 1933 1958
MIN 150 233
(WY) 1957 1957 | 3295 4494 4709 12490 13420 14060 1983 1974 1948 422 555 829 1955 1955 1934 | 4597 3933 2690 12110 10960 13540 1973 1979 1991 1053 711 444 1941 1986 1942 | 1445 923.3 621.1 724.8 8181 5933 2678 4651 1997 1932 1931 1979 209 189 193 127 1941 1943 1954 1956 | |--|--|---|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1929 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 1135154
3110
49200 Dec 1
159 Aug 7
175 Aug 3
2.10
28.53
7180
1070 | 1273226
3488
49200 Dec 1
226 Sep 13
235 Sep 8
52300 Dec 1
21.02 Dec 1
b223 Sep 13
2.36
32.00
7700
1520 | 2473 5003 1971 1941 59300 Mar 18 1973 80 Sep 1 1943 85 Aug 26 1943 a61600 Mar 18 1973 21.66 Mar 18 1973 78 Sep 2 1943 1.67 22.71 6070 11100 | a From rating curve extended above 37,000 $\rm ft^3/s.$ b Also occurred Sept. 14. 286 LOOSAHATCHIE RIVER BASIN ### 07030240 LOOSAHATCHIE RIVER NEAR ARLINGTON, TN LOCATION.--Lat 35°18'37", long 89°38'23", Shelby County, Hydrologic Unit 08010209, on left bank 20 ft downstream from bridge on U.S. Highways 70 and 79, 1.5 mi upstream from Beaver Creek, 1.5 mi northeast of Arlington, and at mile 30.4. DRAINAGE AREA. -- 262 mi². PERIOD OF RECORD.--October 1969 to current year. GAGE.--Data collection platform. Datum of the gage is 246.43 ft above NGVD of 1929, from reference mark, provided by FEMA. REMARKS.--Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 5,500 ft}^3/s \ \hbox{\it and maximum (*):} \\$ | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------| | Oct 11 | 1815 | 8,410 | 18.04 | Mar 12 | 0845 | 8,440 | 18.07 | | Nov 29 | 2100 | *22,800 | *24.06 | aMar 18 | 0545 | 19,600 | 23.04 | | Dec 8 | 0215 | 5,620 | 14.20 | | | | | | Dec 13 | 0200 | 10,800 | 19.75 | Mar 31 | 1245 | 8,350 | 17.98 | | Dec 17 | 1200 | 9,770 | 19.21 | Sep 20 | 1930 | 7,280 | 16.83 | | Dec 23 | 1345 | 7,140 | 16.62 | Sep 27 | 0245 | 10,300 | 19.51 | | .Tan 24 | 0930 | 9 100 | 18 72 | - | | | | Minimum daily discharge, 89 ${\rm ft}^3/{\rm s}$, Nov. 23. a Flood marks from crest-stage gage. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|---------------------------------------|--|--|-----------------------|--|---------------------------------|--|---------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 107 | 121 | 3810 | 146 | 2130 | 162 | 2270 | 308 | 137 | 102 | 121 | 138 | | 2 | 106 | 120 | 634 | 137 | 503 | 164 | 554 | 146 | 129 | 106 | 118 | 135 | | 3 | 104 | 116 | 436 | 136 | 316 | 152 | 341 | 205 | 125 | 126 | 116 | 132 | | 4 | 103 | 112 | 368 | 128 | 309 | 143 | 258 | 1150 | 124 | 101 | 115 | 129 | | 5 | 106 | 111 | 331 | 128 | 233 | 142 | 224 | 282 | 126 | 99 | 112 | 126 | | 6 | 114 | 111 | 311 | 330 | 237 | 141 | 201 | 169 | 130 | 97 | 179 | 124 | | 7 | 102 | 108 | 1070 | 305 | 592 | 140 | 185 | 136 | 121 | 95 | 263 | 121 | | 8 | 101 | 107 | 3440 | 201 | 746 | 137 | 182 | 118 | 118 | 95 | 130 | 118 | | 9 | 100 | 105 | 721 | 171 | 360 | 194 | 202 | 109 | 116 | 95 | 124 | 118 | | 10 | 100 | 105 | 349 | 155 | 276 | 183 | 169 | 137 | 237 | 95 | 122 | 118 | | 11 | 4240 | 103 | 248 | 154 | 222 | 216 | 158 | 136 | 223 | 96 | 119 | 116 | | 12 | 3010 | 101 | 3410 | 141 | 199 | 6410 | 152 | 107 | 131 | 99 | 116 | 113 | | 13 | 2410 | 100 | 9700 | 131 | 184 | 1530 | 149 | 433 | 133 | 117 | 117 | 112 | | 14 | 2410 | 101 | 5950 | 126 | 171 | 474 | 141 | 224 | 163 | 155 | 205 | 113 | | 15 | 484 | 98 | 1130 | 117 | 166 | 329 | 137 | 127 | 127 | 228 | 158 | 117 | | 16 | 250 | 96 | 3800 | 112 | 169 | 1000 | 138 | 108 | 114 | 160 | 1030 | 113 | | 17 | 201 | 94 | 8210 | 113 | 160 | e7380 | 128 |
1610 | 111 | 136 | 418 | 204 | | 18 | 183 | 93 | 2810 | 158 | 152 | e15500 | 127 | 1100 | 110 | 117 | 220 | 144 | | 19 | 171 | 93 | 593 | 1790 | 181 | 5270 | 123 | 287 | 109 | 115 | 277 | 279 | | 20 | 162 | 92 | 342 | 576 | 1910 | 5280 | 119 | 208 | 108 | 111 | 164 | 4130 | | 21 | 155 | 91 | 273 | e296 | 484 | 1440 | 116 | 180 | 106 | 197 | 378 | 1540 | | 22 | 149 | 90 | 386 | 217 | 278 | 501 | 127 | 167 | 105 | 236 | 170 | 223 | | 23 | 145 | 89 | 5490 | 422 | 219 | 355 | 114 | 158 | 104 | 430 | 152 | 138 | | 24 | 149 | 1380 | 1650 | 6950 | 196 | 300 | 111 | 151 | 103 | 291 | 270 | 119 | | 25 | 286 | 548 | 481 | 2960 | 185 | 265 | 106 | 148 | 103 | 165 | 856 | 111 | | 26
27
28
29
30
31 | 148
133
128
125
123
122 | 200
3330
3590
17400
16700 | 317
258
224
195
168
154 | 582
356
281
251
228
289 | 202
181
163
 | 505
284
269
447
4760
7260 | 103
105
108
104
375 | 201
188
197
379
244
154 | 103
172
213
112
105 | 141
134
129
125
124
127 | 215
170
155
149
144
141 | 2700
9520
4760
488
254 | | TOTAL MEAN MAX MIN MED CFSM IN. | 16227 | 45505 | 57259 | 18087 | 11124 | 61333 | 7327 | 9267 | 3918 | 4444 | 7024 | 26553 | | | 523.5 | 1517 | 1847 | 583.5 | 397.3 | 1978 | 244.2 | 298.9 | 130.6 | 143.4 | 226.6 | 885.1 | | | 4240 | 17400 | 9700 | 6950 | 2130 | 15500 | 2270 | 1610 | 237 | 430 | 1030 | 9520 | | | 100 | 89 | 154 | 112 | 152 | 137 | 103 | 107 | 103 | 95 | 112 | 111 | | | 145 | 106 | 481 | 201 | 221 | 329 | 139 | 180 | 120 | 124 | 155 | 130 | | | 2.00 | 5.79 | 7.05 | 2.23 | 1.52 | 7.55 | 0.93 | 1.14 | 0.50 | 0.55 | 0.86 | 3.38 | | | 2.30 | 6.46 | 8.13 | 2.57 | 1.58 | 8.71 | 1.04 | 1.32 | 0.56 | 0.63 | 1.00 | 3.77 | e Estimated #### 287 LOOSAHATCHIE RIVER BASIN # 07030240 LOOSAHATCHIE RIVER NEAR ARLINGTON, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) | MEAN
MAX
(WY) | 151.1
531
1997 | 351.6
1517
2002 | 617.6
1962
1988 | 508.5
1479
1974 | 633.0
2064
1990 | 675.9
2038
1997 | 566.0
2306
1991 | 362.5
1497
1983 | 276.4
1609
1974 | 197.8
1155
1989 | 159.8
521
1974 | 173.3
885
2002 | |---------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------| | MIN | 73.4 | 75.6 | 106 | 94.5 | 128 | 141 | 107 | 93.8 | 86.7 | 87.5 | 80.5 | 73.3 | | (WY) | 1970 | 1972 | 1977 | 1981 | 1995 | 1986 | 1978 | 1988 | 1972 | 1970 | 1999 | 1999 | | SUMMARY | STATIST | ics | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEAR | S 1970 - | - 2002 | | ANNUAL | тотат. | | | 194124 | | | 268068 | | | | | | | ANNUAL | | | | 531.8 | | | 734.4 | | | 388.1 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 769 | | 1989 | | LOWEST | ANNUAL M | EAN | | | | | | | | 154 | | 1986 | | HIGHEST | DAILY M | EAN | | 17400 | Nov 29 | | 17400 | Nov 29 | | 19900 | Dec 26 | 5 1987 | | LOWEST | DAILY ME | AN | | 84 | Jan 16 | | 89 | Nov 23 | | 66 | Apr 7 | 7 1974 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 87 | Jan 5 | | 92 | Nov 17 | | 68 | Nov 5 | 5 1982 | | MAXIMUM | I PEAK FL | WO | | | | | | | | 27400 | Dec 25 | 5 1987 | | MAXIMUM | I PEAK ST | 'AGE | | | | | | | | 25.27 | Dec 25 | 5 1987 | | INSTANT | ANEOUS L | OW FLOW | | | | | | | | 66 | Apr 6 | 5 1974 | | ANNUAL | RUNOFF (| CFSM) | | 2.0 | 3 | | 2.8 | 0 | | 1.48 | | | | ANNUAL | RUNOFF (| INCHES) | | 27.5 | 6 | | 38.0 | 6 | | 20.13 | | | | | ENT EXCE | | | 852 | | | 1570 | | | 600 | | | | | ENT EXCE | | | 117 | | | 158 | | | 119 | | | | 90 PERC | ENT EXCE | EDS | | 91 | | | 105 | | | 85 | | | | | | | | | | | | | | | | | ### 07030392 WOLF RIVER AT LAGRANGE, TN LOCATION.--Lat $35^{\circ}01'57$ ", long $89^{\circ}14'48$ ", Fayette County, Hydrologic Unit 08010210, on right bank upstream side of bridge on Yager Road, 0.95 mi south of LaGrange, and at mile 72.6. DRAINAGE AREA. -- 210 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1995 to current year. GAGE.--Data collection platform. Datum of gage is 350 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except for estimated discharges, which are poor. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Nov 30 | 0145
1700 | *11,300 | *15.43 | Mar 18 | 1645 | 1,910 | 11.54 | | Dec 14 | | 2,030 | 11.63 | | | | | | Jan 25 | 1245 | 2,120 | 11.69 | Apr 1 | 0730 | 2,900 | 12.17 | | Mar 13 | 1115 | 3,000 | 12.23 | Sep 28 | 0215 | 4,940 | 13.17 | Minimum discharge, 68 ft³/s, Oct. 4, 5. REVISIONS.--The maximum discharges for some water years have been revised as shown in the following table. They supersede figures published in WDR-TN reports for 1997, 1999, and 2001. | Water
year | Date | Discharge
(ft ³ /s) | Gage height
(ft) | |---------------|---------------|-----------------------------------|---------------------| | 1997 | Mar. 2, 199 | 7 5,150 | 13.27 | | 1999 | Mar. 14, 1999 | 9 4,820 | 13.11 | | 2001 | Feb. 17, 2001 | 1 6,040 | 13.66 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY JTI IN лтт. AUG SEP e560 70 212 112 e570 e386 75 155 e564 e768 e526 2.4 e1370 e1990 e1690 e913 e568 e430 ---e411 e379 ---TOTAL 416.2 3770 MEAN 218.1 652.4 778.3 476.5 348.4 708.7 369.9 321.0 183.5 178.0 156.7 MAX MIN 3.11 CFSM 1 04 3.71 2.27 1.66 3.37 1.76 1.53 0.87 0.85 0.75 1.98 2.62 0.97 TN. 1.20 3.47 4.27 1.73 3.89 1.97 1.76 0.98 0.86 2.21 e Estimated # 07030392 WOLF RIVER AT LAGRANGE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2002, BY WATER YEAR (WY) | MEAN 159.1 265.3
MAX 274 652
(WY) 1997 2002
MIN 69.9 149
(WY) 2001 2001 | 360.0 433.0 471.7 778 745 1018 2002 1999 2001 176 173 233 2001 2000 1996 | 510.2 348.6 268.4
956 492 455
1997 1998 1999
227 261 116
2000 1996 2001 | 228.7 147.0 143.9 180.4 628 207 278 416 1997 1997 1998 2002 112 79.7 80.5 68.4 2000 2001 2000 2000 | |---|--|--|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1995 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 118658
325.1
10100 Feb 17
65 Aug 26
69 Aug 21
1.55
21.02
602
124
75 | 146370
401.0
9620 Nov 30
69 Oct 2
73 Oct 1
11300 Nov 30
15.43 Nov 30
a68 Oct 4
1.91
25.93
847
208
89 | 290.8 412 1997 73.5 1995 10100 Feb 17 2001 59 Sep 1 2000 60 Aug 31 2000 11300 Nov 30 2001 15.43 Nov 30 2001 56 Sep 1 2000 1.38 18.81 546 179 84 | # a Also occurred Oct. 5. # 07030392 WOLF RIVER AT LAGRANGE, TN--Continued WATER-QUALITY DATA PERIOD OF RECORD.--October 1995 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |-----------|------|--|---|---|---|--|---|--|--|--|--|--|--| | NOV | | | | | | | | | | | | | | |
14
DEC | 1000 | 38 | 5.9 | 12.0 | 763 | 9.6 | 89 | 17 | 14 | .7 | 2.96 | <.008 | .24 | | 05
JAN | 1445 | 30 | 6.6 | 12.5 | 761 | 8.2 | 77 | 12 | 10 | 2.2 | 1.54 | <.008 | .17 | | 09
FEB | 1230 | 32 | 6.9 | 4.5 | 752 | 11.4 | 90 | 8 | 7 | 2.4 | 2.33 | <.008 | .30 | | 04
MAR | 1500 | 32 | 6.8 | 7.5 | 764 | 11.5 | 96 | 13 | 11 | 2.0 | 2.06 | <.008 | .25 | | 12
APR | 1200 | 28 | 6.8 | 11.0 | 757 | 9.9 | 90 | 9 | 8 | 1.7 | 1.57 | E.004 | .32 | | 24
MAY | 1230 | 49 | 7.0 | 19.5 | 762 | 7.2 | 78 | 21 | 17 | .8 | 2.03 | <.008 | .20 | | 08 | 1200 | 38 | 6.2 | 22.0 | 764 | 6.9 | 79 | 16 | 13 | 1.4 | 1.61 | E.006 | .21 | | JUL
15 | 1400 | 37 | 5.8 | 24.0 | 762 | 6.8 | 81 | E14 | E12 | 1.4 | 1.95 | <.008 | .21 | | AUG
08 | 1015 | 43 | 5.9 | 22.0 | 766 | 7.6 | 86 | 19 | 15 | .5 | 2.55 | E.005 | .29 | | | | | | | | | | | | | | | | | Date | AS N) | | AS N) | PHORUS
TOTAL
(MG/L
AS P) | | |------------------|-------|-----|-------|-----------------------------------|------| | NOV | | | | | | | 14
DEC | <.04 | .21 | .44 | .047 | <.02 | | 05 | E.03 | .47 | .64 | .145 | E.02 | | JAN
09 | <.04 | .26 | .56 | .049 | <.02 | | FEB
04 | <.04 | .37 | .62 | .070 | E.01 | | MAR
12 | E.04 | 1.1 | 1.4 | .35 | .03 | | APR | 2.01 | | | .55 | .05 | | 24
MAY | <.04 | .34 | .54 | .049 | E.01 | | 08 | .08 | .47 | .68 | .099 | .02 | | JUL
15
AUG | <.04 | .49 | .71 | .145 | .02 | | 08 | <.04 | .20 | .48 | .043 | <.02 | THIS PAGE IS INTENTIONALLY BLANK ### 07030500 WOLF RIVER AT ROSSVILLE, TN LOCATION.--Lat 35°03'15", long 89°32'28", Fayette County, Hydrologic Unit 08010210, on left bank 85 ft downstream from county highway bridge, 0.3 mi upstram from Hurricane Creek, 0.4 mi north of Rossville, 5.0 miles downstream from Grissum Creek, and at mile 43.7. DRAINAGE AREA. -- 503 mi². PERIOD OF RECORD.--July 1929 to January 1972, May 2001 to current year. REVISED RECORDS.--WSP 807: 1935. WSP 1117: 1930. WSP 1177: 1932. WSP 1281: 1935, 1946(M), drainage area. WSP 1391: 1937-38. GAGE.--Data collection platform. Datum of gage is 300.74 ft above NGVD of 1929 determined from Tennessee Highway Department reference tablet. Prior to June 13, 1939, nonrecording gage at same site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Periodic observation of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $2,600~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Oct 14 | 1130 | 4.300 | 9.61 | | | | | | Nov 30 | 0600 | *24,000 | *14.57 | Mar 21 | 0345 | 7,850 | 11.46 | | Dec 14 | 1100 | 7,110 | 11.13 | Apr 1 | 0915 | 7,640 | 11.37 | | | | | | Sep 21 | 0945 | 3,210 | 8.82 | | Dec 23 | 1715 | 5,490 | 10.32 | Sep 27 | 1400 | 10,700 | 12.29 | | Jan 26 | 0315 | 7,970 | 11.51 | | | | | Minimum daily discharge, 158 ft³/s, Oct. 4. | | | DISCHA | ARGE, CUBI | C FEET PE | | WATER Y
Y MEAN V | EAR OCTOBER
ALUES | R 2001 TO | SEPTEMBER | 2002 | | | |-----------------------------|--------------------------|------------------------------|----------------------------|------------------------------|-------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 174 | 303 | 17100 | 493 | 1200 | 511 | 6840 | 809 | 398 | 269 | 391 | 305 | | | 167 | 286 | 8540 | 459 | 1210 | 488 | 6230 | 568 | 377 | 272 | 317 | 286 | | 3 | 163 | 288 | 5380 | 440 | 1090 | 464 | 4610 | 629 | 359 | 297 | 305 | 270 | | 4 | 158 | 280 | 3240 | 419 | 884 | 428 | 2540 | 1850 | 334 | 272 | 304 | 261 | | 5 | 176 | 278 | 1830 | 409 | 755 | 411 | 1210 | 1780 | 318 | 262 | 292 | 252 | | 6 | 205 | 270 | 1220 | 537 | 697 | 399 | 828 | 1580 | 307 | 254 | 309 | 246 | | 7 | 206 | 267 | 921 | 603 | 783 | 392 | 670 | 1270 | 295 | 243 | 338 | 242 | | 8 | 186 | 265 | 1210 | 536 | 839 | 387 | 600 | 1240 | 290 | 234 | 297 | 239 | | 9 | 179 | 262 | 1480 | 526 | 772 | 433 | 621 | 1010 | 288 | 235 | 272 | 237 | | 10 | 173 | e260 | 1480 | 533 | 735 | 505 | 584 | 719 | 287 | 250 | 260 | 237 | | 11 | 996 | 258 | 1070 | 516 | 684 | 488 | 554 | 576 | 317 | 304 | 253 | 235 | | 12 | 2310 | 257 | 1790 | 475 | 622 | 4190 | 558 | 496 | 394 | 302 | 250 | 233 | | 13 | 3050 | 265 | 5560 | 442 | 566 | 5770 | 560 | 552 | 438 | 467 | 257 | 231 | | 14 | 4080 | 268 | 6740 | 421 | 520 | 5270 | 529 | 659 | 519 | 417 | 1290 | 234 | | 15 | 3530 | 270 | 5580 | 403 | 483 | e3600 | 495 | 575 | 501 | 448 | 1260 | 264 | | 16
17 | 2660
1860 | 270
270
268 | 4410
4610 | 389
382 | 467
448 | e3400
e5000 | 495
466
446 | 507
569 | 446
433 | 448
448
436 | 1030
897 | 261
758 | | 18 | 1160 | 265 | 4770 | 414 | 428 | e7200 | 439 | 758 | 422 | 386 | 559 | 553 | | 19 | 805 | 267 | 3710 | 1080 | 431 | e7800 | 420 | 607 | 390 | 385 | 574 | 413 | | 20 | 616 | 275 | 2330 | 1330 | 1240 | e7400 | 401 | 469 | 346 | 357 | 419 | 1590 | | 21 | 489 | 272 | 1380 | 1160 | 1250 | 6810 | 387 | 436 | 313 | 333 | 712 | 2830 | | 22 | 410 | 275 | 1110 | 1040 | 1060 | 5670 | 391 | 429 | 290 | 329 | 428 | 1090 | | 23 | 367 | 279 | 4290 | 1100 | 987 | 3560 | 386 | 397 | 274 | 428 | 377 | 427 | | 24 | 343 | 329 | 4920 | 3040 | 908 | 1910 | 371 | 364 | 264 | 399 | 692 | 351 | | 25 | 345 | 401 | 3710 | 6300 | 706 | 1140 | 361 | 343 | 257 | 394 | 1390 | 313 | | 26
27
28
29 | 338
327
316
314 | 368
1110
1790
12200 | 2080
1350
968
734 | 7450
5800
3830
1900 | 661
592
537 | 1010
921
807
741 | 356
358
356
359 | 331
323
318
328 | 253
251
261
266 | 424
454
423
368 | 603
413
401
387 | 1640
9780
8620
6950 | | 30
31 | 313
311 | 23000 | 603
536 | 1120
873 | | 1640
4920 | 491
 | 382
420 | 271 | 324
357 | 364
331 | 5680
 | | TOTAL MEAN MAX MIN CFSM IN. | 26727 | 45446 | 104652 | 44420 | 21555 | 83665 | 33417 | 21294 | 10159 | 10771 | 15972 | 45028 | | | 862.2 | 1515 | 3376 | 1433 | 769.8 | 2699 | 1114 | 686.9 | 338.6 | 347.5 | 515.2 | 1501 | | | 4080 | 23000 | 17100 | 7450 | 1250 | 7800 | 6840 | 1850 | 519 | 467 | 1390 | 9780 | | | 158 | 257 | 536 | 382 | 428 | 387 | 356 | 318 | 251 | 234 | 250 | 231 | | | 1.71 | 3.01 | 6.71 | 2.85 | 1.53 | 5.37 | 2.21 | 1.37 | 0.67 | 0.69 | 1.02 | 2.98 | | | 1.98 | 3.36 | 7.74 | 3.29 | 1.59 | 6.19 | 2.47 | 1.57 | 0.75 | 0.80 | 1.18 | 3.33 | e Estimated # 07030500 WOLF RIVER AT ROSSVILLE, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2002, BY WATER YEAR (WY) | MEAN 264.9 537.4
MAX 862 2452
(WY) 2002 1946
MIN 132 181
(WY) 1932 1957 | 795.8 1185 1269
3376 4403 3704
2002 1937 1948
226 245 288
1966 1940 1941 | 1111 899.9 615.3
2699 2144 3771
2002 1955 1953
286 237 181
1941 1930 1942 | 417.0 350.4 253.9 312.9 1963 2245 608 1501 1949 1932 1950 2002 144 129 121 121 1941 1942 1943 1942 | |---|---|---|--| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1929 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 208263
942.4
23000 Nov 30
158 Oct 4
178 Sep 30
1.87
15.40
2260
261
204 | 463106
1269
23000 Nov 30
158 Oct 4
178 Oct 1
24000 Nov 30
14.57 Nov 30
2.52
34.25
3710
446
261 | 660.7 1269 244 2001 31000 Jan 21 1935 100 Sep 16 1942 105 Aug 27 1943 40000 Jan 20 1935 13.75 Jan 20 1935 100 Sep 16 1942 1.31 17.85 1350 290 166 | ### 07031650 WOLF RIVER AT GERMANTOWN, TN LOCATION.--Lat 35°06'59", long 89°48'05", Shelby County, Hydrologic Unit 08010210, on left bank, 30 ft downstream of bridge on Germantown Road, 1.7 mi north of U.S. Hwy 72, 3.6 mi downstream of Grays Creek, 4.0 mi northeast of I-240 and U.S. Highway 72 interchange, and at mile 18.9. DRAINAGE AREA. -- 699 mi². PERIOD OF RECORD.--October 1969 to September 1986, October 1990 to current year. Prior to September 1977 published as "near Germantown". GAGE.--Data collection platform. Datum of gage is 235.76 ft above NGVD of 1929, determined from Tennessee Department of Transportation brass disc, and from BM-79-4-19. Apr. 21, 1986, to Dec. 30, 1990, water-stage recorder at site 2.1 mi downstream at datum 9.94 ft lower. REMARKS.--Records fair, except for periods of estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. National Weather Service rain gage and telemeter at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $7,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time |
Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-----------------|--------------|-----------------------------------|---------------------|------------------|--------------|-----------------------------------|---------------------| | Dec 1
Dec 17 | 1615
0900 | *26,100
10,700 | *25.52
16.88 | Mar 17
Sep 28 | 2315
1045 | 16,300
11,700 | 20.68
17.62 | | | | 3 . | | | | | | Minimum daily discharge, $247 \text{ ft}^3/\text{s}$, Oct. 4. | | | DISCHA | ARGE, CUBI | C FEET PE | | WATER Y
LY MEAN V | | R 2001 TO |) SEPTEMBER | 2002 | | | |-------|-------|--------|------------|-----------|-------|----------------------|-------|-----------|-------------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 268 | 341 | 24400 | 699 | 2510 | 572 | 5730 | 1240 | 491 | 315 | 467 | 440 | | 2 | 258 | 338 | 22200 | 646 | 1770 | 546 | 5730 | 862 | 461 | 350 | 393 | 411 | | 3 | 253 | 338 | 10500 | 609 | 1500 | 515 | 4700 | 981 | 438 | 1110 | 337 | 391 | | 4 | 247 | 336 | 5070 | 576 | 1270 | 473 | 3430 | 2320 | 417 | 399 | 324 | 374 | | 5 | 314 | 334 | 3330 | 549 | 1060 | 440 | 2360 | 2110 | 393 | 333 | 318 | 360 | | 6 | 314 | 327 | 2330 | 925 | 1010 | 420 | 1430 | 1920 | 409 | 312 | 623 | 347 | | 7 | 287 | 323 | 1940 | 860 | 1180 | 408 | 996 | 1650 | 365 | 298 | 596 | 339 | | 8 | 277 | 320 | 2070 | 764 | 1280 | 400 | 855 | 1410 | 353 | 286 | 359 | 330 | | 9 | 271 | 319 | e2400 | 682 | 1140 | 470 | 817 | 1320 | 347 | 280 | 314 | 322 | | 10 | 281 | 320 | e2600 | 668 | 1010 | 520 | 755 | 1120 | 384 | 281 | 289 | 317 | | 11 | 3540 | 320 | e2150 | 639 | 908 | 740 | 690 | 868 | 424 | 323 | 273 | 310 | | 12 | 1890 | 321 | e3500 | 596 | 824 | 5240 | 650 | 727 | 390 | 372 | 268 | 301 | | 13 | 3770 | 319 | e6700 | 552 | 746 | 4870 | 640 | 794 | 1730 | 391 | 278 | 294 | | 14 | 2900 | 320 | e7300 | 505 | 678 | 4580 | 621 | 777 | 1010 | 563 | 739 | 288 | | 15 | 2540 | 317 | 7100 | 469 | 626 | 4000 | 585 | 760 | 628 | 473 | 1450 | 293 | | 16 | 2360 | 316 | 6700 | 441 | e600 | 4120 | 547 | 676 | 566 | 495 | 2690 | 327 | | 17 | 2070 | 314 | 8120 | 430 | e570 | 12700 | 510 | 1430 | 514 | 482 | 1530 | 492 | | 18 | 1700 | 314 | 5400 | 471 | e530 | 11500 | 483 | 1500 | 494 | 468 | 1050 | 752 | | 19 | 1210 | 312 | 4160 | 1270 | e500 | 6340 | 467 | 1210 | 470 | 524 | 820 | 630 | | 20 | 851 | 327 | 3270 | 1470 | e1350 | 7340 | | 779 | 428 | 475 | 703 | 3170 | | 20 | 851 | 320 | 3270 | 14/0 | e1350 | /340 | 442 | 779 | 428 | 4/5 | 703 | 31/0 | | 21 | 662 | 319 | 2510 | 1380 | e1400 | 6220 | 416 | 614 | 387 | 434 | 728 | 2280 | | 22 | 537 | 316 | 2350 | 1170 | e1200 | 5160 | 463 | 568 | 358 | 368 | 760 | 2330 | | 23 | 464 | 317 | 6060 | 1170 | 1090 | 4010 | 404 | 533 | 336 | 381 | 604 | 1240 | | 24 | 460 | 1820 | 5070 | 4340 | 1010 | 2820 | 385 | 485 | 334 | 489 | 804 | 600 | | 25 | 444 | 579 | 4020 | 4380 | 894 | 2000 | 363 | 452 | 322 | 414 | 1410 | 479 | | 0.0 | 205 | | 24.60 | F200 | 55.4 | 1.670 | 250 | 440 | 205 | 400 | 1000 | 0.600 | | 26 | 395 | 555 | 3160 | 5390 | 754 | 1670 | 350 | 443 | 305 | 420 | 1280 | 2680 | | 27 | 381 | 2150 | 2300 | 6470 | 697 | 1320 | 344 | 415 | 473 | 449 | 728 | 7060 | | 28 | 362 | 4200 | 1640 | 4670 | 614 | 1120 | 344 | 529 | 477 | 458 | 590 | 11100 | | 29 | 354 | 16400 | 1170 | 3180 | | 990 | 338 | 640 | 323 | 418 | 557 | 8450 | | 30 | 348 | 17800 | 915 | 2160 | | 2240 | 1320 | 441 | 318 | 393 | 525 | 5870 | | 31 | 346 | | 777 | 1700 | | 5640 | | 473 | | 639 | 478 | | | TOTAL | 30354 | 50938 | 161212 | 49831 | 28721 | 99384 | 37165 | 30047 | 14345 | 13393 | 22285 | 52577 | | MEAN | 979.2 | 1698 | 5200 | 1607 | 1026 | 3206 | 1239 | 969.3 | 478.2 | 432.0 | 718.9 | 1753 | | MAX | 3770 | 17800 | 24400 | 6470 | 2510 | 12700 | 5730 | 2320 | 1730 | 1110 | 2690 | 11100 | | MIN | 247 | 312 | 777 | 430 | 500 | 400 | 338 | 415 | 305 | 280 | 268 | 288 | | CFSM | 1.40 | 2.43 | 7.44 | 2.30 | 1.47 | 4.59 | 1.77 | 1.39 | 0.68 | 0.62 | 1.03 | 2.51 | | IN. | 1.62 | 2.71 | 8.58 | 2.65 | 1.53 | 5.29 | 1.98 | 1.60 | 0.76 | 0.71 | 1.19 | 2.80 | e Estimated # 07031650 WOLF RIVER AT GERMANTOWN, TN--Continued | STATISTICS OF | F MONTHIV M | EAN DATA | FOR MATER | VEARS 1 | 1970 - | 2002 | BY WATER | VEAR (MV) | |---------------|-------------|----------|-----------|---------|--------|------|----------|-----------| | MEAN 453.8 767.3
MAX 1223 1991
(WY) 1997 1980
MIN 213 239
(WY) 1970 1972 | 1559 1378 1352
5200 3504 3256
2002 1974 1991
439 372 532
1981 1981 1995 | 1752 1528 1218
4854 4805 4542
1980 1991 1991
569 448 364
1986 1986 1992 | 775.7 458.3 444.0 495.3
1986 985 1199 1753
1974 1994 1998 2002
271 251 240 244
1972 2001 1986 1986 | |--|--|---|---| | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1970 - 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 432108
1184
24400 Dec 1
199 Jun 27
212 Jun 21
1.69
23.00
2440
359
229 | 247 Oct 4 | 1014 1807 1991 497 1986 30400 Mar 14 1975 196 Sep 15 1972 199 Sep 12 1972 33400 Mar 14 1975 27.98 Mar 14 1975 176 Jul 29 2000 1.45 19.71 2180 525 278 | ## 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN LOCATION.--Lat 35°10'09", long 89°51'58", Shelby County, Hydrologic Unit 08010210, on Sycamore View Road, 0.4 miles northwest of Interstate 40. DRAINAGE AREA. -- 30.5 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1996 to current year. Minimum discharge, 0.64 ft³/s, Oct. 5. REVISED RECORDS.--Revised maximum discharges and revised daily discharges in ft^3/s for the 1996-2001 water years are given in the tables below. These figures supersede those published in reports for 1996-2001. GAGE.--Water-stage recorder. Datum of gage is 229.00 ft above NGVD of 1929 provided by Tennessee Department of Transportation. REMARKS.--Records rated poor below 10 ${\rm ft}^3/{\rm s}$ and fair above 10 ${\rm ft}^3/{\rm s}$. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR WATER YEARS 1996-2002.--Peak discharges greater than base discharge of 4,500 ft^3/s and maximum (*): | Water
Year
1996 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-----------------------|---|--------------------------------------|---|--|------------------------------|-------------------|-----------------------------------|-------------------------| | 1000 | Jun 9 | 0600 *16,400 *13.24 | | No o | ther peak great | er than base disc | harge. | | | Min | imum discharç | ge, 0.00 ft | ³ /s, Aug. 24. | | | | | | | Water
Year
1997 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | | | Oct 28
Nov 30
Mar 2 | 0000
0845
0100 | 5,920
4,970
*9,820 | 12.91
11.85
*16.84 | Mar
Sep 2
Sep 2 | 3 2115 | 6,690
5,800
4,560 | 13.76
12.78
11.38 | | Min | imum discharç | ge, 0.05 ft | ³ /s, Oct. 13. | | | | | | | Water
Year
1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | | 1990 | Mar 7 | 0930 | *7,450 | *14.55 | Aug | 8 2315 | 5,080 | 11.98 | | Min | imum discharg | ge, 0.04 ft | c^3/s , on several c | lays. | | | | | | Water
Year
1999 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | | 1333 | Mar 13
Apr 26 | 0730
1015 | 4,590
6,300 | 11.41
13.33 | May | 5 2115 | *7,990 | *15.09 | | Min | imum discharç | ge, 0.00 ft | c^3/s , on many days | S. | | | | | | Water
Year
2000 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | | Discharge
(ft ³ /s) | Gage height
(ft) | | 2000 | Peak disch | narges grea | ater than base di | scharge base of | 1,500 ft ³ /s and | d maximum (*) | | | | | Dec 12 | 1315 | *3,640 | *10.14 | | | | | | Min | imum discharç | ge, 0.00 ft | c^3/s , on several c^3 | days, gage height | , 1.60 ft. | | | | | Water
Year
2001 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | | 2001 | Peak disch | narges grea | ater than base di | scharge base of | 1,500 ft ³ /s and | d maximum (*) | | | | | May 31 | 1545 | *4,110 | *10.80 | | | | | | Min | imum discharç | ge, 0.00 ft | c^3/s , on several c^3 | lays. | | | | | | Water
Year
2002 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | | | Oct 11
Nov 28
Dec 2
Dec 17
Jan 24 | 1300
2215
0815
0515
0430 | 4,670
*12,500
5,870
8,530
4,770 | 11.51
*18.98
12.86
15.62
11.62 | Mar 1
Sep 2
Sep 2 | 0 1430 | 8,530
6,610
4,610 | 15.62
13.67
11.43
| # 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR APRIL 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|--------|--------|---------|--------|--------|--------| | 1 | | | | | | | e15 | 2.2 | 67 | e0.13 | 34 | 1.4 | | 2 | | | | | | | e0.64 | 1.2 | 40 | e0.50 | 16 | 33 | | 3 | | | | | | | e1.8 | 1.0 | 8.5 | e0.30 | 11 | 3.6 | | 4 | | | | | | | e5.2 | 1.9 | 12 | e0.74 | 11 | 11 | | 5 | | | | | | | e1.7 | 1.4 | 4.5 | e1.4 | 4.4 | 12 | | 6 | | | | | | | e0.97 | 21 | 13 | e0.45 | 2.4 | 0.95 | | 7 | | | | | | | e0.59 | 433 | 570 | e0.23 | 1.5 | 0.36 | | 8 | | | | | | | e0.40 | 24 | 215 | e9.9 | 1.9 | 0.32 | | 9 | | | | | | | e0.26 | 3.7 | 1920 | e3.4 | 0.46 | 2.6 | | 10 | | | | | | | e0.19 | 2.0 | 52 | e1.1 | 0.42 | 0.72 | | 11 | | | | | | | e0.22 | 206 | 17 | e0.45 | 0.16 | 0.45 | | 12 | | | | | | | e1.0 | 14 | 4.4 | e0.20 | e1.0 | 0.35 | | 13 | | | | | | | e11 | 5.9 | 1.5 | e0.50 | e0.37 | 0.20 | | 14 | | | | | | | e3.6 | e16 | 0.72 | e11 | e0.19 | 0.13 | | 15 | | | | | | | e2.0 | e3.7 | 1.4 | e3.1 | e0.25 | 3.4 | | 16 | | | | | | | 3.7 | e6.9 | 1.7 | e0.90 | e0.70 | 60 | | 17 | | | | | | | 4.6 | e2.8 | 2.0 | e0.35 | e3.5 | 4.9 | | 18 | | | | | | | 5.6 | e1.2 | 28 | e0.13 | e1.0 | 0.51 | | 19 | | | | | | | 23 | e0.70 | e5.1 | e0.06 | e0.60 | 0.32 | | 20 | | | | | | | 80 | e0.54 | e1.1 | e0.04 | e0.35 | 0.73 | | 21 | | | | | | | 14 | e0.36 | e0.79 | e0.32 | e0.20 | 61 | | 22 | | | | | | | 46 | e0.26 | e0.45 | e1.3 | e0.15 | 2.3 | | 23 | | | | | | | 79 | e0.50 | e0.62 | e6.2 | 0.06 | 0.35 | | 24 | | | | | | | 16 | e0.37 | e1.3 | e3.0 | 0.02 | 0.19 | | 25 | | | | | | | 10 | e0.30 | e3.5 | e21 | 1.1 | 0.16 | | | | | | | | | | | 63.5 | CZI | | | | 26 | | | | | | | 6.5 | 15 | e2.2 | e2.4 | 5.8 | 7.1 | | 27 | | | | | | | 3.7 | 132 | e1.2 | e4.5 | 5.4 | 187 | | 28 | | | | | | | 5.0 | 61 | e0.54 | e15 | 1.4 | 45 | | 29 | | | | | | | 36 | 19 | e0.27 | e100 | 0.46 | 3.1 | | 30 | | | | | | | 5.2 | 3.2 | e0.18 | 183 | 0.51 | 0.74 | | 31 | | | | | | | | 2.6 | | 439 | 0.97 | | | TOTAL | | | | | | | 382.87 | 983.73 | 2975.97 | 810.60 | 107.27 | 443.88 | | MEAN | | | | | | | 12.76 | 31.73 | 99.20 | 26.15 | 3.460 | 14.80 | | MAX | | | | | | | 80 | 433 | 1920 | 439 | 34 | 187 | | MIN | | | | | | | 0.19 | 0.26 | 0.18 | 0.04 | 0.02 | 0.13 | | CFSM | | | | | | | 0.42 | 1.04 | 3.25 | 0.86 | 0.11 | 0.49 | | IN. | | | | | | | 0.47 | 1.20 | 3.63 | 0.99 | 0.13 | 0.54 | e Estimated # 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES | DAY | | | | | | DA1. | LY MEAN V. | ALUES | | | | | | |--|--|--|--|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|--|-----------------------------|------------------------------|--|--| | 2 1.0 e15 34 4.9 5.8 e4500 1.8 7.1 24 11 1.7 3.0 3.0 3 1.7 e6.2 16 4.5 302 e133 2.4 13 6.4 9.5 1.8 2.0 4 15 2.3 e6.4 10.5 4.8 49 49 5.68 e152 10.8 4.5 3.3 14.5 3.0 0.94 5 2.1 e6.4 10.5 4.8 49 47 e310 10.0 2.9 3.1 7.9 13 0.94 6 1.7 e6.2 24 7.9 22 e275 33 3.6 6.3 3.5 5.6 4.3 0.17 7 0.86 192 11 4.6 105 e100 14 4.6 6.2 9 5.8 2.8 0.22 8 3.6 1.5 1.8 8.2 14 82 e17 8.0 1.8 4.8 34 28 564 10 0.17 4.0 6.9 11 9.5 41 3.7 3.2 117 22 17 5.6 10 0.17 4.0 6.9 11 9.5 41 3.7 3.2 117 22 17 5.6 11 0.10 2.9 6.7 e4.6 6.3 12 164 2.1 30 17 23 2.3 12 0.08 1.4 206 e28 6.1 7.3 77 2.1 7.8 6.4 17 0.35 11 0.10 7.9 9.9 37 e12 191 224 11 0.08 13 301 e263 19 16 5.4 1.5 1.7 2.9 230 23 12 0.08 1.4 206 e28 6.1 7.3 77 2.1 7.8 6.4 17 0.35 14 0.07 9.9 8.6 513 81 15 9.0 3.8 1.7 2.8 19 2.0 23 15 0.08 13 301 e263 19 16 5.5 1.7 2.9 230 23 16 0.07 9.9 8.6 513 81 15 9.0 3.8 1.7 2.9 230 23 17 0.08 13 301 e263 19 16 4.5 1.7 2.9 230 23 18 1.0 0.8 13 8.6 513 81 15 9.0 3.8 1.7 2.8 19 4.5 0.2 1 18 1.10 0.8 13 8.8 8.8 17 10.8 2.5 1.7 3.8 1.7 2.9 200 23 18 1.10 0.8 13 8.6 513 81 15 5 9.0 3.8 1.7 2.8 19 4.5 0.2 1 18 1.10 0.8 13 8.8 8.8 17 10.0 3.2 1 18 1.10 0.8 1.3 8.8 8.8 17 10.0 3.2 1 18 1.10 0.0 3.8 1.7 2.8 1.8 1 19 1.10 0.0 3.8 1.7 2.8 1.9 1.0 1 10 0.0 5.5 8 6.6 1.7 9.9 30 4.8 1.7 2.8 1.9 1.0 1 2.0 2.8 24 7.9 8.0 23 21 8.8 1.7 2.8 1.9 1.0 1 2.0 2.8 24 7.9 8.0 23 21 8.8 1.7 2.8 1.9 1.0 1 2.1 1.6 3.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 6.9 1.8 4.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 6.9 1.7 3.8 3.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 6.9 1.7 9 1.9 9 3.0 4.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 6.9 1.7 9 1.9 9 3.0 4.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 6.9 1.7 9 1.9 9 3.0 4.8 1.7 2.8 1.9 1.0 1 2.2 1.6 3.8 1.7 2.8 2.9 2.0 1.0 1 2.2 1.6 3.8 2.9 1.7 1.8 494 11 2.2 1.6 3.8 3.8 4.0 2.3 8.8 1.7 2.0 1 2.2 1.6 3.8 4.0 1.0 1 2.2 1.6 3.8 6.9 1.7 9 1.9 9 3.0 1.2 1.0 1 2.2 1.6 3.8 1.7 9 1.9 1.9 1.0 1 2.2 1.6 3.8 1.7 9 1.9 1.9 1.0 1 2.2 1.6 3.8 1.7 9 1.0 1 2.2 1.6 3.8 1.7 9 1.0 1 2.2 1.6 3.8 1.7 9 1.0 1 2.2 1.6 3.8 1.7 9 1.0 1 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | To 0.86 192 | 2
3
4 | 1.0
1.7
2.3 | e15
e6.2
e7.1 | 34
16
8.9 | 4.9
4.5
49 | 5.8
302
568 | e4500
e313
e152 | 1.8
2.4
108 | 7.1
13
4.5 | 24
6.4
3.3 | 11
9.5
14 | 1.7
1.8
3.0 | 3.0
2.0
0.94 | | 12 | 7
8
9 | 0.86
3.6
1.6 | 192
13
5.8 | 11
8.2
7.0 | 4.6
14
34 | 105
82
16 | e100
e17
21 | 14
8.0
5.3 | 4.6
1.8
3.5 | 2.9
4.8
5.3 | 5.8
34
16 | 2.8
28
30 | 0.21
564
29 | | 17 22 210 279 14 14 14 18 3.5 1.7 734 10 2.5 2.0 18 16 67 6.5 9.7 14 140 2.5 1.8 32 7.3 1.7 2.9 19 6.0 26 8.3 8.8 17 408 2.5 11.8 32 7.3 1.7 2.9 19 6.0 26 8.3 8.8 17 408 2.5 13.7 13 6.8 4.3 0.19 20 2.8 24 7.9 8.0 23 21 8.4 103 8.5 6.4 462 0.13 21 166 38 6.9 7.8 494 11 2.6 13 5.1 2.8 e19 0.14 22 186 30 6.9 17 34 8.1 27 7.6 3.0 116 2.6 0.64 23 22 18 4.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 462 0.13 21 8.4 103 8.5 6.4 10.5 10.6 1.6 1170 24 7.9 32 8.6 160 16 16 4.0 3.7 64 1.2 4.0 0.79 1850 25 5.5 24 6.0 1.6 0.46 29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12
13
14 | 0.08
0.07
0.17 | 1.4
9.9
16 | 206
97
178 | e28
e12
e12 | 6.1
191
38 | 7.3
224
140 | 77
10
5.4 | 2.1
1.3
1.5 | 7.8
3.5
3.1 | 6.4
446
46 | 17
12
15 | 0.95
3.2
0.87 | | 22 186 30 6.9 17 34 8.1 27 7.6 3.0 116 2.6 0.64 23 25 27 70 9.9.20 5.5 12 6.4 1.5 56 1.6 1170 24 7.9 32 8.6 160 16 4.0 3.7 64 1.1.2 4.0 0.79 1850 25 5.6 240 10 19 12 145 2.8 45 5.2 1.6 0.46 29 26 205 88 6.9 11 83 30 11 13 347 0.95 0.35 12 27 512 49 22 63 195 20 380 242 173 28 1.6 5.1 28 835 44 21 66 90 6.4 235 25 650 14 0.80 2.3 29 17 142 14 18 3.1 12 14 99 48 0.49 1.3 30 7.3 2830 9.3 11 3.1 12 14 99 48 0.49 1.3 30 7.3 2830 9.3 11 3.1 12 14 99 48 0.49 1.3 31 20 7.5 11 2.5 525 3.8 31 TOTAL 2151,30 4738.5 2264.5 1019.9 2453.6 11054.5 2381.1 1297.1 2360.9 1218.85 728.18 3694.94 MEAN 69.40 157.9 73.05 32.90 87.63 356.6 79.37 41.84 78.70 39.32 23.49 123.2 MEAN 69.40 157.9 73.05 32.90 87.63 356.6 79.37 41.84 78.70 39.32 23.49 123.2 ESETIMATE STATISTICS OF MONTHLY MEAN DATA FOR
WATER YEARS 1996 - 1997, BY WATER YEAR (WY) MEAN 69.40 157.9 73.05 32.90 87.63 356.6 46.07 36.79 2.58 1.29 0.77 4.03 CFSM 2.28 5.18 2.40 1.08 2.87 11.7 2.60 1.37 2.58 1.29 0.77 4.03 CFSM 2.28 5.18 2.76 1.24 2.99 13.48 2.90 1.58 2.88 1.49 0.89 4.51 E EACH STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1997, BY WATER YEAR (WY) MEAN 69.40 157.9 73.05 32.90 87.63 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 356.6 357 79.4 41.8 99.2 39.3 32.3 12.5 12.3 (WY) 1997 1997 1997 1997 1997 1997 1997 199 | 17
18
19 | 22
116
6.0 | 210
67
26 | 279
6.5
8.3 | 14
9.7
8.8 | 14
14
17 | 18
140
408 | 3.5
2.5
2.5 | 1.7
1.8
137 | 734
32
13 | 10
7.3
6.8 | 2.5
1.7
4.3 | 2.0
2.9
0.19 | | 27 512 49 22 63 195 20 380 242 173 28 1.6 5.1 28 835 44 21 66 90 6.4 235 25 650 14 0.80 2.3 29 17 142 14 18 4.6 35 14 99 48 0.49 1.3 30 7.3 2830 9.3 12 3.1 12 14 22 10 0.59 0.96 31 20 7.5 11 2.5 525 3.8 31 TOTAL 2151.30 4738.5 2264.5 1019.9 2453.6 11054.5 2381.1 1297.1 2360.9 1218.85 728.18 3694.94 MEAN 69.40 157.9 73.05 32.90 87.63 356.6 79.37 41.84 78.70 39.32 23.49 123.2 MAX 835 22830 513 263 568 4500 1200 525 734 446 462 1850 MIN 0.07 1.4 6.5 4.5 5.8 2.5 1.8 1.3 1.2 0.95 0.35 0.35 CFSM 2.28 5.18 2.40 1.08 2.87 11.7 2.60 1.37 2.58 1.29 0.77 4.04 IN. 2.62 5.78 2.76 1.24 2.99 13.48 2.90 1.58 2.88 1.49 0.89 4.51 e Estimated STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1997, BY WATER YEAR (WY) CCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 69.40 157.9 73.05 32.90 87.63 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 357 79.4 41.8 99.2 39.3 23.5 123 (WY) 1997 1997 1997 1997 1997 1997 1997 199 | 22
23
24 | 186
25
7.9 | 30
27
32 | 6.9
70
8.6 | 17
9.9
160 | 34
20
16 | 8.1
5.5
4.0 | 27
12
3.7 | 7.6
6.4
64 | 3.0
1.5
1.2 | 116
56
4.0 | 2.6
1.6
0.79 | 0.64
1170
1850 | | MEAN 69,40 157,9 73,05 32,90 87,63 356,6 79,37 41,84 78,70 39,32 23,49 123,2 MAX 835 2830 513 263 568 4500 1200 525 734 446 462 1850 MIN 0.07 1.4 6.5 4.5 5.8 2.5 1.8 1.3 1.2 0.95 0.35 0.13 CFSM 2.28 5.18 2.40 1.08 2.87 11.7 2.60 1.37 2.58 1.29 0.77 4.04 IN 2.62 5.78 2.76 1.24 2.99 13.48 2.90 1.58 2.88 1.49 0.89 4.51 E ESTIMATED OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 69,40 157,9 73,05 32,90 87,63 356,6 46.07 36.79 88.95 32,73 13,48 68.98 MAX 69,4 158 73.0 32.9 87,6 357 79,4 41.8 99,2 39,3 23.5 123 (WY) 1997 1997 1997 1997 1997 1997 1997 1997 1997 MIN 69,4 158 73.0 32.9 87,6 357 79,4 41.8 99,2 39,3 23.5 123 (WY) 1997 1997 1997 1997 1997 1997 1997 1997 1997 MIN 69,4 158 73.0 32.9 87,6 357 12.8 31.7 78.7 26.1 3.46 14.8 (WY) 1997 1997 1997 1997 1997 1997 1996 1996 1996 1996 SUMMARY STATISTICS FOR 1996 CALENDAR YEAR FOR 1997 WATER YEAR WATER YEARS 1996 - 1997 ANNUAL TOTAL 14858.62 35363.37 ANNUAL MEAN 54.03 96.89 74.94 HIGHEST DAILLY MEAN 2830 Nov 30 4500 Mar 2 4500 Mar 2 1996 HIGHEST DAILLY MEAN 0.02 Aug 24 0.07 Oct 13 0.02 Aug 24 1996 ANNUAL SEVEN-DAY MINIMUM 0.11 Oct 10 0.11 Oct 10 0.11 Oct 10 0.11 Oct 10 MAXIMUM PEAK FLOW 1.77 1.78 1.99 1.997 1.997 1.997 1.997 MAXIMUM PEAK FLOW 1.77 1.78 1.99 1.997 1 | 27
28
29
30 | 512
835
17
7.3 | 49
44
142
2830 | 22
21
14
9.3 | 63
66
18
12 | 195
90
 | 20
6.4
4.6
3.1 | 380
235
35
12 | 242
25
14
14 | 173
650
99
22 | 28
14
48
10 | 1.6
0.80
0.49
0.59 | 5.1
2.3
1.3
0.96 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1997, BY WATER YEAR (WY) CCT | MEAN
MAX
MIN
CFSM | 69.40
835
0.07
2.28 | 157.9
2830
1.4
5.18 | 73.05
513
6.5
2.40 | 32.90
263
4.5
1.08 | 87.63
568
5.8
2.87 | 356.6
4500
2.5
11.7 | 79.37
1200
1.8
2.60 | 41.84
525
1.3
1.37 | 78.70
734
1.2
2.58 | 39.32
446
0.95
1.29 | 23.49
462
0.35
0.77 | 123.2
1850
0.13
4.04 | | MEAN 69.40 157.9 73.05 32.90 87.63 356.6 46.07 36.79 88.95 32.73 13.48 68.98 | e Est | imated | | | | | | | | | | | | | MEAN 69.40 157.9 73.05 32.90 87.63 356.6 46.07 36.79 88.95 32.73 13.48 68.98 MAX 69.4 158 73.0 32.9 87.6 357 79.4 41.8 99.2 39.3 23.5 123 (WY) 1997 1997 1997 1997 1997 1997 1997 199 | STATIS | STICS OF 1 | MONTHLY ME | AN DATA I | FOR WATER | YEARS 19 | 96 - 1997 | , BY WATER | R YEAR (WY |) | | | | | MAX 69.4 158 73.0 32.9 87.6 357 79.4 41.8 99.2 39.3 23.5 123 (WY) 1997 1997 1997 1997 1997 1997 1997 199 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | ANNUAL TOTAL 14858.62 35363.37 ANNUAL MEAN 54.03 96.89 74.94 HIGHEST ANNUAL MEAN 96.9 1997 LOWEST ANNUAL MEAN 31.2 1996 HIGHEST DAILLY MEAN 2830 Nov 30 4500 Mar 2 4500 Mar 2 1997 LOWEST DAILLY MEAN 0.02 Aug 24 0.07 Oct 13 0.02 Aug 24 1996 ANNUAL SEVEN-DAY MINIMUM 0.11 Oct 10 0.11 Oct 10 0.11 Oct 10 1996 MAXIMUM PEAK FLOW 9820 Mar 2 9820 Mar 2 1997 MAXIMUM PEAK STAGE 16.84 Mar 2 16.84 Mar 2 1997 | MAX
(WY)
MIN | 69.4
1997
69.4 | 158
1997
158 | 73.0
1997
73.0 | 32.9
1997
32.9 | 87.6
1997
87.6 | 357
1997
357 | 79.4
1997
12.8 | 41.8
1997
31.7 | 99.2
1996
78.7 | 39.3
1997
26.1 | 23.5
1997
3.46 | 123
1997
14.8 | | ANNUAL MEAN 54.03 96.89 74.94 HIGHEST ANNUAL MEAN 96.9 1997 LOWEST DAILLY MEAN 2830 Nov 30 4500 Mar 2 4500 Mar 2 1997 LOWEST DAILLY MEAN 0.02 Aug 24 0.07 Oct 13 0.02 Aug 24 1996 ANNUAL SEVEN-DAY MINIMUM 0.11 Oct 10 0.11 Oct 10 0.11 Oct 10 1996 MAXIMUM PEAK FLOW 9820 Mar 2 9820 Mar 2 1997 MAXIMUM PEAK STAGE 16.84 Mar 2 16.84 Mar 2 1997 | SUMMAR | RY STATIST | rics | FOR | 1996 CALE | NDAR YEA | R | FOR 1997 V | WATER YEAR | | WATER YE | ARS 1996 | - 1997 | | Highest Dally Mean 0.02 Aug 24 0.07 Oct 13 0.02 Aug 24 1996 | ANNUAL | L MEAN
ST ANNUAL | (T) 3 3 7 | | 54.0 | 3 | 0 | 96.8 | 39 | | 96. | 9 | 1000 | | ANNUAL RUNOFF (CFSM) 1.77 3.18 2.46 ANNUAL RUNOFF (INCHES) 18.12 43.13 33.38 10 PERCENT EXCEEDS 109 205 153 50 PERCENT EXCEEDS 4.4 11 6.9 90 PERCENT EXCEEDS 0.26 1.6 0.45 | LOWEST
ANNUAL
MAXIMU
MAXIMU | ST DAILY M
T DAILY M
J SEVEN-D
JM PEAK FI
JM PEAK ST | MEAN
EAN
AY MINIMUM
LOW
FAGE | I | 0.0
0.1 | 2 Aug 2
1 Oct 1 | 0
4
0 | 9820
16.8 | Mar 2
07 Oct 13
11 Oct 10
Mar 2
84 Mar 2 | | 9820
16. | Mar
02 Aug 2
11 Oct 1
Mar
84 Mar | 2 1997
4 1996
0 1996
2 1997
2 1997 | | | ANNUAL
ANNUAL
10 PER
50 PER
90 PER | RUNOFF RUNOFF REENT EXCHREENT EXCH | (CFSM)
(INCHES)
EEDS
EEDS
EEDS | | 109 | ∠ | | 205
11 | 13 | | 153
6. | 9 | | # 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|---|--|---|---|--|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.62
0.48
0.43
0.22
0.44 | 1.4
0.53
0.37
0.27
0.37 | 6.6
3.7
10
2.5
0.68 | 2.5
2.4
2.4
2.7
83 | 2.9
2.6
3.2
3.8
3.7 | 0.12
0.12
0.12
3.1
119 | 28
5.2
126
13
3.9 | 33
13
9.0
3.7
2.0 | 0.11
0.09
0.04
0.04
172 | 1.7
1.8
1.1
1.1
3.9 | 10
3.0
0.86
0.28
0.16 | 3.4
3.1
0.37
0.11
0.08 | | 6
7
8
9
10 | 0.21
0.10
0.16
3.0
3.0 | 4.8
1.1
0.83
0.55
1.8 | 0.36
0.29
9.2
4.1
3.9 | 23
475
157
47
13 | 2.7
2.6
3.9
4.4
230 | 225
2470
48
5.8
0.12 | 2.0
2.2
268
24
6.3 | 200
87
8.4
2.2
5.9 | 16
0.73
0.34
7.9
7.5 | 2.2
1.5
7.6
69
7.7 | 0.34
274
862
448
25 | 0.10
0.27
0.56
0.17
0.58 | | 11
12
13
14
15 | 0.83
0.51
67
14
2.3 | 2.0
8.6
143
8.4
2.9 | 1.8
0.64
0.60
0.43
0.31 | 11
13
6.9
6.3
543 | 281
5.1
0.80
0.31
1.2 | 0.07
0.12
0.09
0.14
0.99 | 3.3
3.3
1.6
5.1
1.9 | 1.6
2.2
0.43
0.28
0.59 | 1.8
16
3.4
0.83
0.26 | 97
43
9.4
22
32 | 728
75
22
6.4
1.9 | 0.29
0.51
0.60
0.74
0.18 | | 16
17
18
19
20 | 0.75
0.37
0.25
0.27
0.24 | 2.6
2.6
0.77
0.36
0.37 | 0.29
0.29
0.29
0.33
0.36 | 250
115
173
61
16 | 544
338
19
5.5
3.2 | 2.3
20
3.5
344
26 | 7.6
2.4
62
22
1.8 | 0.30
0.14
0.39
0.33
0.49 | 0.12
0.71
1.0
37
5.0 | 16
2.6
0.89
11
19 |
0.79
0.15
0.07
0.08
0.08 | 0.08
0.08
0.07
0.06
134 | | 21
22
23
24
25 | 2.4
2.1
0.62
61
83 | 0.76
1.7
0.79
0.60
0.45 | 68
5.1
1.7
455
13 | 10
66
27
13
8.1 | 1.7
1.7
1.8
0.57 | 4.8
2.8
2.9
7.2
4.7 | 91
12
2.8
0.43
0.06 | 1.3
1.6
1.2
0.65
1.3 | 0.96
0.45
0.36
0.42
0.45 | 3.2
2.6
41
224
378 | 0.06
0.08
0.08
0.05
0.08 | 77
27
27
3.5
11 | | 26
27
28
29
30
31 | 2.4
0.93
0.59
0.55
1.8 | 0.36
0.33
0.25
0.18
0.54 | 19
20
5.8
13
8.0
3.5 | 7.3
17
6.2
4.3
4.0
3.8 | 67
10
0.34

 | 5.0
5.0
4.8
3.7
3.6 | 0.05
396
520
280
911 | 296
18
2.1
19
6.8
0.57 | 0.69
1.6
0.81
0.28
0.26 | 39
23
99
480
40
72 | 0.04
0.08
0.19
0.24
0.39 | 3.1
0.31
9.2
14
14 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 424.57
13.70
174
0.10
0.45
0.52 | 189.58
6.319
143
0.18
0.21
0.23 | 658.77
21.25
455
0.29
0.70
0.80 | 2169.9
70.00
543
2.4
2.29
2.65 | 1541.43
55.05
544
0.31
1.80
1.88 | 3416.09
110.2
2470
0.07
3.61
4.17 | 2802.94
93.43
911
0.05
3.06
3.42 | 719.47
23.21
296
0.14
0.76
0.88 | 277.15
9.238
172
0.04
0.30
0.34 | 1752.29
56.53
480
0.89
1.85
2.14 | 2460.60
79.37
862
0.04
2.60
3.00 | 331.46
11.05
134
0.06
0.36
0.40 | | STATIS | TICS OF N | MONTHLY ME | AN DATA I | FOR WATER | YEARS 19 | 95 - 1998 | B, BY WATE | R YEAR (WY |) | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 41.55
69.4
1997
13.7
1998 | 82.13
158
1997
6.32
1998 | 47.15
73.0
1997
21.3
1998 | 51.45
70.0
1998
32.9
1997 | 71.34
87.6
1997
55.1
1998 | 233.4
357
1997
110
1998 | 61.85
93.4
1998
12.8
1996 | 32.26
41.8
1997
23.2
1998 | 62.38
99.2
1996
9.24
1998 | 40.66
56.5
1998
26.1
1996 | 35.44
79.4
1998
3.46
1996 | 49.67
123
1997
11.0
1998 | | SUMMAR | Y STATIST | rics | FOR | 1997 CAL | ENDAR YEA | R | FOR 1998 | WATER YEAR | | WATER YE | ARS 1995 | - 1998 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL 10 PER | T ANNUAL MET DAILY ME | MEAN MEAN MEAN MEAN MAY MINIMUN LOW MAGE (CFSM) (INCHES) MEAN | I | 0 | Mar
10 Oct
29 Oct
47
52 | 7 | 16744.
45.
2470
0.
0.
7450
14.
1.
20.
98 | Mar 7 04 Jun 3 07 Aug 20 Mar 7 55 Mar 7 50 | | 63.
96.
31.
4500
0.
9820
16.
2.
28.
133 | 9 2 Mar : 02 Aug 2: 07 Aug 2: Mar : 84 Mar : 08 | 4 1996
0 1998
2 1997 | | 90 PER | CENT EXC | EEDS | | 0. | 44 | | 0. | 16 | | 0. | 28 | | # 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES | DAILY MEAN VALUES | | | | | | | | | | | | |---|---|---|--|---|--|--
--|--|---|---|---| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 18
50
195
11
92 | 20
17
23
16
12 | 10
2.5
0.44
13
43 | 7.2
497
43
7.4
2.5 | e4.0
e1.7
e5.8
e1.7
e1.4 | 2.4
174
64
6.1
42 | 33
5.1
392
615
37 | 0.25
0.10
0.06
4.1
1650 | 0.86
0.05
0.04
0.38
0.03 | 2.4
1.2
3.8
0.25
0.20 | 7.7
4.0
7.0
6.4
7.2 | 6.7
8.7
8.6
12
5.8 | | 189
437
12
2.5
0.33 | 7.9
6.1
22
7.7
106 | 2.7
243
220
16
269 | 2.0
2.2
159
111
11 | 1.4
90
9.2
3.2
1.8 | 234
14
e19
55
7.1 | 40
8.8
4.7
3.2
1.3 | 340
12
4.4
0.23
0.10 | 0.03
3.8
3.5
0.38
0.10 | 9.5
2.4
4.9
15
144 | 7.7
9.5
49
16
4.3 | 6.1
6.2
9.0
8.0 | | 0.14
0.14
0.09
1.2
2.7 | 8.3
0.78
0.11
0.32
1.3 | 59
195
35
7.2
2.7 | 4.8
2.8
e1.6
e1.7
e1.7 | 26
78
5.1
1.7
0.72 | 39
8.2
1360
425
54 | 0.58
0.19
0.11
73
74 | 0.06
0.05
0.31
0.51
0.04 | 0.12
0.10
7.2
9.6
0.13 | 671
25
2.6
0.25
3.2 | 4.6
3.0
2.7
2.8
5.1 | 5.3
7.6
18
15 | | 2.5
4.3
22
34
5.9 | 0.24
0.04
0.03
0.03 | 1.5
1.3
3.0
39
5.5 | e1.7
e50
e23
e6.1
e6.1 | 0.74
11
1.9
1.2
0.64 | 16
7.6
6.8
6.5
96 | 5.3
0.59
0.11
0.12
0.39 | 0.03
0.13
8.8
0.03
0.01 | 0.05
0.04
0.06
0.03
0.02 | 64
17
1.4
8.5 | 1.3
5.2
10
9.0
7.1 | 12
17
12
9.8
19 | | 1.1
0.54
1.9
1.2
0.77 | 4.7
0.61
0.45
0.23
0.21 | 1.3
26
4.6
e7.6
8.1 | e5.1
e418
e10
e70
e80 | 2.3
e1.6
e0.25
0.09
2.2 | 32
5.1
3.5
13
3.9 | 0.08
0.04
0.04
95 | 2.3
62
0.11
0.01
0.03 | 0.11
3.7
6.0
1.9 | 0.33
2.3
2.2
0.60
1.7 | 9.5
4.2
9.9
62
11 | 19
19
14
16
9.0 | | 6.2
8.9
0.51
7.9
6.7
3.7 | 0.19
0.11
0.08
0.16
8.1 | 5.9
3.0
62
8.0
2.9
1.1 | e3.0
e1.7
e1.7
e55
e5.0
e20 | 1.1
87
36
 | 1.5
0.52
0.22
107
9.8
212 | 1470
989
36
6.7
2.3 | 0.02
0.04
0.04
0.02
0.01
0.16 | 355
87
2.1
1.0
0.06 | 6.7
4.3
1.0
2.4
0.96
4.4 | 6.6
4.2
6.6
6.0
6.3
8.1 | 9.3
18
15
57
8.4 | | 1119.22
36.10
437
0.09
1.18
1.37 | 330.69
11.02
106
0.03
0.36
0.40 | 1299.34
41.91
269
0.44
1.37
1.58 | 1611.3
51.98
497
1.6
1.70
1.97 | 377.74
13.49
90
0.09
0.44
0.46 | 3025.24
97.59
1360
0.22
3.20
3.69 | 3925.65
130.9
1470
0.04
4.29
4.79 | 2085.95
67.29
1650
0.01
2.21
2.54 | 484.59
16.15
355
0.02
0.53
0.59 | 1014.49
32.73
671
0.20
1.07
1.24 | 304.0
9.806
62
1.3
0.32
0.37 | 395.5
13.18
57
5.3
0.43
0.48 | | imated | | | | | | | | | | | | | TICS OF N | MONTHLY ME | EAN DATA I | FOR WATER | YEARS 19 | 96 - 1999 | , BY WATE | R YEAR (WY | ") | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 39.73
69.4
1997
13.7
1998 | 58.43
158
1997
6.32
1998 | 45.40
73.0
1997
21.3
1998 | 51.62
70.0
1998
32.9
1997 | 52.06
87.6
1997
13.5
1999 | 188.1
357
1997
97.6
1999 | 79.10
131
1999
12.8
1996 | 41.02
67.3
1999
23.2
1998 | 50.82
99.2
1996
9.24
1998 | 38.68
56.5
1998
26.1
1996 | 29.03
79.4
1998
3.46
1996 | 40.55
123
1997
11.0
1998 | | RY STATIST | TICS | FOR | 1998 CALE | ENDAR YEA | R | FOR 1999 | WATER YEAR | 1 | WATER YEA | RS 1996 - | 1999 | | LOWEST ANNUAL MEAN 2470 Mar 7 1650 May 5 4500 Mar 2 199 | | | | | | | 1997
1996
2 1997
0 1999
1 1999
2 1997
2 1997 | | | | | | | 18 50 195 111 92 189 437 12 2.5 0.33 0.14 0.14 0.09 1.2 2.7 2.5 4.3 22 34 5.9 1.1 0.54 1.9 1.2 0.77 6.2 8.9 0.51 7.9 6.7 3.7 1119.22 36.10 437 0.09 1.18 1.37 0.09 1.38 0.09 1.39 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0 | 18 | 18 20 10 50 17 2.5 195 23 0.44 11 16 13 92 12 42 189 7.9 2.7 437 6.1 243 12 22 220 2.5 7.7 16 0.33 106 269 0.14 8.3 59 0.14 0.78 195 0.09 0.11 35 1.2 0.32 7.2 2.7 1.3 2.7 2.5 0.24 1.5 4.3 0.04 1.3 22 0.03 3.0 34 0.03 39 5.9 67 5.5 1.1 4.7 1.3 0.54 0.61 26 1.9 0.45 4.6 1.2 0.23 e7.6
0.77 0.21 8.1 6.2 0.19 5.9 8.9 0.11 3.0 0.51 0.08 62 7.9 0.16 8.0 6.7 8.1 2.9 3.7 1.1 1119.22 330.69 1299.34 36.10 11.02 41.91 437 106 269 0.09 0.03 0.44 1.18 0.36 1.37 1.37 0.40 1.58 CIMATES OF MONTHLY MEAN DATA 15 CIMATES CITICS OF MONTHLY MEAN DATA 15 15 CITICS OF MONTHLY MEAN 15 CITICS OF MONTHLY MEAN 15 CITICS OF MONTHLY MEAN 15 CITICS OF MONTHLY MINIMUM 15 M PEAK STAGE TOTAL 15 CITICS OF MONTHLY MEAN 15 CITICS OF MONTHLY MEAN 15 CITICS OF MONTHLY MINIMUM 15 M PEAK STAGE TOTAL 15 CITICS OF MONTHLY MEAN MON | 18 | OCT NOV DEC JAN FEB 18 20 10 7.2 e4.0 50 17 2.5 497 e1.7 195 23 0.44 43 e5.8 11 16 13 7.4 e1.7 92 12 43 2.5 e1.4 189 7.9 2.7 2.0 1.4 437 6.1 243 2.2 90 12 22 220 159 9.2 2.5 7.7 16 111 3.2 0.33 106 269 11 1.8 0.14 8.3 59 4.8 26 0.14 0.78 195 2.8 78 0.09 0.11 35 e1.6 5.1 1.2 0.32 7.2 e1.7 1.7 2.7 1.3 2.7 e1.7 0.74 4.3 0.04 1.3 e50 11 22 0.03 3.0 e23 1.9 34 0.03 39 e6.1 1.2 25 0.024 1.5 e1.7 0.74 4.3 0.04 1.3 e50 11 22 0.03 3.0 e23 1.9 34 0.03 39 e6.1 1.2 5.9 67 5.5 e6.1 0.64 1.1 4.7 1.3 e5.1 2.3 0.54 0.61 26 e418 e1.6 1.9 0.45 4.6 e10 e0.25 1.2 0.23 e7.6 e70 0.09 0.77 0.21 8.1 e80 2.2 6.2 0.19 5.9 e3.0 1.1 8.9 0.11 3.0 e1.7 87 0.51 0.08 62 e1.7 36 7.9 0.16 8.0 e55 7.9 0.16 8.0 e55 7.9 0.16 8.0 e55 7.9 0.10 e0.9 0.77 0.21 8.1 e80 2.2 6.2 0.19 5.9 e3.0 1.1 8.9 0.11 3.0 e1.7 87 0.51 0.08 62 e1.7 36 7.9 0.16 8.0 e55 0.10 e1.7 87 0.11 3.7 0.40 1.58 1.97 0.46 Elimated STICS OF MONTHLY MEAN DATA FOR WATER YEARS 19 OCT NOV DEC JAN FEB 39.73 58.43 45.40 51.62 52.06 69.4 158 73.0 70.0 87.6 1997 1997 1997 1998 1997 13.7 6.32 21.3 32.9 13.5 1998 1998 1998 1997 1999 EV STATISTICS FOR 1998 CALENDAR YEAR STOALL 1820.58 WEAR YOUNDER (CFSM) 1.64 ELIMAN 200.01 | OCT NOV DEC JAN FEB MAR 18 20 | OCT NOV DEC JAN FEB MAR APR 18 20 10 7.2 e4.0 2.4 33 50 17 2.5 497 e1.7 174 5.1 195 23 0.44 43 e5.8 64 392 11 16 13 7.4 e1.7 6.1 615 92 12 43 2.5 e1.4 42 37 189 7.9 2.7 2.0 1.4 234 40 437 6.1 243 2.2 90 14 8.8 12 22 220 159 9.2 e19 4.7 12.5 7.7 16 111 3.2 55 3.2 0.33 106 269 11 1.8 7.1 1.3 0.14 8.3 59 4.8 26 39 0.58 0.14 0.78 195 2.8 78 8.2 0.19 0.09 0.11 35 e1.6 5.1 1360 0.11 1.2 0.32 7.2 e1.7 1.7 425 73 2.7 1.3 2.7 e1.7 0.72 54 74 2.5 0.24 1.5 e1.7 0.72 54 74 2.5 0.24 1.5 e1.7 0.72 54 74 2.5 0.24 1.5 e1.7 0.72 56 0.33 34 0.03 3.0 e23 1.9 6.8 0.11 35 4.3 0.04 1.3 e50 11 7.6 0.59 22 0.03 3.0 e23 1.9 6.8 0.11 5.9 67 5.5 e6.1 0.64 96 0.39 1.1 4.7 1.3 e5.1 2.3 32 0.08 2 0.23 e7.6 e70 0.09 13 95 0.77 0.21 8.1 e80 2.2 3.9 32 6.2 0.19 5.9 e3.0 1.1 1.5 1470 6.7 8.1 2.9 e5.0 212 1119.22 330.69 1299.34 1611.3 377.74 3025.24 3925.65 36.10 11.02 41.91 51.98 13.49 97.59 130.9 0.51 0.08 62 e1.7 36 0.22 36 7.9 0.16 8.0 e55 107 6.7 6.7 8.1 2.9 e5.0 212 1119.22 330.69 1299.34 1611.3 377.74 3025.24 3925.65 36.10 11.02 41.91 51.98 13.49 97.59 130.9 0.51 0.08 62 e1.7 36 0.22 36 0.79 0.16 8.0 e55 107 6.7 0.17 0.21 8.1 e80 2.2 3.9 32 Eimated ETICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1999, EY WATE OCT NOV DEC JAN FEB MAR APR 39.73 58.43 45.40 51.62 52.06 188.1 79.10 0.90 0.03 0.44 1.6 0.09 0.22 0.04 1.18 0.36 1.37 1.70 0.46 3.69 4.79 131997 1997 1999 1999 1996 13.7 6.32 21.3 32.9 13.5 97.6 12.8 1998 1998 1998 1997 1999 1999 1996 13.7 6.32 21.3 32.9 13.5 97.6 12.8 1998 1998 1998 1997 1999 1999 1996 13.7 EVANUAL MEAN 1 PARK FLOW | OCT NOV DEC JAN FEB MAR APR MAY 18 20 10 7.2 e4.0 2.4 33 0.25 50 17 2.5 497 e1.7 174 5.1 0.10 195 23 0.44 43 e5.8 64 392 0.06 11 16 13 7.4 e1.7 6.1 615 4.1 189 7.9 2.7 2.0 1.4 234 40 340 189 7.9 2.7 2.0 1.4 234 40 340 189 7.9 2.7 2.0 1.4 234 40 340 181 22 22 220 159 9.2 e19 4.8 12 2.5 7.7 16 111 3.2 55 3.2 0.23 0.33 106 269 111 1.8 7.1 1.3 0.10 0.14 8.3 59 4.8 26 39 0.58 0.06 0.14 0.78 195 2.8 78 8.2 0.19 0.05 0.09 0.11 35 e1.6 5.1 1360 0.11 0.31 1.2 0.32 7.2 e1.7 1.7 425 73 0.51 2.7 1.3 2.7 e1.7 0.72 54 74 0.04 2.5 0.34 1.3 50 1.1 1.8 7.1 1.3 0.51 2.7 1.3 2.7 e1.7 0.72 54 74 0.04 2.5 0.34 1.3 50 1.1 7.6 5.3 0.03 4.3 0.04 1.3 850 11 7.6 5.3 0.03 4.3 0.04 1.3 850 11 7.6 5.3 0.03 3.4 0.3 39 e6.1 1.2 6.5 0.12 0.03 3.4 0.3 39 e6.1 1.2 6.5 0.12 0.03 5.9 67 5.5 e6.1 0.64 96 0.39 0.01 1.1 4.7 1.3 e.7 6.1 1.2 6.5 0.12 0.03 5.9 67 5.5 e6.1 0.64 96 0.39 0.01 0.77 0.21 8.1 e80 2.2 3 32 0.08 2.3 0.77 0.21 8.1 e80 2.2 3 39 0.04 0.51 0.08 62 418 e1.6 5.1 1360 0.11 0.77 0.21 8.1 e80 2.2 3.9 3.0 0.00 0.79 0.11 3.9 50 1.1 7.6 0.59 0.13 2.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | CCT | OCT NOV DEC JAN PEB MAR APR MAY JUN JUL 18 20 10 7,2 e4.0 2.4 33 0.25 0.66 2.4 195 23 0.44 43 e5.8 64 992 0.06 0.04 3.8 111 16 13 7,4 e6.7 6.1 615 51 4.1 0.38 0.25 92 12 43 2.5 e1.4 42 37 1650 0.03 0.20 189 7,9 2.7 2.0 1.4 234 40 340 0.03 9.5 189 7,9 2.7 2.0 1.4 234 8.2 37 1650 0.03 0.20 189 7,9 2.7 2.0 1.4 234 8.2 37 1650 0.03 0.20 189 7,9 2.7 16 139 9.2 e9 4.8 12 4.3 3.8 12 10.33 106 269 111 1.8 7.1 1.3 0.10 0.10 144 0.14 8.3 59 4.8 26 39 0.58 0.06 0.12 671 0.14 0.78 195 2.8 78 8.2 0.19 0.05 0.10 25 0.09 0.11 35 2 e1.6 5.1 1360 0.11 0.31 7.2 2.6 1.2 0.52 7.7 e1.7 0.7 2 54 74 0.04 0.13 3.2 2.5 1.2 0.52 7.2 e1.7 0.72 54 74 0.04 0.13 3.2 2.5 1.2 0.52 7.5 e1.7 0.72 54 74 0.04 0.13 3.2 2.5 0.6 1.4 0.3 3.9 e6.1 1.7 1.7 6.0 59 0.13 0.04 17 2.5 0.6 2.4 1.5 e1.7 0.74 16 5.3 0.03 0.05 64 4.3 0.04 1.3 e50 11 7.6 0.59 0.13 0.04 17 2.2 0.03 3.0 e23 1.9 6.8 0.11 8.8 0.06 1.4 3.4 0.3 3.9 e6.1 1.2 6.5 0.12 0.03 0.03 3.5 5.9 67 5.5 e6.1 0.64 96 0.39 0.01 0.02 21 1.1 4.7 1.3 e5.1 2.3 32 0.08 2.3 1.9 6.8 0.11 8.8 0.06 1.4 3.4 0.03 39 e6.1 1.2 6.5 0.12 0.03 0.03 0.55 64 4.3 0.04 1.3 e50 11 7.6 0.59 0.13 0.04 17 2.2 0.03 3.0 e23 1.9 6.8 0.11 8.8 0.06 1.4 3.4 0.03 39 e6.1 1.2 3.3 20 0.08 2.3 0.03 0.55 64 4.3 0.04 1.3 e50 11 7.6 0.59 0.13 0.04 17 2.2 0.03 3.0 e23 1.9 6.8 0.11 8.8 0.06 1.4 3.4 0.03 39 e6.1 0.64 96 0.39 0.01 0.02 11 3.4 0.03 39 e6.1 0.64 96 0.39 0.01 0.02 11 3.4 0.03 39 e6.1 0.64 96 0.39 0.01 0.00 2.1 3.4 0.03 39 e6.1 0.64 96 0.39 0.01 0.00 2.1 3.5 9 67 6 7 5.5 e6.1 0.64 96 0.39 0.01 0.00 2.1 3.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | OCT | a Many days. #### 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | DAL | LY MEAN V | ALUES | | | | | | |--|--
--|--|---|--|--
--|--|--|---|--| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 7.0
13
13
9.5 | 60
60
5.1
1.3
1.2 | 2.8
1.9
24
98
191 | 0.17
0.22
1.3
3.0
0.35 | 0.32
0.13
0.08
0.06
0.06 | 1.6
0.33
0.53
0.89
0.23 | 75
230
567
92
16 | 1.0
9.5
114
94
137 | 0.17
0.09
0.13
2.5 | 0.78
0.29
0.16
0.28
0.26 | 99
9.3
2.5
413
32 | 0.01
0.02
0.07
0.27
1.4 | | 9.7
2.6
43
168
89 | 1.7
1.6
1.1
0.51
0.36 | 12
3.4
2.0
66
80 | 0.16
0.21
0.38
0.93
0.81 | 0.11
0.08
0.07
0.09
0.14 | 0.12
0.19
0.22
15
2.7 | 6.6
7.4
54
4.5
1.5 | 60
12
4.2
72
65 | 3.6
0.84
0.20
0.17
0.25 | 0.23
0.23
0.21
0.36
0.32 | 6.4
2.0
0.80
0.29
5.7 | 0.19
0.11
5.5
5.9 | | 4.9
1.7
1.3
1.3 | 0.19
0.13
0.38
1.3 | 7.3
1180
402
76
9.7 | 0.34
0.13
0.53
0.95
0.55 | 0.30
19
27
50
3.3 | 7.5
1.6
0.18
0.07
5.7 | 253
68
11
5.8
5.5 | 5.0
1.3
343
12
3.2 | 0.70
0.55
0.22
0.16
158 | 0.25
0.27
0.43
0.95
0.98 | 3.6
1.0
0.80
0.29 | 5.3
31
5.0
0.55
0.78 | | 2.3
3.5
3.0
16
6.2 | 1.8
1.9
2.1
93
130 | 3.1
1.9
1.3
0.89
1.0 | 0.27
1.8
1.6
0.40
0.19 | 0.76
174
119
28
4.5 | 452
22
7.7
577
111 | 2.3
1.6
1.2
0.40
0.85 | 1.6
0.65
0.33
0.54
0.74 | 53
38
24
36
24 | 0.89
4.8
3.8
0.63 | 0.12
0.19
0.42
2.8
1.3 | 0.60
0.37
0.28
e0.10
e0.05 | | 1.4
0.63
0.47
0.73
1.5 | 9.3
7.0
8.6
11 | 0.95
0.38
0.23
0.27
0.20 | 0.11
107
16
2.5
0.60 | 2.1
0.24
3.2
32
2.5 | 20
9.7
5.0
3.3
2.9 | 0.34
0.15
5.0
148
11 | 1.0
0.81
0.28
0.28
0.14 | 11
5.2
0.78
0.24
0.39 | 9.5
1.5
0.37
0.09
0.02 | 0.99
0.25
0.20
0.18
0.14 | e0.02
0.01
8.7
53
25 | | 1.1
1.4
3.7
7.5
13 | 15
9.1
6.7
7.3
4.0 | 0.10
0.10
0.12
0.09
0.06
0.08 | 0.37
0.24
6.8
19
8.9
1.2 | 1230
159
17
5.4
 | 3.5
1.2
0.70
0.92
15
4.7 | 3.3
1.6
3.9
1.6
0.88 | 0.16
14
15
1.8
0.58
0.29 | 129
182
12
18
3.2 | 0.02
0.02
0.02
337
183
7.5 | 0.72
1.9
1.5
0.22
0.04
0.02 | 6.6
0.44
0.05
0.07
0.03 | | 456.93
14.74
168
0.47
0.48
0.56 | 453.47
15.12
130
0.13
0.50
0.55 | 2166.87
69.90
1180
0.06
2.29
2.64 | 177.01
5.710
107
0.11
0.19
0.22 | 1878.44
64.77
1230
0.06
2.12
2.29 | 1273.48
41.08
577
0.07
1.35
1.55 | 1579.42
52.65
567
0.15
1.73
1.93 | 971.40
31.34
343
0.14
1.03
1.18 | 716.39
23.88
182
0.09
0.78
0.87 | 610.16
19.68
337
0.02
0.65
0.74 | 609.67
19.67
413
0.02
0.64
0.74 | 163.42
5.447
53
0.01
0.18
0.20 | | mated | | | | | | | | | | | | | ICS OF M | ONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 96 - 2000 | , BY WATE | R YEAR (WY | ·) | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 33.48
69.4
1997
13.7
1998 | 47.60
158
1997
6.32
1998 | 51.53
73.0
1997
21.3
1998 | 40.15
70.0
1998
5.71
2000 | 55.32
87.6
1997
13.5
1999 | 151.4
357
1997
41.1
2000 | 73.81
131
1999
12.8
1996 | 39.08
67.3
1999
23.2
1998 | 45.43
99.2
1996
9.24
1998 | 34.88
56.5
1998
19.7
2000 | 27.16
79.4
1998
3.46
1996 | 33.53
123
1997
5.45
2000 | | STATIST | ics | FOR | 1999 CAL | ENDAR YEA | R | FOR 2000 | WATER YEAR | | WATER YEA | RS 1996 | - 2000 | | ANNUAL M
DAILY ME
SEVEN-DA
PEAK FL
PEAK ST
PANEOUS L
RUNOFF (
RUNOFF (
RUNOFF (
RENT EXCE | EAN EAN EAN Y MINIMUI OW PAGE OW FLOW CFSM) INCHES EEDS | M | 1650
0.
0.
1.
19.
75
4. | May 900 May 2002 May 2002 May 2002 May 2002 May 2002 May 2003 | 5
0
4 | 30.
1230
0.
0.
3640
10.
a0.
0.
13.
69 | Feb 26 00 Sep 1 08 Feb 3 Dec 12 14 Dec 12 00 99 49 | | 96.9
30.2
4500
0.0
9820
16.8
50.0
22.9
96
4.0 | Mar : 00 May 20 May 20 Mar : 00 May 20 Mar : 00 | 1997
2000
2 1997
0 1999
4 1999
2 1997
2 1997 | | | 7.0 13 13 13 9.5 15 9.7 2.6 43 168 89 4.9 1.7 1.3 1.3 1.5 2.3 3.5 3.0 16 6.2 1.4 0.63 0.47 0.73 1.5 1.1 1.4 1.63 0.47 7.5 1.1 1.4 1.68 0.47 0.78 1.1 1.4 1.68 0.47 0.56 mated ICS OF M OCT 33.48 69.4 1997 13.7 1998 STATIST FOTAL MEAN ANNUAL MANUAL M | 7.0 60 13 60 13 5.1 9.5 1.3 15 1.2 9.7 1.7 2.6 4.3 1.1 168 0.51 89 0.36 4.9 0.19 1.7 0.13 1.3 0.38 1.3 1.3 1.5 1.8 2.3 1.8 3.5 1.9 3.0 2.1 16 93 6.2 130 1.4 9.3 0.63 7.0 0.47 8.6 0.73 11 1.5 10 1.1 15 1.4 9.1 3.7 6.7 7.5 7.3 13 4.0 14 456.93 453.47 14.74 15.12 168 130 0.47 0.13 13 4.0 14 456.93 453.47 14.74 15.12 168 130 0.47 0.13 0.48 0.50 0.56 0.55 mated ICS OF MONTHLY MI OCT NOV 33.48 47.60 69.4 158 1997 1997 13.7 6.32 1998 1998 STATISTICS FOTAL MEAN ANNUAL |
7.0 60 2.8 13 60 1.9 13 5.1 24 9.5 1.3 98 15 1.2 191 9.7 1.7 12 2.6 1.6 3.4 43 1.1 2.0 168 0.51 66 89 0.36 80 4.9 0.19 7.3 1.7 0.13 1180 1.3 0.38 402 1.3 1.3 76 1.5 1.8 9.7 2.3 1.8 3.1 3.5 1.9 1.9 3.0 2.1 1.3 16 93 0.89 6.2 130 1.0 1.4 9.3 0.95 0.63 7.0 0.38 0.47 8.6 0.23 0.73 11 0.27 1.5 10 0.20 1.1 15 0.10 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.4 15.12 69.90 1.5 10 0.20 1.1 15 0.00 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.4 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 4.0 0.06 1.4 9.1 0.10 3.7 6.7 0.12 7.5 7.3 0.09 1.3 180 0.47 0.13 0.06 0.48 0.50 2.29 0.56 0.55 2.64 Mated ICS OF MONTHLY MEAN DATA IN OCT NOV DEC 33.48 47.60 51.53 69.4 158 73.0 1997 1997 13.7 6.32 21.3 1998 1998 1998 STATISTICS FOR FOTAL MEAN ANNUAL MEA | 7.0 60 2.8 0.17 13 60 1.9 0.22 13 5.1 24 1.3 9.5 1.3 98 3.0 15 1.2 191 0.35 9.7 1.7 12 0.16 2.6 1.6 3.4 0.21 43 1.1 2.0 0.38 168 0.51 66 0.93 89 0.36 80 0.81 4.9 0.19 7.3 0.34 1.7 0.13 1180 0.13 1.3 0.38 402 0.53 1.3 1.3 76 0.95 1.5 1.8 9.7 0.55 1.5 1.8 9.7 0.55 2.3 1.8 3.1 0.27 3.5 1.9 1.9 1.8 3.0 2.1 1.3 1.6 16 93 0.89 0.40 6.2 130 1.0 0.19 1.4 9.3 0.95 0.11 0.63 7.0 0.38 107 0.47 8.6 0.23 16 0.73 11 0.27 2.5 1.5 10 0.20 0.60 1.1 15 0.10 0.27 1.4 9.1 0.10 0.24 3.7 6.7 0.12 6.8 7.5 7.3 0.09 19 13 4.0 0.06 8.9 14 0.08 1.2 456.93 453.47 2166.87 177.01 168 130 1180 107 0.47 0.13 0.06 0.11 0.48 0.50 2.29 0.19 0.56 0.55 2.64 0.22 mated ICS OF MONTHLY MEAN DATA FOR WATER OCT NOV DEC JAN 33.48 47.60 51.53 40.15 69.4 158 73.0 70.0 1997 1997 1997 1998 13.7 6.32 21.3 5.71 1998 1998 1998 2000 STATISTICS FOR 1999 CAL FOTAL MEAN ANNUAL M | OCT NOV DEC JAN FEB 7.0 60 2.8 0.17 0.32 13 60 1.9 0.22 0.13 13 5.1 24 1.3 0.08 9.5 1.3 98 3.0 0.06 15 1.2 191 0.35 0.06 9.7 1.7 12 0.16 0.11 2.6 1.6 3.4 0.21 0.08 43 1.1 2.0 0.38 0.07 168 0.51 66 0.93 0.09 89 0.36 80 0.81 0.14 4.9 0.19 7.3 0.34 0.30 1.7 0.13 1180 0.13 19 1.3 0.38 402 0.53 27 1.3 1.3 76 0.95 50 1.5 1.8 9.7 0.55 3.3 2.3 1.8 3.1 0.27 0.76 3.5 1.9 1.9 1.8 174 3.0 2.1 1.3 1.6 119 16 93 0.89 0.40 28 6.2 130 1.0 0.19 4.5 1.4 9.3 0.95 0.11 2.1 0.63 7.0 0.38 107 0.24 0.47 8.6 0.23 16 3.2 0.73 11 0.27 2.5 32 1.5 10 0.20 0.60 2.5 1.1 15 0.10 0.37 1230 1.4 9.1 0.10 0.24 159 3.7 6.7 0.12 6.8 17 1.3 4.0 0.06 8.9 14 0.08 1.2 1466.93 453.47 2166.87 177.01 1878.44 14.74 15.12 69.90 5.710 64.77 168 130 1180 107 1230 0.47 0.13 0.06 8.9 14 0.08 1.2 1466.93 453.47 2166.87 177.01 1878.44 14.74 15.12 69.90 5.710 64.77 168 130 1180 107 1230 0.47 0.13 0.06 0.11 0.71 168 130 1180 107 1230 0.47 0.13 0.06 0.11 0.024 159 3.7 6.7 0.12 6.8 17 159 7.3 0.09 19 5.4 13 4.0 0.06 8.9 14 0.08 1.2 1460.93 453.47 2166.87 177.01 1878.44 14.74 15.12 69.90 5.710 64.77 168 130 1180 107 1230 0.47 0.13 0.06 0.11 0.06 0.48 0.50 2.29 0.19 2.12 0.56 0.55 2.64 0.22 2.29 DATAINCAL MEAN ANNUAL M | OCT NOV DEC JAN FEB MAR 7.0 60 2.8 0.17 0.32 1.6 13 60 1.9 0.22 0.13 0.33 13 5.1 24 1.3 0.08 0.53 15 1.2 191 0.35 0.06 0.89 15 1.7 12 0.16 0.11 0.12 2.6 1.6 3.4 0.21 0.08 0.19 43 1.1 2.0 0.38 0.07 0.22 48 0.51 66 0.93 0.09 15 89 0.36 80 0.81 0.14 2.7 4.9 0.19 7.3 0.34 0.30 7.5 1.7 0.13 1180 0.13 19 1.6 1.3 0.38 402 0.53 27 0.18 1.3 0.3 7.5 0.55 3.3 5.7 < | OCT NOV DEC JAN FEB MAR APR 7.0 600 2.8 0.17 0.32 1.6 75 13 60 1.9 0.22 0.13 0.33 230 9.5 1.3 98 3.0 0.06 0.29 92 15 1.2 191 0.35 0.06 0.23 16 9.7 1.7 12 0.16 0.11 0.12 6.6 2.6 1.6 3.4 0.21 0.08 0.19 7.4 4.3 1.1 2.0 0.38 0.07 0.22 54 1.68 0.51 66 0.93 0.09 15 4.5 89 0.36 80 0.81 0.14 2.7 1.5 4.9 0.19 7.3 0.34 0.30 7.5 253 1.7 0.13 1180 0.13 19 1.6 68 1.7 | OCT NOV DEC JAN FEB MAR APR MAY 7.0 60 2.8 0.17 0.32 1.6 75 1.0 13 60 1.9 0.22 0.13 0.33 230 9.5 13 5.1 24 1.3 0.08 0.53 557 114 9.5 1.3 98 3.0 0.06 0.89 92 94 15 1.2 191 0.35 0.06 0.89 92 94 15 1.2 191 0.35 0.06 0.23 16 137 9.7 1.7 12 0.16 0.11 0.12 6.6 60 2.6 1.6 3.4 0.21 0.08 0.19 7.4 12 43 1.1 2.0 0.38 0.07 0.22 54 4 4 2 43 1.1 2.0 0.38 0.07 0.22 54 89 0.36 80 0.81 0.14 2.7 1.5 65 89 0.36 80 0.81 0.14 2.7 1.5 65 4.9 0.19 7.3 0.34 0.30 7.5 253 5.0 4.9 0.19 7.3 0.34 0.30 7.5 253 5.0 1.7 0.13 1180 0.13 19 1.6 68 1.3 1.3 0.38 402 0.53 27 0.18 11 343 1.3 1.3 76 0.95 50 0.07 5.8 12 1.5 1.8 9.7 0.55 3.3 5.7 5.5 3.2 2.3 1.8 3.1 0.27 0.76 452 2.3 1.6 3.0 2.1 1.3 1.6 119 7.7 1.2 0.33 16 93 0.89 0.40 28 577 0.40 0.56 6.2 130 1.0 0.19 4.5 111 0.85 0.74 1.4 9.3 0.95 0.11 2.1 20 0.34 1.0 0.63 7.0 0.38 107 0.24 4.9 7 0.15 0.81 1.4 9.3 0.95 0.11 2.1 20 0.34 1.0 0.63 7.0 0.38 107 0.24 4.9 7 0.15 0.81 1.5 1.0 0.20 0.60 2.5 3.2 1.1 0.83 1.5 1.0 0.95 0.11 2.1 20 0.34 1.0 0.63 7.0 0.38 107 0.24 4.9 7 0.15 0.81 1.5 1.0 0.00 0.20 0.60 2.5 2.9 11 0.14 1.1 15 0.10 0.20 0.60 2.5 2.9 11 0.14 1.1 15 0.10 0.20 0.60 2.5 2.9 11 0.14 1.1 15 0.10 0.20 0.60 2.5 2.9 11 0.14 1.1 15 0.10 0.20 0.60 0.7 5.3 2.7 0.75 0.88 0.89 1.5 1.9 1.9 1.8 107 0.24 4.7 0.95 1.8 1.4 9.1 0.10 0.70 1.20 1.50 1.8 1.5 1.0 0.00 1.9 5.4 111 0.85 0.74 1.4 9.1 0.10 0.70 0.74 1.50 0.88 0.89 1.5 10 0.00 0.70 0.70 0.70 0.70 0.70 0.70 0 | CCT | OCT NOV DEC JAN FEB NAR AFR MAY JUN JUL 7.0 60 2.8 0.17 0.32 1.6 75 1.0 0.17 0.78 13 60 1.9 0.22 0.13 0.33 230 9.5 0.09 0.29 13 5.1 24 1.3 0.08 0.53 567 114 0.13 0.16 9.5 1.3 98 3.0 0.06 0.89 92 94 2.5 0.26 15 1.2 191 0.35 0.06 0.89 92 94 2.5 0.26 15 1.2 191 0.35 0.06 0.23 16 137 12 0.26 2.6 1.5 3.4 0.21 0.08 0.19 7.4 12 0.26 2.6 1.6 3.4 0.21 0.08 0.19 7.4 12 0.84 2.6 1.6 3.4 0.21 0.08 0.19 7.4 12 0.84 2.6 0.30 0.81 0.70 0.22 54 4.2 0.94 2.6 0.36 80 0.81 0.77 0.25 54 5 72 0.17 0.36 89 0.36 80 0.81 0.14 2.7 1.5 65 0.25 0.35 4.9 0.19 7.3 0.34 0.30 7.5 253 5.0 0.70 0.25 1.7 0.13 1180 0.13 15 1.6 6 1.1 1.3 0.55 0.27 1.3 1.8 9.7 0.55 3.3 5.7 5.5 1.2 158 0.98 2.3 1.8 3.1 0.27 0.76 452 2.3 1.6 53 0.89 2.3 1.8 3.1 0.27 0.76 452 2.3 1.6 53 0.89 2.3 1.8 3.1 0.27 0.76 452 2.3 1.6 53 0.89 3.5 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 2.1 1.9 1.8 174 22 1.6 0.65 38 48 3.0 2.1 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 2.1 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 2.1 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 0.21 1.0 0.19 4.5 111 0.85 0.74 24 55 1.5 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 0.21 1.0 0.19 4.5 111 0.85 0.74 24 55 1.5 1.9 1.9 1.8 174 22 1.6 0.65 38 48 3.0 0.21 1.0 0.19 4.5 111 0.85 0.74 24 55 1.5 1.5 1.9 0.95 0.11 2.1 20 0.34 1.0 11 9.5 1.5 1.0 0.28 1.8 174 22 1.6 0.65 38 48 3.0 0.21 1.3 1.6 118 7.7 1.2 0.034 1.0 11 9.5 1.5 1.0 0.20 0.09 5.7 0.07 0.25 1.5 0.8 0.74 24 55 1.5 1.9 0.90 0.19 4.5 111 0.80 0.74 24 55 1.5 1.9 0.90 0.90 5.7 0.07 0.25 1.5 0.8 0.28 0.78 0.79 1.4 9.3 0.95 0.11 2.1 20 0.34 1.0 11 9.5 1.5 0.63 7.0 0.38 107 0.24 9.7 0.15 0.81 5.2 1.5 0.63 7.0 0.38 107 0.24 9.7 0.15 0.81 0.29 0.79 1.5 1.0 0.20 0.60 2.5 2.9 11 0.14 0.29 0.29 1.1 1.5 1.0 0.20 0.60 2.5 2.9 11 0.14 0.29 0.29 1.5 1.5 1.0 0.20 0.60 2.5 2.9 11 0.14 0.29 0.29 1.5 1.5 1.0 0.20 0.60 2.5 2.9 11 0.14 0.29 0.29 1.7 0.7 0.7 0.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 | OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AND T. | a Many days most years. # 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DAIL | Y MEAN V | ALUES | | | | | | |---|--|---|--|---|--|--|---|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0 | 0.10
0.10
0.13
31
8.7 | 1.2
0.80
0.64
0.69
0.63 | 0.35
0.37
0.44
0.44 | 1.9
1.0
0.73
0.61
0.50 | 2.8
1.9
9.7
257
22 | 35
4.7
7.4
4.4
2.7 | 0.60
0.39
0.30
0.33
0.49 | 76
12
456
43
11 | 1.6
0.94
0.81
0.58
3.0 | 5.1
3.2
2.3
41
4.5 | 287
28
7.3
4.5
3.5 | | 6
7
8
9
10 | 110
3.1
0.64
0.20
0.09 | 220
23
175
49
3.6 | 0.36
0.33
0.50
0.60
0.54 | 0.69
0.67
0.50
0.35
0.22 | 0.47
0.42
0.44
46 | 5.7
3.2
2.2
1.5
1.3 | 1.8
1.4
1.0
0.99
0.76 | 0.37
34
9.8
1.9 | 440
85
15
5.3
2.8 | 4.6
1.6
1.0
0.88
9.5 | 2.3
56
17
17
21 | 227
50
29
6.4
3.0 | | 11
12
13
14
15 | 0.09
0.09
0.10
0.10 | 0.83
0.41
8.4
1.7
0.50 | 0.32
0.22
193
33
118 | 47
16
2.4
37
4.8 | 2.5
31
641
562
556 | 1.0
167
13
3.6
166 | 6.1
457
655
23
69 | 10
19
1.7
0.78
0.54 | 1.8
1.3
1.5
2.6
2.9 | 5.1
1.6
0.90
0.72
0.60 | 26
121
37
6.2
3.2 | 1.8
0.88
1.0
1.2 | | 16
17
18
19
20 | 0.10
0.10
0.10
0.17
0.21 | 116
7.3
1.7
0.85
0.50 | 424
36
5.2
2.8
1.4 | 1.4
41
349
253
21 | 1930
e68.0
e13.0
e4.0
e3.0 | 49
6.2
2.9
1.9
1.5 | 10
3.5
2.2
1.5
1.1 | 0.56
0.81
0.30
0.29 | 2.9
1.2
0.68
0.45
0.36 | 0.55
195
17
93
18 |
2.3
1.6
1.6
1.2
1.1 | 0.98
0.77
0.71
580
14 | | 21
22
23
24
25 | 0.10
0.10
0.10
0.10
0.10 | 0.24
0.11
0.19
1010
125 | 1.2
1.3
0.73
0.75
0.57 | 5.0
2.4
1.6
1.1
0.67 | e2.0
31
4.0
254
339 | 1.4
1.4
1.0
0.86
0.64 | 0.84
0.84
102
30
2.1 | 1000
171
8.8
3.8
2.0 | 0.33
0.34
0.54
0.51
0.37 | 73
44
5.6
2.8
2.1 | 1.1
0.65
0.47
2.5
3.7 | 7.2
5.3
21
25
3.1 | | 26
27
28
29
30
31 | 0.10
0.10
0.10
0.10
0.10
0.10 | 8.0
2.8
1.5
1.8
1.2 | 1.6
9.1
2.3
0.99
0.56
0.42 | 0.61
0.97
0.54
265
37
4.6 | 17
5.7
3.9
 | 1.3
0.73
0.89
34
112
54 | 1.0
0.76
0.65
0.31
0.29 | 1.2
0.78
60
9.2
34
1280 | 0.33
0.46
59
72
3.9 | 1.8
1.1
0.79
0.83
155
51 | 1.1
0.59
0.36
0.18
0.15 | 2.1
1.7
1.6
1.4
1.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 116.29
3.751
110
0.00
0.12
0.14 | 1799.66
59.99
1010
0.10
1.97
2.19 | 839.75
27.09
424
0.22
0.89
1.02 | 1096.58
35.37
349
0.22
1.16
1.34 | 4536.17
162.0
1930
0.42
5.31
5.53 | 927.62
29.92
257
0.64
0.98
1.13 | 1427.34
47.58
655
0.29
1.56
1.74 | 2780.14
89.68
1280
0.29
2.94
3.39 | 1299.57
43.32
456
0.33
1.42
1.59 | 695.00
22.42
195
0.55
0.74
0.85 | 391.40
12.63
121
0.15
0.41
0.48 | 1317.74
43.92
580
0.71
1.44
1.61 | | e Est | imated | | | | | | | | | | | | | STATIS | TICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 199 | 6 - 2001 | , BY WATE | R YEAR (W | Y) | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 27.54
69.4
1997
3.75
2001 | 50.08
158
1997
6.32
1998 | 46.64
73.0
1997
21.3
1998 | 39.19
70.0
1998
5.71
2000 | 76.51
162
2001
13.5
1999 | 127.1
357
1997
29.9
2001 | 69.44
131
1999
12.8
1996 | 47.52
89.7
2001
23.2
1998 | 45.08
99.2
1996
9.24
1998 | 32.80
56.5
1998
19.7
2000 | 24.74
79.4
1998
3.46
1996 | 35.26
123
1997
5.45
2000 | | SUMMAR | Y STATIS | TICS | FOR | 2000 CAL | ENDAR YEAR | | FOR 2001 | WATER YEA | R | WATER YEA | ARS 1996 | - 2001 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL 10 PER | MEAN T ANNUAL T ANNUAL T DAILY DAILY M SEVEN-L M PEAK F M PEAK S TANEOUS RUNOFF RUNOFF RUNOFF CENT EXC | MEAN MEAN EAN AY MINIMUM LOW TAGE LOW FLOW (CFSM) (INCHES) EEDS | | 0.
13.
66 | Feb 26
00 Oct 1
01 Sep 29 | | 21.
105 | Feb 1 00 Oct 1 00 Oct 1 May 3 80 May 3 00 55 01 | 6
1
0
1
1 | 4500
0.0
6820
16.8
a0.0
1.6
22.6 | Mar
00 Oct
01 Sep 2
Mar
Mar
00
07 | 1997
2000
2 1997
1 2000
9 2000
2 1997
2 1997 | | | CENT EXC | | | 0.
0. | | | 1. | | | 3.5 | | | a Many days most years. #### 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | DAIL | Y MEAN V | ALUES | | | | | | |--|--|--|--|--|--|---|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.98
0.87
0.79
0.72 | 1.6
1.5
1.5
1.4 | e60
e20
e15
e8.0
e7.0 | 3.5
3.5
3.5
3.5
3.8 | 106
10
7.5
6.7
4.8 | 2.1
3.9
5.2
2.7
2.4 | 21
8.6
6.5
4.7
4.1 | 20
5.8
176
66
7.2 | 3.8
3.2
3.2
4.3
4.8 | 8.8
129
178
8.4
5.7 | 6.0
4.7
5.7
6.7
7.2 | 2.0
1.8
1.4
1.2
0.95 | | 6
7
8
9
10 | 18
3.3
2.2
1.4
30 | 1.2
1.2
1.2
1.3
1.5 | e6.0
e55
e170
e28
e14 | 106
11
6.6
5.3
4.9 | 26
64
15
6.3
4.4 | 2.2
2.9
4.8
32
4.1 | 3.7
3.6
17
9.2
4.3 | 4.5
3.5
3.2
8.6
29 | 8.2
5.9
4.9
5.1
59 | 4.7
4.4
4.5
22
7.4 | 51
19
4.5
7.0
7.9 | 0.82
2.0
1.9
1.5 | | 11
12
13
14
15 | 2070
79
696
298
8.0 | 1.5
1.5
2.3
2.6
2.3 | e10
2490
2030
1580
391 | 5.6
4.5
4.0
4.3
3.6 | 3.2
2.6
2.6
3.0
2.7 | 322
963
16
7.6
5.6 | 3.8
3.5
3.2
3.0 | 6.1
3.1
91
8.2
4.3 | 20
6.7
411
28
7.4 | 4.3
7.4
7.3
40 | 3.5
3.2
4.0
65
45 | 0.95
1.0
0.99
0.87
0.90 | | 16
17
18
19
20 | 3.7
3.2
2.0
1.4
1.1 | 2.1
1.9
1.7
12
3.6 | 1360
2510
e200
e40
e16 | 3.4
8.4
21
167
10 | 5.0
2.9
2.5
152
123 | 106
5040
e300
e130
882 | 3.1
3.0
2.7
2.7
2.7 | 3.4
153
11
4.5
3.4 | 5.5
5.8
6.0
5.6
5.3 | 6.6
6.1
7.3
85
87 | 532
17
7.5
6.9 | 1.8
7.2
1.2
531
2140 | | 21
22
23
24
25 | 1.3
1.3
1.3
22
9.8 | 1.6
1.2
0.95
258
5.1 | e10
358
590
11
8.1 | 7.1
9.1
19
1340
27 | 6.6
4.6
3.7
3.2
3.1 | 69
18
14
13
11 | 2.9
28
3.6
2.8
2.7 | 3.1
3.4
6.8
7.2
75 | 5.6
5.3
4.6
4.9
5.4 | 48
6.6
4.2
6.7
3.7 | 17
8.8
8.3
70
46 | 44
8.7
5.4
4.0
3.9 | | 26
27
28
29
30
31 | 2.0
1.2
0.93
0.82
1.3
1.5 | 126
543
3370
5950
e400 | 6.5
5.9
5.0
4.4
3.9
3.6 | 15
73
9.3
7.7
7.5 | 3.5
3.2
2.2
 | 89
17
13
41
352
638 | 2.7
2.8
2.8
2.7
549 | 24
4.6
183
61
12
5.0 | 13
216
45
9.3
9.7 | 3.1
3.2
3.4
2.9
3.1 | 7.0
4.7
5.0
3.1
2.2
2.4 | 1440
678
e130
e15
e2.5 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3341.11
107.8
2070
0.72
3.53
4.08 | 10701.05
356.7
5950
0.95
11.7
13.05 | 12016.4
387.6
2510
3.6
12.7
14.66 | 2072.1
66.84
1340
3.4
2.19
2.53 | 580.3
20.73
152
2.2
0.68
0.71 | 9109.5
293.9
5040
2.1
9.63
11.11 | 713.4
23.78
549
2.7
0.78
0.87 | 996.9
32.16
183
3.1
1.05
1.22 | 922.5
30.75
411
3.2
1.01
1.13 | 767.8
24.77
178
2.9
0.81
0.94 | 1067.3
34.43
532
2.2
1.13
1.30 | 5032.18
167.7
2140
0.82
5.50
6.14 | | e Est | imated | | | | | | | | | | | | | STATIS | STICS OF | MONTHLY MI | EAN DATA | FOR WATER Y | EARS 199 | 6 - 2002 | , BY WATER | YEAR (WY) | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 40.91
108
2002
3.75
2001 | 101.2
357
2002
6.32
1998 | 103.5
388
2002
21.3
1998 | 43.80
70.0
1998
5.71
2000 | 67.26
162
2001
13.5
1999 |
154.9
357
1997
29.9
2001 | 62.92
131
1999
12.8
1996 | 45.32
89.7
2001
23.2
1998 | 43.03
99.2
1996
9.24
1998 | 31.66
56.5
1998
19.7
2000 | 26.12
79.4
1998
3.46
1996 | 54.19
168
2002
5.45
2000 | | SUMMAR | RY STATIS | TICS | FOR | 2001 CALEN | DAR YEAR | | FOR 2002 W | ATER YEAR | | WATER YEA | ARS 1996 | - 2002 | | ANNUAI
HIGHES
LOWEST
HIGHES
LOWEST
ANNUAI
MAXIMU
MAXIMU
INSTAN
ANNUAI
ANNUAI
10 PER
50 PER | T ANNUAL ANNUAL T ANNUAL T DAILY T DAILY M PEAK P | MEAN MEAN IEAN JAY MINIMUI LOW TAGE LOW FLOW (CFSM) (INCHES) EEEDS | 1 | 40530.12
111.0
5950
0.15
0.39
3.64
49.43
197
2.9
0.55 | Nov 29
Aug 30
Apr 29 | | 57.7
175
5.8 | Nov 29
2 Oct 4
Sep 9
Nov 28
9 Nov 28
4 Oct 5
5 | | 5950
0.0
12500
18.9
a0.0
2.0
28.0
106
4.0 | Nov 2 00 06 03 | 2002
2000
9 2001
1 2000
9 2000
8 2001
8 2001 | | J 0 1 111 | RCENT EXC | | | 0.55 | | | 1.5 | | | 0.2 | | | a Many days most years. #### 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1996 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |--|--|---|---|---|--|---|---|--|---|--|---|---|--| | NOV | | | | | | | | | | | | | | | 13
DEC | 1800 | 114 | 6.9 | 11.0 | 763 | 8.9 | 81 | 55 | 45 | 5.5 | 4.36 | | <.008 | | 05
JAN | 1230 | 197 | 7.5 | 11.0 | 758 | 7.6 | 69 | 78 | 64 | 24.1 | 6.19 | | E.007 | | 09
FEB | 0730 | 103 | | 3.5 | 760 | 11.2 | 85 | 32 | 26 | 9.1 | 3.85 | .74 | .014 | | 04
MAR | 1700 | 118 | | 8.5 | 767 | 11.0 | 93 | 51 | 42 | 8.7 | 3.41 | .52 | .010 | | 12 | 1015 | 52 | 7.4 | 7.5 | 759 | 10.6 | 89 | 19 | 16 | 3.7 | 1.68 | .51 | .008 | | APR 24 | 1500 | 180 | 7.4 | 22.5 | 764 | 3.0 | 35 | 74 | 61 | 10.8 | 9.44 | .20 | .053 | | MAY
08 | 1430 | 119 | 7.1 | 23.5 | 758 | 6.9 | 82 | 50 | 41 | 6.4 | 3.57 | .66 | .062 | | JUN
11 | 1530 | 108 | 6.5 | 26.5 | 763 | 3.1 | 39 | 42 | 34 | 5.7 | 4.73 | .55 | .050 | | JUL
15 | 1730 | 95 | 6.4 | 27.5 | 763 | 4.0 | 51 | 43 | 35 | 5.2 | 3.00 | .42 | .031 | | AUG
08 | 0730 | 112 | 6.5 | 26.5 | 769 | 1.3 | 16 | 40 | 32 | 7.7 | 3.71 | .65 | .063 | | | | | | | | | | | | | | | | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | | NOV
13 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P) | CHLOR,
WATER,
DISS,
REC,
(UG/L) | CHLOR,
WATER
FLTRD
REC
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | BHC
DIS-
SOLVED
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | PYRIFOS
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | | NOV
13
DEC
05 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | | NOV
13
DEC
05
JAN
09 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | | NOV
13
DEC
05
JAN
09
FEB
04 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.05 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.114 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051 | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.05 .30 .76 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .11 .13 | GEN, AM-
MONIA +
ORGANIC TOTAL
(MG/L
AS N)
(00625)
.52
.80 | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.114
.20 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .03 .03 .21 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)
<.002
<.002 | CHLOR,
WATER
FLTR
REC
(UG/L)
(49260)
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051
.077 | BHC DIS-
SOLVED (UG/L) (34253) <.005 <.005 <.005 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002 | PYRIFOS DIS-
SOLVED (UG/L) (38933)
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
<.05
.30
.76 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .11 .13 E.02 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.52
.80
1.0 | GEN,
TOTAL
(MG/L
AS N)
(00600)

1.1
1.8 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.114
.20
.38 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.03
.03
.21 | CHLOR, WATER, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)
<.004
<.004
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051
.077
.233
2.94 | BHC
DTS-
SOLVED
(UG/L)
(34253)
<.005
<.005
<.005 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 |
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.05 .30 .76 .53 .52 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .11 .13 E.02 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .52 .80 1.0 1.0 1.5 | GEN,
TOTAL
(MG/L
AS N)
(00600)

1.1
1.8
1.5 | PHORUS TOTAL (MG/L AS P) (00665) .114 .20 .38 .28 | PHOS-
PHATE,
DIS-
SOLVED (MG/L
AS P)
(00671)
.03
.03
.21
.08 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.004 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051
.077
.233
2.94
4.24 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
.009
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY
08
JUN
11 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.05 .30 .76 .53 .52 .26 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .11 .13 E.02 .08 .21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .52 .80 1.0 1.0 1.5 | GEN,
TOTAL
(MG/L
AS N)
(00600)

1.1
1.8
1.5
2.0
1.6 | PHORUS TOTAL (MG/L AS P) (00665) .114 .20 .38 .28 .41 .185 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .03 .03 .21 .08 .16 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 <.004 | CHLOR, WATER FLTRD REC (UG/L) (49260) <.004 <.004 <.006 <.006 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051
.077
.233
2.94
4.24
1.37 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
.009
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018
<.018 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY
08 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.05 .30 .76 .53 .52 .26 .72 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 .11 .13 E.02 .08 .21 .05 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .52 .80 1.0 1.5 1.4 | GEN,
TOTAL
(MG/L
AS N)
(00600)

1.1
1.8
1.5
2.0
1.6 | PHORUS TOTAL (MG/L AS P) (00665) .114 .20 .38 .28 .41 .185 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .03 .03 .21 .08 .16 .08 | CHLOR, WATER, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 <.004 <.004 | CHLOR, WATER FLTRD REC (UG/L) (49260) <.004 <.004 <.006 <.006 <.006 <.010 <.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
<.051
.077
.233
2.94
4.24
1.37 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
.009
<.005
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018
<.018
<.018 | #### 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | |--|---|--|--|--|---|---|--|---|--|---|---|--|--| | NOV | | | | | | | | | | | | | | | 13
DEC | E.009 | .051 | <.005 | <.003 | <.004 | .054 | <.006 | E.012 | <.003 | <.007 | <.010 | .02 | 6.17 | | 05
JAN | E.022 | .033 | <.005 | <.003 | <.004 | <.027 | <.006 | E.010 | <.003 | <.007 | <.010 | E.01 | 12.4 | | 09
FEB | <.006 | .024 | <.005 | <.003 | <.004 | <.027 | <.006 | E.005 | <.003 | <.010 | <.010 | <.01 | 3.80 | | 04 | E.089 | .008 | <.005 | <.003 | <.004 | <.027 | <.006 | .016 | <.003 | <.010 | <.010 | E.01 | 4.17 | | MAR
12
APR | E.148 | <.005 | <.005 | <.003 | <.004 | <.027 | <.006 | E.010 | <.003 | <.010 | <.010 | .03 | 8.91 | | 24 | E.062 | .481 | <.005 | <.003 | <.004 | .359 | <.006 | .079 | <.003 | <.010 | <.010 | .82 | 2.91 | | MAY
08 | E.125 | .126 | <.005 | <.003 | .005 | E.008 | <.006 | .035 | <.003 | <.010 | <.010 | .04 | 2.12 | | JUN
11 | E.029 | .238 | <.005 | <.003 | <.004 | .055 | .056 | .366 | <.003 | <.010 | <.010 | .04 | .738 | | JUL
15 | E.025 | <.005 | <.005 | <.003 | <.004 | .031 | .023 | .028 | <.003 | <.010 | <.010 | .06 | .234 | | AUG
08 | E.007 | .077 | <.005 | <.003 | <.004 | 1.75 | .039 | .026 | <.003 | <.010 | <.010 | .06 | .156 | | | | | | | | | | | | | | | | | Date | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LIN-
URON
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82666) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) |
MOL-
INATE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82671) | | NOV | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | | NOV
13
DEC | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) | | NOV
13
DEC
05
JAN | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.045 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | INATE WATER FLTR 0.7 U GF, REC (UG/L) (82671) <.002 <.002 | | NOV
13
DEC
05 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) | | NOV
13
DEC
05
JAN
09 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.045 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | INATE WATER FLTR 0.7 U GF, REC (UG/L) (82671) <.002 <.002 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.013 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003 | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)
<.002
<.002
<.006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <-02 <-02 <-02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009 | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.005 <.005 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.045
<.013 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | INATE WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24 | FLUR-
ALIN
WAT FILD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.013 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) < .002 < .002 < .006 < .006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <02 <02 <02 <02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005
<.005
<.005 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.045
<.013 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY | FLUR- ALIN WAT FILD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.013
<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 | WATER FLUTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 | ETHYL ANILINE UNT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 | FOTON WATER FLITTED 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009
<.009 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.005
<.005
<.005
<.005 | WATER FLURD 0.7 U GF, REC (UG/L) (82668) < .002 < .045 < .013 < .002 .057 | URON WATER FITTED 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006 | INATE WATER WATER FIURD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 <.002 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY
08
JUN
11 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.013
<.041
E.062
E.109 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 | ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <-02 <-02 <-02 <-02 <-02 <-02 <-02 <-02 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009
<.009
<.009
<.009 | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) < .005 < .005 < .005 < .005 < .005 < .005 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.045 <.013 <.002 .057 <.002 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006 | INATE WATER WATER 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | | NOV
13
DEC
05
JAN
09
FEB
04
MAR
12
APR
24
MAY
08
JUN | FLUR- ALIN WAT FILD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.013
<.041
E.062
E.109 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003
<-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 < | ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.045
<.013
<.002
.057
<.002 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | #### 07031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |-----------|---|---|---|--|--|---|--|--|---|--|--|---|---| | NOV | | | | | | | | | | | | | | | 13 | <.007 | <.002 | <.010 | <.006 | <.011 | <.022 | <.011 | <.02 | E.01 | <.034 | <.02 | <.002 | <.009 | | DEC | | | | | | | | | | | | | | | 05 | <.007 | <.002 | <.010 | <.006 | <.011 | .487 | <.011 | <.02 | E.01 | <.034 | <.02 | <.002 | E.001 | | JAN
09 | <.007 | | <.022 | <.006 | <.011 | .310 | <.011 | <.02 | <.02 | <.034 | <.02 | <.002 | <.009 | | FEB | 1.007 | | 1.022 | 1.000 | | .510 | | 1.02 | 1.02 | 1.054 | 1.02 | 1.002 | 1.005 | | 04 | <.007 | <.004 | <.022 | <.006 | <.011 | .175 | <.011 | <.02 | M | <.034 | <.02 | <.002 | <.009 | | MAR | | | | | | | | | | | | | | | 12 | <.007 | <.004 | <.022 | <.006 | <.011 | .032 | <.011 | <.02 | .05 | <.034 | <.02 | <.002 | <.009 | | APR
24 | <.007 | <.004 | .360 | <.006 | <.011 | .040 | <.011 | <.02 | .02 | <.034 | <.02 | <.002 | <.009 | | MAY | 1.007 | 1.004 | .500 | 1.000 | | .040 | | 1.02 | .02 | 1.054 | 1.02 | 1.002 | 1.005 | | 08 | <.007 | <.004 | <.022 | <.006 | <.011 | .036 | <.011 | <.02 | E.06 | <.034 | <.02 | <.002 | <.009 | | JUN | | | | | | | | | | | | | | | 11 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | .019 | <.02 | <.02 | <.034 | <.02 | <.002 | E.003 | | JUL
15 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | <.02 | <.034 | <.02 | <.002 | <.009 | | AUG | 007 | 1.004 | 022 | 1.000 | | 1.004 | | 1.02 | 1.02 | 1.054 | 1.02 | 1.002 | 1.005 | | 08 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | <.02 | .06 | <.034 | <.02 | <.002 | <.009 | | Date | THIO-
BENCARE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | |-----------|---| | NOV | | | 13 | <.005 | | DEC | | | 05
JAN | <.005 | | 09 | <.005 | | FEB | | | 04 | <.005 | | MAR | 006 | | 12
APR | .006 | | 24 | <.005 | | MAY | | | 08 | <.005 | | JUN
11 | <.005 | | JUL | <.005 | | 15 | <.005 | | AUG | | | 08 | <.005 | THIS PAGE IS INTENTIONALLY BLANK #### 07031740 WOLF RIVER AT HOLLYWOOD STREET AT MEMPHIS, TN LOCATION.--Lat $35^{\circ}11'16"$, long $89^{\circ}58'32"$, Shelby County, Hydrologic Unit 08010210, at bridge on Hollywood Street, 0.2 mi south of Interstate 240, 6.1 mi upstream of Mississippi River, and at mile 5.2. DRAINAGE AREA. -- 788 mi². PERIOD OF RECORD.--October 2000 to current year. October 1985 to May 1989, continuous stage only, February 1995 to September 2000, unpublished stage and discharge. GAGE.--Water-stage recorder. Datum of gage is 191.2 ft above NGVD of 1929 from reference mark provided by the City of Memphis. REMARKS.--Records poor. During medium to high stages on the Mississippi River the stages are affected by backwater. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,600 ft³/s, Dec. 1, gage height, 35.44 ft; minimum daily discharge, under conditions of no backwater, 249 ft³/s, Oct. 4, minimum daily discharge 190 ft³/s, backwater from Mississippi River, May 26. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV FEB AUG SEP e27000 e6300 e270 316 626 e2500 820 e1400 e360 623 548 264 259 254 e22000 798 773 e270 512 557 1400 e6300 e1100 e500 503 3 310 e10500 504 1250 e5500 €1700 e260 e1380 398 492 e7500 728 e250 249 469 1220 e4200 e2500 480 301 e650 361 5 e3900 1200 e2700 e230 299 442 e400 351 465 6 558 295 e2800 1010 1210 655 e2800 e2100 e230 e350 513 453 289 275 295 e2350 1380 638 e1200 e1850 e220 e340 1200 446 814 8 291 e2550 702 3400 622 e1100 e1700 e215 e320 510 438 267 288 e2800 609 2340 787 e1470 e200 e310 493 e420 e980 e2900 10 261 286 580 1360 753 e1280 e200 e330 e400 e910 526 11 6230 282 e2800 1160 995 e860 e1140 424 e380 327 e390 12 13 280 279 e4000 e7900 4390 538 1020 7500 e750 e1050 316 e420 306 e375 4640 497 930 4950 e650 e930 1000 e470 311 e370 14 5620 275 e8000 462 853 5130 593 e870 2380 e680 546 e360 15 3060 274 e7800 440 798 4510 543 e590 795 e550 1590 e360 e7100 775 e450 16 273 416 4380 503 648 e530 3680 e8300 17 2560 271 272 412 507 734 14000 474 e1510 526 475 e520 e520 2390 1390 e700 e1090 2150 e5600 704 17000 448 e1550 18 e4400 813 e600 e380 e3700 20 1020 331 1240 2120 8450 415 431 e510 880 e3800 21 281 e3200 1980 6930 396 383 802 e3400 e240 351 327 22 608 278 e3100 1270 1760 6130 541 e220 e440 915 e3700 23 516 278 e6800 1290 1510 e4600 411 e210 e450 739 e1800 24 499 2010 e5800 e5000 1370 e3200 e200 320 e590 692 e1000 25 641 875 e4700 e5400 1280 e2400 e290 e200 335 e480 1750 e920 26 415 e3600 e7300 1070 e1800 e280 e190 337 466 1590 e4000 2320 27 380 e3100 e8600 978 €1700 e270 e200 437 484 1050 e8200 28 355 e4000 e2300 e5500 e1550 e260 e360 e500 511 715 e12800 892 29 337 e16000 1350 e3600 e1600 e600 e560 e400 497 646 e11000 30 329 e20000 959 e2350 ___ e2600 e1400 e310 e360 486 618 e8000 31 e2100 e6400 TOTAL 42319 52404 179543 56288 38007 121712 29710 13549 15848 68289 42410 27940 1747 5792 1357 1414 451.6 2276 MEAN 1365 1816 958.4 511.2 MAX 6230 20000 27000 8600 3400 17000 6300 2500 2380 1380 3680 12800 190 200 MIN
249 271 734 412 704 622 260 310 306 360 7.35 CFSM 1.73 2.22 2.30 1.72 4.98 1.79 1.22 0.57 0.65 1.14 2.89 IN. 2.00 2.47 8.48 2.66 1.79 5.75 2.00 1.40 0.64 0.75 1.32 3.22 e Estimated #### 07031740 WOLF RIVER AT HOLLYWOOD STREET AT MEMPHIS, TN--Continued | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2002, BY WATER | STATISTIC | EARS 1995 - 2002, BY WATER YEAR (WY) | | |---|-----------|--------------------------------------|--| |---|-----------|--------------------------------------|--| | MEAN
MAX | 723.8
1449 | 890.6
1755 | 1715
5792 | 1486
2375 | 1811
3706 | 2450
4847 | 1286
1994 | 1135
2142 | 812.7
2211 | 630.2
858 | 728.8 | | 800.5
2276 | |-------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------|-----|---------------| | (WY) | 1997 | 1997 | 2002 | 1999 | 2001 | 1997 | 1999 | 1999 | 1997 | 1997 | 1998 | 3 | 2002 | | MIN | 248 | 348 | 573 | 452 | 554 | 1038 | 733 | 589 | 357 | 391 | 334 | Į. | 268 | | (WY) | 2001 | 2000 | 2001 | 2000 | 1995 | 2001 | 1995 | 2000 | 1995 | 2001 | 2000 |) | 2000 | | SUMM | ARY STATIST | rics | FOR 2 | 001 CALE | NDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEAR | S 1995 | 5 - | 2002 | | ANNU | AL TOTAL | | | 541777 | | | 688019 | | | | | | | | ANNU | AL MEAN | | | 1484 | | | 1885 | | | 1200 | | | | | HIGH | EST ANNUAL | MEAN | | | | | | | | 1885 | | | 2002 | | | ST ANNUAL M | | | | | | | | | 616 | | | 2000 | | | EST DAILY M | | | 27000 | Dec 1 | | 27000 | Dec 1 | | a27000 | Dec | | 2001 | | | ST DAILY ME | | | 220 | Aug 29 | | 190 | May 26 | | 190 | | | 2002 | | | AL SEVEN-DA | | | 234 | Aug 24 | | 209 | May 21 | | 209 | May | 21 | 2002 | | | MUM PEAK FI | | | | | | 35600 | Dec 1 | | | | | | | | MUM PEAK ST | | | | | | b35.44 | | | | | | | | | AL RUNOFF (| | | 1.88 | | | 2.39 | | | 1.52 | | | | | | AL RUNOFF (| | | 25.58 | 3 | | 32.48 | | | 20.70 | | | | | | ERCENT EXCE | | | 3640 | | | 5050 | | | 2700 | | | | | | ERCENT EXCE | | | 492 | | | 692 | | | 596 | | | | | 90 P | ERCENT EXCE | EEDS | | 275 | | | 280 | | | 306 | | | | Occurred during period of estimated record. Peak stage determined from high water mark. 310 NONCONNAH CREEK BASIN #### 07032200 NONCONNAH CREEK NEAR GERMANTOWN, TN $\label{location.--Lat 35^02'59", long 89^49'08", Shelby County, Hydrologic Unit 08010211, on right bank, 100 ft upstream from bridge on Winchester Road, 2.6 mi south of Germantown, and at mile 17.3.$ DRAINAGE AREA. -- 68.2 mi². PERIOD OF RECORD.--Occasional low-flow measurements, 1959-1964 and 1969; October 1969 to May 1985, October 1985 to January 1995, June 1996 to current year. REVISED RECORDS.--WRD TN-74-1: Drainage area, WRD TN-87-1 (P). GAGE.--Water-stage recorder. Datum of gage is 262.92 ft above NGVD of 1929, (from levels by National Resources Conservation Service). REMARKS.--Records fair except for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $3,700~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |--------|---------|-----------------------------------|---------------------|--------|------|-----------------------------------|------------------| | Oct 11 | 1545 | 5,790 | 16.04 | Mar 12 | 0530 | 5,400 | 15.64 | | Nov 29 | 0145 | *10,700 | *20.70 | Mar 17 | 0245 | 4,500 | 14.68 | | Dec 14 | 0015 | 4,220 | 14.37 | Mar 31 | 0630 | 3,750 | 13.82 | | Dec 23 | 0230 | 6,710 | 16.97 | Sep 26 | 2215 | 8,010 | 18.30 | | Jan 25 | unknown | 5 120 | 15 35 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Minimum discharge, 0.03 ft³/s, Oct. 28. | | | 210011 | 111027 001 | ,10 1221 11 | DAI | LY MEAN V | ALUES | 2002 1 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2002 | | | |--|--|---|---|--|---|---|---|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.9
1.6
1.3
2.2 | e0.58
e0.48
e0.45
e0.40
e0.35 | 136
49
24
18
12 | 6.9
6.3
5.9
5.4
6.9 | e190
e60
e25
e10
e10 | 6.9
5.8
5.5
3.4
2.9 | 331
102
53
20
13 | 120
18
569
762
101 | 7.2
5.7
3.5
1.9
4.9 | 4.7
10
26
5.6
2.6 | 61
16
3.7
1.7 | 2.5
2.4
1.3
0.85
1.1 | | 6
7
8
9
10 | 32
2.3
0.58
0.22
25 | e0.32
e0.32
e0.36
e0.38
e0.40 | 11
51
411
118
35 | 369
120
45
23
15 | e50
e160
e68
e35
e22 | 2.8
2.9
2.9
132
37 | 8.7
6.2
48
42
14 | 28
12
6.4
17
60 | 9.8
5.7
2.4
1.5
20 | 1.6
0.98
1.1
8.7 | 44
30
2.6
1.0
1.8 | 0.77
1.00
1.6
1.6 | | 11
12
13
14
15 | 2850
473
1700
596
71 | e0.42
e0.42
e0.42
e0.41
0.45 | 18
1770
2290
1640
210 | 12
8.1
6.8
5.7
5.0 | e13
e10
e8.5
8.4
9.2 | 449
2850
362
93
96 | 8.3
6.8
4.5
4.1
3.5 | 25
17
180
38
11 | 19
3.3
385
76
8.9 | 20
396
41
7.8
2.4 | 1.1
1.2
17
628
207 | 1.4
1.7
1.1
0.72
5.6 | | 16
17
18
19
20 | 14
5.6
4.9
3.0
1.1 | 0.59
1.9
1.7
9.3
4.9 | 927
2020
332
95
43 | 4.6
5.0
e12
e60
e450 | 13
7.1
6.7
157
845 | 860
2660
1670
314
1630 | 3.1
5.5
3.9
4.0
4.1 | 5.3
591
199
35
12 | 3.0
1.7
1.7
1.6
1.1 | 1.5
1.2
22
95
20 | 1120
124
72
17
6.8 | 10
19
3.2
83
1550 | | 21
22
23
24
25 | 0.88
0.52
0.52
54
47 | 3.9
1.9
1.5
978
34 | 26
772
2720
244
76 | e170
e23
e16
e75
e2300 | 134
45
21
14
11 | 294
76
33
19
12 | 7.7
64
4.3
16
27 | 6.1
4.1
3.1
3.4
2.8 | 1.0
0.99
1.2
2.3 | 3.8
1.5
1.2
2.8
7.7 | 4.2
5.6
3.7
233
212 | 329
29
5.3
2.0
1.5 | | 26
27
28
29
30
31 | 1.5
0.28
e0.27
e0.24
e0.50
e0.60 | 133
1150
2110
6990
1120 | 40
25
17
13
11
8.5 | e720
e140
e260
e100
e50
e50 | 20
15
8.3
 | 478
101
31
18
754
2220 | 4.5
3.5
2.0
1.3
407 | 37
12
62
439
90
14 | 2.6
73
8.2
3.1
3.0 | 21
11
1.0
0.74
43
460 | 16
6.1
3.5
2.7
1.7
2.0 | 2360
2290
201
27
11 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 5938.01
191.5
2850
0.22
2.81
3.24 | 12546.85
418.2
6990
0.32
6.13
6.84 | 14162.5
456.9
2720
8.5
6.70
7.73 | 5076.6
163.8
2300
4.6
2.40
2.77 | 1976.2
70.58
845
6.7
1.03
1.08 | 15222.1
491.0
2850
2.8
7.20
8.30 | 1223.0
40.77
407
1.3
0.60
0.67 | 3480.2
112.3
762
2.8
1.65
1.90 | 673.29
22.44
385
0.99
0.33
0.37 | 1305.92
42.13
460
0.74
0.62
0.71 | 2847.6
91.86
1120
1.0
1.35
1.55 | 6946.04
231.5
2360
0.72
3.39
3.79 | e Estimated ## NONCONNAH CREEK BASIN 311 #### 07032200 NONCONNAH CREEK NEAR GERMANTOWN, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) | OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---|---------------------------------------|---------------------------------------| | MEAN 20.51 103.0 MAX 192 418 (WY) 2002 2002 MIN 0.000 0.21 (WY) 1970 1972 | 173.7
616
1983
2.25
1977 | 155.6
531
1974
0.41
1986 | 188.0
604
1989
14.6
1978 | 210.3
659
1980
15.2
1986 | 179.6
834
1991
9.44
1978 | 109.5
407
1979
3.74
1988 | 61.66
300
1974
3.09
1988 | 43.04
354
1989
0.70
1976 | 19.22
91.9
2002
0.37
1980 | 30.11
232
2002
0.087
1984 | | SUMMARY STATISTICS | FOR 20 | 001 CALENI | DAR YEAR | E | FOR 2002 WAT | TER YEAR | | WATER YEARS | 1970 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUI MAXIMUM PEAK STAGE INSTANTANEOUS
LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 1 | 57051.15
156.3
6990
0.22
0.36
2.29
31.12
288
6.8
0.61 | Nov 29
Oct 9
Nov 4 | | 71398.31
195.6
6990
0.22
0.36
10700
20.70
0.03
2.87
38.94
454
11
1.1 | Nov 29
Oct 9
Nov 4
Nov 29
Nov 29
Oct 28 | | 107.3
215
22.4
6990
0.00
0.00
13100
27.11
0.00
1.57
21.37
198
5.4
0.17 | Oct 1
Jul 2
Mar 12 | 1969
1969
1989 | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for hydrologic studies reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables. #### Crest-stage partial-record stations The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from current meter or indirect measurements of peak flow. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. | | | | Water y | ear 2002 | maximum | Period o | of record ma | maximum | | |---|--|---|----------|------------------------|--|----------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | | CUMBE | ERLAND R | IVER B. | ASIN | | | | | | Whiteoak Creek
at Sunbright,
TN
(03409000) | Lat 36°14'38", long 84°40'14",
Morgan County, Hydrologic
Unit 05130104, at bridge on
U.S. Highway 27 in Sunbright.
Datum of gage is 1,294.05 ft
above NGVD of 1929. Drainage
area is 13.5 mi ² . | 1934,
1955-82,
1985-99
2000-02 | 3-18-02 | 9.23 | - | 5-27-73 | 17.24a | 5,560 | | | Wolf River near
Byrdstown, TN
(03416000) | Lat 36°33'37", long 85°04'23", Pickett County, Hydrologic Unit 05130105, on right bank 0.3 mi upstream from bridge on county road, 0.5 mi upstream from Widow Creek, 3.2 mi east of Byrdstown, 5.4 mi upstream from Lick Creek, and at mi 26.2. Datum of gage is 707.54 ft, Sandy Hook Datum. Drainage area is 106 mi ² . | 1942-91†,
1992-99
2000-02 | 3-18-02 | 10.30 | 10,700 | 9- 2-82 | 17.14 | 23,500 | | | Doe Creek at
Gainesboro, TN
(03418201) | Lat 36°21'23", long 85°39'20",
Jackson County, Hydrologic
Unit 05130106, at bridge on
Highway 56, at Gainesboro.
Datum of gage is 519.37 ft
aboveNGVD of 1929.
Drainage area is 5.72 mi ² . | 1978-99
2000-02 | 3-17-02 | 3.96 | - | 8-31-82 | 7.28 | - | | | Cane Creek near
Spencer, TN
(03419200) | Lat 35°44'36", long 85°23'33",
Van Buren County, Hydrologic
Unit 05130108, at bridge on
State Highway 30, 4.0 mi east
of Spencer. Drainage area is
134 mi ² . | 1997-99
2000-02 | 1-23-02 | 13.10 | - | 1-23-02 | 13.10 | - | | | | | | Water y | ear 2002 | maximum | Period o | of record maximum | | | |--|---|--------------------------------|----------|------------------------|--|----------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | C | UMBERLA | ND RIVER | BASIN- | -Continued | | | | | | Charles Creek
near McMinn-
ville, TN
(03421200) | Lat 35°43'00", long 85°46'05",
Warren County, Hydrologic
Unit 05130107, at bridge on
county road at Faulkner
Springs, 2.7 mi north of
McMinnville. Drainage
area is 31.1 mi ² . | 1955-99
2000-02 | 1-23-02 | 11.70 | 6,200 | 6-22-89 | 17.03 | 24,800 | | | Mulherrin Creek
near Gordons-
ville, TN
(03424900) | Lat 36°11'28", long 85°57'11",
Smith County, Hydrologic
Unit 05130108, at bridge
on State Highway 53, 1.3 mi
upstream from mouth, 1.5 mi
northwest of Gordonsville.
Drainage area is 26.9 mi ² . | 1982,
1986-99
2000-02 | 1-23-02 | 15.76 | - | 2-14-89 | 23.85 | - | | | Peyton Creek near
Monoville, TN
(03425040) | Lat 36°18'37", long 85°59'21",
Smith County, Hydrologic
Unit 05130201, at county
road bridge 1.3, mi north
of Monoville. Drainage
area is 40.0 mi ² . | 1986-99
2000-02 | 3-17-02 | 16.98 | - | 3-17-02 | 16.98 | - | | | Second Creek
near Walnut
Grove, TN
(03425365) | Lat 36°24'01", long 86°12'48",
Trousdale County, Hydrologic
Unit 05130201, at culvert on
State Highways 10 and 25,
2.6 mi west of Hartsville,
Drainage area is 3.47 mi ² . | 1986-99
2000-02 | 3-17-02 | 27.14 | - | 6-10-98 | 29.48 | - | | | Station Camp
Creek at
Cottontown, TN
(03425637) | Lat 36°27'06", long 86°32'16",
Sumner County, Hydrologic
Unit 05130201, at State
Highway 25 bridge in
Cottontown. | 1995-99
2000-02 | 3-17-02 | 15.01 | - | 6- 9-98 | 16.74 | - | | | East Fork Stones
River at Wood-
bury, TN
(03426800) | Lat 35°49'41", long 86°04'36",
Cannon County, Hydrologic
Unit 05130203, at bridge on
U.S. Highway 70S at
Woodbury. Datum of gage
is 676.23 ft above NGVD of
1929. Drainage area is 39.1 mi ² . | 1962-89†
1990-99
2000-02 | 1-23-02 | 14.61 | 7,390 | 3-15-73 | 16.75 | 13,200 | | | Brawleys Fork
below
Bradyville, TN
(03426874) | Lat 35°44'44", long 86°10'14",
Cannon County, Hydrologic
Unit 05130203, at bridge on
Bradyville Pike, 0.5 mi
northwest of Bradyville.
Drainage area is 15.4 mi ² . | 1983-99
2000-02 | 1-23-02 | 27.56 | 2,750 | 10- 1-89 | 27.94 | 2,850 | | | Reed Creek near
Bradyville, TN
(034269424) | Lat 35°44'44", long 86°12'31",
Rutherford County, Hydrologic
Unit 05130203, at bridge
on Bradyville Pike, 2.4 mi
northwest of Bradyville.
Drainage area is 3.52 mi ² . | 1983-99
2000-02 | 1-23-02 | 4.00 | - | 4-20-95 | 5.86 | - | | | | | _ | Water y | ear 2002 | maximum | Period | of record m | aximum | |--|--|--|----------|------------------------|--|---------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | CI | JMBERLAN | ND RIVEF | R BASIN- | Continued | | | | | East Fork Stones
River near
Lascassas, TN
(03427500) | Lat 35°55'06", long 86°20'02",
Rutherford County, Hydrologic
Unit 05130203, on left bank
50 ft upstream from highway
bridge, 2.5 mi southwest of
Lascassas, 3.7 mi downstream
of Bradley Creek, 6.0 mi
northeast of the courthouse
in Murfreesboro, and at mi
15.4. Datum of gage is
507.88 ft, Sandy Hook Datum.
Drainage area is 262 mi ² . | 1950-58†,
1963-91†,
1992-99
2000-02 | 1-23-02 | | 21,800 | 3-13-75 | 39.48 | 41,200 | | Bushman Creek
at Pitts Lane
Ford near
Compton, TN
(03427690) | Lat 35°53'08", long 86°20'47",
Rutherford County, Hydrologic
Unit 05130203, on right bank
75 ft upstream of bridge on
De Jarnett Lane, 0.1 mi west
of
intersection of De Jarnett
Lane and State Highway 96,
1.6 mi southwest of Compton.
Datum of gage is 569.74 ft above
NGVD of 1929. Drainage area
is 9.67 mi ² . | 1989-92†,
1993-99
2000-02 | 1-23-02 | 5.54 | 1,230 | 7-21-96 | 7.24 | 2,020 | | Lytle Creek at
Sanbyrne Drive
at Murfreesboro,
TN
(03428043) | Lat 35°49'38", long 86°23'28",
Rutherford County, Hydrologic
Unit 05130203, at bridge on
Sanbyrne Drive, 1 mi south
of intersection of Highways
41 and 231 in Murfreesboro.
Datum of gage is 591.91 ft
above NGVD of 1929. Drainage
area is 17.6 mi ² . | 1978-90,
1991-92†,
1993-99
2000-01
2002b | | | - | 1-23-99 | 3.36 | - | | Unnamed Sink
near
Almaville, TN
(03428270) | Lat 35°51'21", long 86°32'21"
Rutherford Count, Hydrologic
Unit 05130203, on left down-
stream wingwall of culvert on
Shored Road, 2.4 miles south-
east of Almaville. Datum of
gage is NGVD of 1929. | 1994-99
2000-02 | 1-24-02 | 604.69 | - | 3-27-94 | 607.36 | - | | West Fork Stones
River near
Smyrna, TN
(03428500) | Lat 35°56′25", long 86°27′54",
Rutherford County, Hydrologic
Unit 05130203, near left bank
at county bridge on Sulphur
Springs Road, 400 ft upstream
from Nice's Mill dam, 1.6 mi
downstream from Overall Creek,
4.2 mi southeast of Smyrna, and
at mi 6.4. Datum of gage is
500 ft, above NGVD of 1929.
Drainage area is 237 mi²,
includes 43 mi² without surface
drainage. | 1965-91†,
1992-99
2000-02 | 1-24-02 | 16.12 | 22,100 | 3-13-75 | 19.18 | 63,800 | | Unnamed Sink
on I-840 at
Leanna, TN
(03428513) | Lat 35°56'13", long 86°26'14",
Rutherford County, Hydrologic
Unit 05130203, 100 ft above
culvert on I-840, 0.4 mile
southwest of Leanna. Datum
of gage is NGVD of 1929. | 1994-99
2000-02 | 1-24-02 | 533.44 | - | 1-23-99 | 532.56 | - | | | | | Water | year 2002 1 | maximum | Period | of record ma | aximum | |--|---|--|---------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | C | UMBERLA | ND RIVE | R BASIN | -Continued | | | | | Unnamed Sink
at Leanna, TN
(03428515) | Lat 35°56'19", long 86°26'49",
Rutherford County, Hydrologic
Unit 05130203, 100 ft south of
intersection of E. Buckeye
Bottom Road and Sulphur
Springs Road 0.9 mi west of
Leanna. Datum of gage is
NGVD of 1929. | 1994-99
2000-02 | | <512.90 | - | 1- 23-99 | 515.41 | - | | McCrory Creek at
Ironwood Drive
at Donelson,
TN
(03430118) | Lat 36°09'07", long 86°39'02",
Davidson County, Hydrologic
Unit 05130203, at bridge
under Ironwood Drive,
1.3 mi southeast of inter-
section of U.S. Highway
70 (Lebanon Road) and
Donelson Pike in Donelson.
Datum of gage is 430.63 ft
above NGVD of 1929.
Drainage area is 7.31 mi ² . | 1977-99c
2000-02 | 3-17-02 | 8.04 | 1,920 | 5- 6-84 | 9.87 | 2,850 | | Mill Creek at
Nolensville,
TN
(03430400) | Lat 35°57'32", long 86°40'31",
Williamson County, Hydrologic
Unit 05130202, at bridge on
Sunset Road, 0.6 mi north-
west of Nolensville. Datum
of gage is 586.18 ft above
NGVD of 1929. Drainage
area is 12.0 mi ² . | 1965-99
2000-02 | 1-24-02 | 6.50 | 3,210 | 5- 7-84 | 9.82 | 11,400 | | Mill Creek near
Antioch, TN
(03431000) | Lat 36°04'54", long 86°40'50",
Davidson County, Hydrologic
Unit 05130202, at bridge on
Franklin-Limestone Road,
1.6 miles north of Antioch,
Datum of gage is 472.93 ft
above NGVD of 1929.
Drainage area is 64.0 mi ² . | 1954-61†,
1962-63,
1964-75†,
1976-92,
1993-96†
1997-99
2000-02 | 1-24-02 | 12.91 | 5,070 | 5- 4-79 | 23.78 | 30,100 | | Sevenmile Creek
at Blackman
Road, near
Nashville, TN
(03431040) | Lat 36°04'21", long 86°44'00",
Davidson County, Hydrologic
Unit 05130202, at bridge on
Blackman Road, 7.0 mi
southeast of State capitol in
Nashville. Datum of gage is
499.08 ft above NGVD of 1929.
Drainage area is 12.2 mi ² . | 1965-99
2000-02 | 7-12-02 | 4.91 | 1,450 | 6- 4-98 | 10.57 | 10,500 | | Mill Creek trib-
utary at Glen-
rose Avenue,
at Woodbine,
TN
(03431062) | Lat 36°07'02", long 86°43'37",
Davidson County, Hydrologic
Unit 05130202, at culvert
under Glenrose Avenue, 1.1
mi northeast of intersection
of Nolensville Road and
Thompson Lane in Woodbine,
and 750 ft upstream from mouth
Datum of gage is 443.52 ft
above NGVD of 1929. Drainage
area is 1.17 mi ² . | 1977-99c
2000-02c | 3-17-02 | 6.78 | 523 | 5- 6-84 | 9.12 | 833 | See footnotes at the end of the table. | | | | Water y | rear 2002 | maximum | Period | of record ma | ıximum | |---|--|------------------------|----------|------------------------|--|---------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | CI | JMBERLA | ND RIVEF | R BASIN- | -Continued | | | | | West Fork Browns
Creek at
General Bates
Drive, at
Nashville, TN
(03431120) | Lat 36°06'29", long 86°47'07",
Davidson County, Hydrologic
Unit 05130202, at bridge on
General Bates Drive, 4.0 mi
south of State capitol in
Nashville. Datum of gage
is 499.94 ft above NGVD of
1929. Drainage area is 3.30 mi ² . | 1965-99
2000-02 | 3-17-02 | 6.48 | 1,710 | 3-29-75 | 7.00 | 2,110 | | East Fork Browns
Creek at 100
Oaks Mall, at
Nashville, TN
(03431242) | Lat 36°06'36", long 86°46'03",
Davidson County, Hydrologic
Unit 05130202, at culvert on
access road to CarMax, 300 ft
ft west of 100-Oaks Shopping
Center, and 4.0 mi southeast
and of State capitol in Nashville.
Datum of gage is 496.69 ft above
NGVD of 1929. Drainage area is
1.58 mi ² . | | 3-17-02 | 501.50 | - | 8- 3-01 | 501.80 | - | | Browns Creek
at Factory
Street, at
Nashville, TN
(03431340) | Lat 36°08'26", long 86°45'31",
Davidson County, Hydrologic
Unit 05130202, at bridge
on Factory Street, 800 ft
downstream from Louisville
and Nashville Railroad bridge,
and 2.3 mi southeast of State
capitol in Nashville. Datum of
gage is 420.66 ft above NGVD
of 1929. Drainage area is 13.2 mi | 1965-99
2000-02 | 3-17-02 | 7.75 | 2,470 | 9-13-79 | 10.89 | 7,800 | | Pages Branch at
Avondale, TN
(03431490) | Lat 36°12'22", long 86°46'24",
Davidson County, Hydrologic
Unit 05130202, at culvert
under Trinity Lane, 900 ft
east of intersection of
Interstate 65 and Trinity
Lane at Avondale, 0.9 mi
upstream from mouth. Drain-
age area is 2.01 mi ² . | 1977-99c
2000-02c | 3-17-02 | 6.37 | 1,470 | 6- 5-98 | 6.32 | 1,430 | | Earthman Fork at
Whites Creek,
TN
(03431550) | Lat 36°15'55", long 86°49'51",
Davidson County, Hydrologic
Unit 05130202, at bridge
on Whites Creek Pike in town
of Whites Creek, 1,800 ft
upstream from mouth. Drain-
age area is 6.29 mi ² . | 1965-99
2000-02 | 3-17-02 | 8.06 | 1,740 | 5- 3-93 | 9.43 | 2,510 | | Ewing Creek
below Knight
Road, near
Bordeaux, TN
(03431581) | Lat 36°13'55", long 86°48'14",
Davidson County, Hydrologic
Unit 05130202, at downstream
side of bridge on Knight Road,
3.0 mi northeast of Bordeaux.
Datum of gage is NGVD of 1929
Drainage area is 13.3 mi ² . | 1976-99
2000-02 | 7-12-02 | 448.85 | - | 6-9-86 | 449.80 | - | | Sugartree Creek
at YMCA Access
Road, at Green
Hills, TN
(03431677) | Lat 36°06'13", long 86°49'12",
Davidson County, Hydrologic
Unit 05130202, at bridge on
YMCA Access Road, 0.5 mi
southwest of Hillsboro High
School, at Green Hills. Datum
of gage is NGVD of 1929.
Drainage area is 1.51 mi ² . | 1976-99
2000-02 | 3-17-02 | 544.68 | - | 9-13-79 | 545.23 | - | | | | | Water y | ear 2002 | maximum | Period | of record ma | aximum | |---|---|--|----------|------------------------|--|----------|------------------------|--| | Station name
and
number |
Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | C | UMBERLAI | ND RIVER | BASIN- | -Continued | | | | | Sugartree Creek
at Abbott
Martin Road,
at Green
Hills, TN
(03431679) | Lat 36°06'23", long 86°49'17",
Davidson County, Hydrologic
Unit 05130202, at bridge on
Abbott Martin Road, at inter-
section of Bedford Avenue and
Abbott Martin Road, at Green
Hills. Datum of gage is NGVD
of 1929. Drainage area is 2.19 m | 1976-99
2000-02 | 3-17-02 | | - | 11-27-94 | 531.54 | - | | Sycamore Creek
near Ashland
City, TN
(03431800) | Lat 36°19'12", long 87°03'04",
Cheatham County, Hydrologic
Unit 05130202, near right
bank on downstream end of
pier of bridge on State
Highway 49, at Sycamore, 3.2
mi north of Ashland City, 4.4
mi upstream from Spring Creek,
and at mi 8.6. Elevation of
gage is 400 ft above NGVD of
1929, from topograhic map.
Drainage area is 97.2 mi ² . | 1961-87†,
1988-91†,
1992-99
2000-02 | 1-24-02 | 11.89 | 10,500 | 2-21-89 | 13.50 | 18,500 | | Murfrees Fork
above Burwood,
TN
(03432470) | Lat 35°48'58", long 86°57'20", Williamson County, Hydrologic Unit 05130204, at county road bridge, just downstream from Cayce Branch, 1.6 mi east of Burwood. Drainage area is 7.43 mi ² . | 1986-99
2000-02 | 5-13-02 | 20.08 | - | 4-86 | 26.85 | - | | Little Harpeth
River at
Granny White
Pike, at
Brentwood, TN
(03432925) | Lat 36°01'30", long 86°49'09",
Williamson County, Hydrologic
Unit 05130204, at bridge on
Granny White Pike, 2.0 mi
southwest of Brentwood.
Datum of gage is 618.29 ft
above NGVD of 1929. Drainage
area is 22.0 mi ² . | 1978-99
2000-02 | 1-24-02 | 9.84 | 1,660 | 5- 4-79 | 17.55 | 9,260 | | Jones Creek near
Burns, TN
(03434590) | Lat 36°06'15", long 87°19'05",
Dickson County, Hydrologic
Unit 05130204, at bridge on
Rock Church Road, 3.5 mi
north of Burns and at mi
21.9. Drainage area is 13.3 mi ² . | 1984-99
2000-02 | 1-24-02 | 10.77 | 4,680 | 5- 6-84 | 9.87 | 3,750 | | Bartons Creek
near
Cumberland
Furnace, TN
(034350021) | Lat 36°15'02", long 87°20'00"
Dickson County, Hydrologic
Unit 05130205, at bridge on
Stayton road, 1.9 mi south-
east of Cumberland Furnace.
Drainage area is 22.3 mi ² . | 1984-99
2000-02 | 11-29-01 | 11.72 | - | 4-16-98 | 15.88 | - | | Louise Creek
near Grays
Chapel, TN
(034350035) | Lat 36°21'52", long 87°20'30",
Montgomery County,
Hydrologic Unit 05130206,
at bridge on old State Highway
48, 2.8 mi south of Liverworth.
Drainage area is 12.7 mi ² . | 1995-99
2000-02 | 11-29-01 | 8.59 | - | 3- 3-97 | 10.96 | - | | | | | Water y | ear 2002 1 | maximum | Period | of record ma | aximum | |---|---|---------------------------------|----------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | C | UMBERLA | ND RIVER | BASIN | -Continued | | | | | Honey Run Creek
near Cross
Plains, TN
(034351105) | Lat 36°31'52", long 87°40'10"
Robertson County, Hydrologic
Unit 05130206, at county road
bridge, 1.2 mi north-northwest
of Calistia. Drainage area is
17.0 mi ² . | 1995-99
2000-02 | 3-17-02 | 13.78 | - | 6- 9-98 | 16.66 | - | | Honey Run Creek
below Cross
Plains, TN
(034351113) | Lat 36°32'31", long 86°42'14",
Robertson County, Hydrologic
Unit 05130206, at Empson
Bridge on county road, 0.4
mi above mouth of Empson
branch, 0.6 mi southwest of
Cross Plains. Drainage area
is 20.0 mi ² . | 1986-99
2000-02 | 3-17-02 | 22.00 | - | 2- 3-90 | 23.11 | - | | Beaver Dam
Creek above
Springfield
(03435739) | Lat 36°31'40", long 86°49'29"
Robertson County, Hydrologic
Unit 05130206, at county
road bridge, 3.6 miles north-
east of Springfield, and at mile
1.6. Drainage area is 12.9 mi ² . | 1995-99
2000-02 | 11-29-01 | 11.60 | - | 6- 9-98 | 15.17 | - | | Sulphur Fork Red
River above
Springfield,
TN
(03435770) | Lat 36°30'47", long 86°51'44",
Robertson County, Hydrologic
Unit 05130206, on left bank
150 ft downstream from new
bridge on State Highway 49,
1.2 mi downstream from
Beaver Dam Creek, 1.3 mi
northeast of Springfield.
Datum of gage is 538.17 ft
above NGVD of 1929.
Drainage area is 65.6 mi ² . | 1975-88†,
1988-99
2000-02 | 3-17-02 | 11.40 | 4,230 | 3- 3-97 | 14.52 | 12,100 | | Spring Creek
tributary near
Cedar Hill, TN
(03435930) | Lat 36°32'08", long 86°59'26",
Robertson County, Hydrologic
Unit 05130206, at culvert on
Kinney Road, 1.2 mi southeast
of Cedar Hill. Drainage area is
1.40 mi ² . | 1986-99
2000-02 | 9-26-02 | 19.47 | 61.1 | 5-17-90 | 22.23 | 141 | | Sulphur Fork
Red River
above Port
Royal, TN
(03436082) | Lat 36°32'23", long 87°06'51",
Robertson County, Hydrologic
Unit 05130206, at bridge on
State Highway 76 1.7 miles
southeast of Port Royal.
Drainage area is 214 mi ² . | 1995-99
2000-02 | 11-29-01 | 30.79 | - | 3- 3-97 | 42.06 | - | | Passenger Creek
near Sango, TN
(03436130) | Lat 36°32'07", long 87°11'50"
Montgomery County,
Hydrologic Unit 05130206
at county road bridge 2.0 mi
northeast of Sango. Datum of
gage is NGVD of 1929.
Drainage area is 20.5 mi ² . | 1995-99
2000-02 | - < | <394.17 | - | 3- 3-97 | 405.76 | - | | Cummings Creek
near Dotson-
ville, TN
(03436505) | Lat 36°29'18", long 87°28'06",
Montgomery County,
Hydrologic Unit 05130205,
at bridge on Dotsonville Road,
1.1 mi northeast of Dotsonville.
Drainage area is 2.65 mi ² . | 1984-99
2000-02 | 9-26-02 | 7.37 | - | 12-25-87 | 9.45 | - | | | | | Water y | ear 2002 | maximum | Period o | of record m | aximum | |---|---|---|-----------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | TENNE | SSEE RIVE | R BASIN | 1 | | | | | Yellow Creek near
Shiloh, TN
(03436700) | Lat 36°20'55", long 87°32'20",
Montgomery County,
Hydrologic Unit 05130205,
at bridge on State Highway
13, 2.6 mi west of Shiloh,
3.0 mi downstream from
Leatherwood Creek, 9.0 mi
east of Erin. Datum of gage
is 390.13 ft above NGVD of
1929. Drainage area is 124 mi ² . | 1957-80†
1982-98
2000b
2001-02 | 11-29-01 | 14.29 | - | 5- 6-84 | 17.75 | 16,200 | | Caney Creek near
Cosby, TN
(03461230) | Lat 35°47'03", long 83°12'11",
Cocke County, Hydrologic
Unit 06010106, at culvert
under State Highway 32, 3.3
mi southeast of Cosby.
Drainage area is 1.62 mi ² . | 1967-99
2000-02 | 1-19-02 | 3.67 | 50 | 1-26-96 | 6.45 | 275 | | Cherokee Creek
near Embree-
ville, TN
(03465607) | Lat 36°12'24", long 82°29'23",
Washington County, Hydrologic
Unit 06010108, at culvert on
county road, 0.5 mi southeast
of Mayday, 1.4 mi northwest
of Kansas City, and at mi 1.3.
Drainage area is 22.9 mi ² . | 1984-99
2000-02 | 3-17-02 | 13.42 | - | 5- 7-84 | 18.37 | - | | Clear Fork near
Fairview, TN
(03465780) | Lat 36°19'33", long 82°33'47",
Washington County, Hydrologic
Unit 06010108, at culvert
on State Highway 81, 2.0 mi
southwest of Sulfur Springs,
and at mi 3.8. Drainage area
is 10.5 mi ² . | 1983-99
2000-02 | 1-23-02 | 7.67 | - | 1-23-02 | 7.67 | - | | Lick Creek near
Albany, TN
(03466890) | Lat 36°14'54", long 82°55'34",
Greene County, Hydrologic
Unit 06010108, at State
Highway 70 bridge, 0.3 mi
downstream from Puncheon
Camp Creek, 1.0 mi northwest
of Albany, and at mi 33.7.
Drainage area is 172 mi ² . | 1984-99
2000-02 | 3-18-02 | 15.98 | 7,490 | 3-27-94 | 17.41 | 10,800 | | Bent Creek at
Taylor Gap, TN
(03467480) | Lat 36°14'08", long 83°06'41",
Hamblen County, Hydrologic
Unit 06010108, at bridge on
county road (Mountain Valley
Road), 2.1 mi southwest of
Bulls Gap, 5.0 mi southeast
of Russellville. Drainage area
is 2.18 mi ² . | 1986-99
2000-02 | 3-18-02 | 15.25 | 2,430 | 3-27-94 | 15.56 | 2,550 | | Carter Branch
near White
Pine, TN
(03467992) | Lat 36°07'05", long 83°18'55",
Jefferson County, Hydrologic
Unit 06010108, at bridge on
county road, 1.6 mi north-
east of Kimbrough Crossroad,
1.8 mi northwest of White Pine.
Drainage area is 4.25 mi ² . | 1986-99
2000-02 | 3-18-02 | 7.87 | - | 4-29-97 | 9.14 | - | | Cedar Creek near
Valley Home,
TN
(03467993) | Lat 36°08'03", long
83°18'47",
Jefferson County, Hydrologic
Unit 06010108, at culvert on
county road, 1.7 mi southeast
of Valley Home, 1.9 mi south-
east of Witt, 2.2 mi northwest
of White Pine. Drainage area
is 2.01 mi ² . | 1986-99
2000-02 | 3-18-02 | 12.66 | 153 | 4-29-97 | 13.38 | 210 | See footnotes at the end of the table. | | | | Water y | ear 2002 | maximum | Period o | of record maximum | | | |--|--|---------------------------------|-----------|------------------------|--|--------------------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | | TENNESSE | E RIVER I | BASINC | ontinued | | | | | | Sinking Fork at
White Pine, TN
(03467998) | Lat 36°07'21", long 83°17'44",
Jefferson County, Hydrologic
Unit 06010108, at culvert on
county road, 0.9 mi north-
west of White Pine, 2.7 mi
northeast of Kimbrough Cross-
road. Drainage area is 6.38 mi ² . | 1986-99
2000-02 | 3-18-02 | 7.09 | 1,480 | 7-13-00 | 7.42 | 1,740 | | | Dumplin Creek at
Mt. Hareb, TN
(03470215) | Lat 36°04'59", long 83°25'51",
Jefferson County, Hydrologic
Unit 06010107, at culvert on
county road, 0.8 mi southeast
of Mt. Hareb, 4.3 mi south-
east of Jefferson City, 4.6
mi north of Dandridge.
Drainage area is 3.65 mi ² . | 1986-99
2000-02 | 3-18-02 | 11.11 | 250 | 3-18-02 | 11.11 | 250 | | | Indian Creek at
Childress, TN
(03476960) | Lat 36°25'38", long 82°15'54",
Sullivan County, Hydrologic
Unit 06010102, at bridge on
U.S. Highway 19, 3.3 mi south
of Bluff City, and at mi 4.6.
Drainage area is 6.79 mi ² . | 1983-99
2000-02 | 3-17-02 | 8.65 | - | 5- 7-84 | 10.73 | - | | | Reedy Creek at
Orebank, TN
(03487550) | Lat 36°33'42", long 82°27'36",
Sullivan County, Hydrologic
Unit 06010102, 80 ft upstream
from culvert, 0.3 mi north of
Orebank, 1.0 mi upstream from
Gaines Branch, and at mi 9.8.
Drainage area is 36.3 mi ² . | 1963-89†,
1990-99
2000-02 | 3-18-02 | 9.46 | 1,580 | 10- 2-77 | 11.61 | 4,940d | | | Forgey Creek at
Zion Hill, TN
(03490522) | Lat 36°29'12", long 82°53'08",
Hawkins County, Hydrologic
Unit 06010104, at culvert
on county road (Carter Valley
Road), 0.9 mi north of Zion
Hill, 7.8 mi northeast of
Rogersville. Drainage area is
0.86 mi ² . | 1986-99
2000-02 | 3-17-02 | 18.22 | 70 | 7-21-99 | 21.93 | 321 | | | Robertson Creek
near Persia,
TN
(03491540) | Lat 36°20'24", long 83°02'27",
Hawkins County, Hydrologic
Unit 06010104, at bridge on
State Highway 113, 0.25 mi
below Mooney Branch, and at
mi 3.0. Drainage area is
14.6 mi ² . | 1986-99
2000-02 | 3-18-02 | 12.00 | 985 | 8-13-93
3-27-94 | 12.50
12.50 | 1,120
1,120 | | | Dry Land Creek
tributary near
New Market, TN
(03494714) | Lat 36°03'33", long 83°34'13",
Jefferson County, Hydrologic
Unit 06010104, at culvert on
county road (Rocky Valley
Road), 3.0 mi south of New
Market, 3.3 mi northwest
of Piedmont. Drainage area
is 0.20 mi ² . | 1986-99
2000-02 | 3-17-02 | 11.84 | 50 | 4-17-98 | 13.22 | 82 | | | | | · | Water y | Water year 2002 maximum Period of rec | | | of record ma | cord maximum | | |---|---|---------------------------------|-----------|---------------------------------------|--|--------------------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | | TENNESSE | E RIVER I | BASINC | ontinued | | | | | | Flat Creek at
Luttrell, TN
(03494990) | Lat 36°11'45", long 83°44'44",
Union County, Hydrologic Unit
06010104, at bridge on State
Highway 61, 0.3 mi southwest
of Luttrell, 3.5 mi northwest
of Blaine. Drainage area is
22.4 mi ² . | 1986-99 | 3-18-02 | 12.21 | - | 7-1-97 | 13.85 | - | | | Little Ellejoy
Creek at
Prospect, TN
(03498010) | Lat 35°48'23", long 83°47'57"
Blount County, Hydrologic Unit
06010201, at bridge on county
road, 0.4 mi south of Prospect,
at mile 1.93. Drainage area is
5.48 mi. | 1995-99
2000-02 | 3-17-02 | 6.55 | - | 5-19-95 | 6.98 | - | | | Stock Creek at
Pickins Gap
Road near High
Bluff, TN
(034991105) | Lat 35°53'03", long 83°50'18"
Knox County, Hydrologic Unit
06010201, at bridge on Pickins
road, near High Bluff, TN. | 2000-02c | 3-17-02 | 9.32 | - | 7-29-01 | 9.53 | - | | | Ten Mile Creek
at Robinson
Road near
Knoxville, TN
(03499175) | Lat 35°56'42", long 84°03'24"
Knox County, Hydrologic Unit
06010201, at bridge on Robinson
Creek road, near Cedar Bluff, TN | | 3-17-02 | 7.68 | - | 3-17-02
9-22-02 | 7.68
7.68 | - | | | Baker Creek
tributary near
Binfield, TN
(03519610) | Lat 35°41'56", long 84°02'46",
Blount County, Hydrologic
Unit 06010204, at culvert
under county road, 1.5 mi
east of Binfield. Drainage
area is 2.10 mi ² . | 1966-77,
1979-99
2000-02 | 3-17-02 | 7.19 | - | 6-23-81 | 8.29 | - | | | Big War Creek at
Luther, TN
(03527800) | Lat 36°27'18", long 83°14'29",
Hancock County, Hydrologic
Unit06010205, at bridge on
county road, 0.4 mi south of
Luther 0.8 mi northwest of
Yount Town, 6.0 mi southwest
of Sneedville. Drainage area
is 22.3 mi ² . | 1986-99
2000-02 | 3-18-02 | 8.50 | 2,060 | 4-17-98 | 10.61 | 4,100 | | | Crooked Creek
near Maynard-
ville, TN
(03528390) | Lat 36°15'56", long 83°50'25",
Union County, Hydrologic Unit
06010205, at culvert on State
Highway 170, 2.5 mi northwest
of Maynardville, 5.5 mi north-
east of Paulette, Drainage
area is 2.23 mi ² . | 1986-99
2000-02 | 3-17-02 | 3.30 | 239 | 4-17-98 | 9.76 | 1,400 | | | Coal Creek at
Lake City, TN
(03534000) | Lat 36°13'14", long 84°09'27"
Anderson County, Hydrologic
Unit 06010207, at bridge
on U.S. Highway 25-W, at
Lake City. Datum of gage
is 842.76 ft above sea
level. Drainage area is
24.5 mi ² . | 1932-34†,
1955-99
2000-02 | 3-17-02 | 7.57 | 4,380 | 4-17-98 | 10.65 | 8,080 | | | Willow Fork near
Halls Cross-
roads, TN
(03535180) | Lat 36°05'59", long 83°54'27",
Knox County, Hydrologic
Unit 06010207, at culvert
under Quarry Road, 1.7 mi
northeast of Halls Crossroads.
Datum of gage is 1,027.82 ft
above NGVD of 1929.
Drainage area is 3.23 mi ² . | 1967-99
2000-02 | 3-18-02 | 6.82 | 437 | 4-17-98 | 8.40 | 990 | | | | | _ | Water y | ear 2002 | maximum | Period | l of record maximum | | | |---|---|--|-----------|------------------------|--|----------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | | TENNESSEI | E RIVER I | BASINC | Continued | | | | | | Beaver Creek near
Willow Fork at
Halls Cross-
roads, TN
(035351830) | Lat 36°04'57", long 83°55'34",
Knox County, Hydrologic
Unit 06010207, at bridge on
Old Andersonville Pike. | 1998-99c
2000-02c | 3-18-02 | 14.79 | - | 6-28-99 | 15.13 | - | | | Beaver Creek at
Brickyard Road
near Powell, TN
(03535195) | Lat 36°01'36", long 84°01'39",
Knox County, Hydrologic
Unit 06010207, at bridge
on Brickyard Road, near
Powell High School.
Drainage area is 52.5 mi ² . | 1998-99c
2000-02c | 3-18-02 | 13.50 | - | 3-18-02 | 13.50 | - | | | Conner Creek at
Steele Road near
Solway, TN
(03535617) | Lat 35°56'05", long 84°11'18"
Knox County, Hydrologic Unit
06010201, at bridge on Steele
road near Solway | 2000-02c | 9-21-02 | 8.45 | - | 9-21-02 | 8.45 | - | | | Coker Creek near
Ironsburg, TN
(03555900) | Lat 35°13'05", long 84°20'28",
Monroe County, Hydrologic
Unit 06020002, at bridge on
State Highway 68, 4.2 mi
southwest of Coker Creek.
Drainage area is 22.4 mi ² . | 1983-93e
1997-99
2000-02 | 1-23-02 | 10.54 | - | 4-17-98 | 13.38 | - | | | Wolftever Creek
near Ooltewah,
TN
(03566420) | Lat 35°03'43", long 85°03'59",
Hamilton County, Hydrologic
Unit 06020001, on right
downstream wingwall of county
road bridge, 0.6 mi downstream
from Southern Railway bridge,
0.9 mi south of Ooltewah, 1.6
mi upstream from Little
Wolftever
Creek, and at mi
16.1. Drainage area is 18.8 mi ² . | 1964-89†,
1992-99
2000-02 | - | <5.17 | <767 | 3-16-73 | 9.75 | 7,300 | | | North Chickamaug
Creek at Greens
Mill, near
Hixson, TN
(03566599) | a Lat 35°10'30", long 85°13'40",
Hamilton County, Hydrologic
Unit 06020001, at bridge
on Boy Scout Road, 2.3 mi
north of Hixson. Drainage
area is 99.5 mi ² . | 1925,1944,
1953-56,
1980-99
2000-02 | 1-23-02 | 30.23 | - | 10- 5-95 | 36.19 | - | | | Stringers Branch
at Leawood
Drive, at Red
Bank, TN
(03569168) | Lat 35°07'00", long 85°17'28",
Hamilton County, Hydrologic
Unit 06020001, at bridge
on Leawood Drive at Red Bank.
Drainage area is 1.54 mi ² . | 1980-99
2000-02 | 3-17-02 | 24.07 | - | 8-11-96 | 28.24 | - | | | Little Sequatchie
River at
Sequatchie, TN
(03571500) | Lat 35°07'47", long 85°35'10",
Marion County, Hydrologic
Unit 06020004, at Highway 27
bridge, 1.0 mi northeast of
Sequatchie. Drainage area
is 116 mi ² . | 1925,1929,
1930,
1932-34†,
1944,
1951-54,
1965,
1979-99
2000-02 | 1-23-02 | 9.62 | 7,540 | 12-22-90 | 11.78 | 10,600 | | | | | | Water y | ear 2002 | maximum | Period o | of record ma | aximum | |--|---|---------------------------------|-----------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | TENNESSE | E RIVER E | BASINC | Continued | | | | | Standifer Branch
at Jasper, TN
(03571730) | Lat 35°04'22", long 85°36'56",
Marion County, Hydrologic
Unit 06020004, at bridge on
U.S. Highways 41, 64, and 72,
0.6 mi east of courthouse,
0.8 mi above Town Creek, at
Jasper. Drainage area is
15.3 mi ² . | 1982-99
2000-02 | 1-23-02 | 15.22 | - | 12-22-90 | 19.59 | - | | Battle Creek
near Mont-
eagle, TN
(03571800) | Lat 35°08'03", long 85°46'15",
Marion County, Hydrologic
Unit 06030001, at bridge on
former U.S. Highways 41 and
64, 9.2 mi southeast of
Monteagle. Datum of gage is
621.51 ft above NGVD of 1929.
Drainage area is 50.4 mi ² . | 1955-99
2000-02 | 12-14-01 | 7.80 | - | 3-12-63 | 12.20 | 10,200 | | Richland Creek
near Corners-
ville, TN
(03583300) | Lat 35°19'10", long 86°52'20",
Marshall County, Hydrologic
Unit 06030004, at bridge
on U.S. Highway 31-A, 3.4
mi southwest of Corners-
ville. Datum of gage is
754.28 ft above NGVD of 1929.
Drainage area is 47.5 mi ² . | 1962-68†,
1969-99
2000-02 | 1-23-02 | 15.35 | 9,460 | 7-11-89 | 16.58 | 11,400 | | Indian Creek near
Olivehill, TN
(03594153) | Lat 35°16'33", long 88°01'12",
Hardin County, Hydrologic
Unit 06040001, on State High-
way 64, 14 mi east of
Savannah. Datum of gage is
440.00 ft above NGVD of 1929.
Drainage area is 158 mi ² . | 1997-99
2000-02 | 12- 1-01 | 16.27 | - | 1-22-99 | 17.06 | - | | Owl Creek at
Lexington, TN
(035944242) | Lat 35°38'26", long 88°22'13",
Henderson County, Hydrologic
Unit 06040001, on State High-
way 20, 1.37 mi east of
Lexington, and at mi 1.3.
Datum of gage is 400.00 ft
above NGVD of 1929, prior to
March 15, 1990 unknown.
Drainage area is 2.50 mi ² . | 1984-99
2000-02 | 3-18-02 | 25.95 | - | 3-2-97 | 26.64 | - | | Wartrace Creek
above Bell
Buckle, TN
(03597300) | Lat 35°37'45", long 86°21'22",
Bedford County, Hydrologic
Unit 06040002, at culvert
under county road, 2.7 mi
north of Bell Buckle. Drain-
age area is 4.99 mi ² . | 1966-99
2000-02 | 3-17-02 | 4.92 | 406 | 3-15-73 | 12.64 | 3,220 | | Fountain Creek
near Culleoka,
TN
(03599430) | Lat 35°28'18", long 86°57'23",
Maury County, Hydrologic
Unit 0604002, on upstream
side of bridge on State High-
way 50-A, 1.6 mi southeast of
Culleoka. 2.7 mi upstream from
Globe Creek, and 9.7 mi west
of courthouse in Lewisburg.
Drainage area is 26.9 mi ² . | 1966-68†,
1997-99
2000-02 | 1-23-02 | 12.68 | 7,060 | 5-13-67 | 14.16 | 9,280 | | | | | Water y | ear 2002 1 | maximum | Period of record maximum | | | | |---|--|---------------------------------|-----------|------------------------|--|--------------------------|------------------------|--|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | , | TENNESSE | E RIVER I | BASINC | Continued | | | | | | West Piney River
at Hwy 70 near
Dickson, TN
(03602170) | Lat 36°05'21", long 87°28'12",
Dickson County, Hydrologic
Unit 06040003, at U.S. Highway
70 bridge, 4.0 mi west of
Dickson. Drainage area is
2.16 mi ² | 1984-99
2000-02 | 3-17-02 | 27.44 | - | 5- 6-84 | 28.17 | 1,230 | | | Coon Creek above
Chop Hollow,
near Hohen-
wald, TN
(03604090) | Lat 35°35'19", long 87°41'09",
Perry County, Hydrologic
Unit 06040004, at bridge on
State Highway 20, 9.0 mi
northwest of Hohenwald,
Drainage area is 6.02 mi ² . | 1967-99
2000-02 | 12- 1-01 | 5.86 | 1,820 | 12- 9-72 | 6.80 | 3,150 | | | Blue Creek near
New Hope, TN
(03604580) | Lat 36°03'52", long 87°38'58",
Humphreys County, Hydrologic
Unit 06040003, at county
road bridge, 1.8 mi north-
west of New Hope, 3.1 mi
southeast of McEwen, and at
mi 3.9. Drainage area is
13.2 mi ² . | 1984-99
2000-02 | 3-17-02 | 18.53 | - | 6-13-89 | 18.82 | - | | | Trace Creek
above Denver,
TN
(03605555) | Lat 36°03'08", long 87°54'27",
Humphreys County, Hydrologic
Unit 06040005, on left bank at
bridge on U.S. Highway 70, 1.0
mi northeast of New Johnson-
ville. Datum of gage is 377.05
ft above NGVD of 1929. Drainag
area is 31.9 mi ² . | 1963-88†,
1989-99
2000-02 | 11-29-01 | 11.11 | 6,690 | 5- 6-84 | 13.61 | 11,700 | | | Cane Creek at
Stewart, TN
(03605880) | Lat 36°19'09", long 87°50'21", Houston County, Hydrologic Unit 06040005, at bridge on county road, 200 ft north of intersection of county road and State Highway 147, and at mi 7.0. Drainage area is 4.12 mi ² . | 1984-99
2000-02 | 11-29-01 | 18.98 | - | 2- 4-97 | 19.62 | - | | | | | OBIO | N RIVER | BASIN | | | | | | | Neil Ditch near
Henry, TN
(07024225) | Lat 36°10'19", long 88°23'33",
Henry County, Hydrologic
Unit 08010203, located on
county road, 2.7 mi southeast
of Henry, 1.6 mi north of
Henry-Carroll county line.
Drainage area is 4.07 mi ² . | 1984-99
2000-02 | 11-29-01 | 12.51 | - | 12-21-90 | 14.48 | - | | | Little Reedy
Creek near
Huntingdon, TN
(07024370) | Lat 35°55'44", long 88°29'50",
Carroll County, Hydrologic
Unit 008010203, located on
U.S. Highway 70, 0.6 mi
southwest of Leach, 5.6 mi
northeast of Cedar Grove.
Drainage area is 0.91 mi ² . | 1984-99
2000-02 | 11-29-01 | 14.71 | - | 3- 2-97 | 16.88 | - | | | | | Water year 2002 maximum | | | Period o | of record m | aximum | | |---|--|---|-----------|------------------------|--|--|---|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | OBION F | RIVER BAS | SINCor | ntinued | | | | | Spring Creek near
Greenfield, TN
(07024760) | Lat 36°11'24", long 88°45'53",
Weakley County, Hydrologic
Unit 08010203, on State High-
way 54, 3.2 mi northeast of
Greenfield. Datum of gage is
300.00 ft above NGVD of 1929.
Drainage area is 93.4 mi ² . | 1997-99
2000-02 | 11-30-01 | 28.42 | 8,800 | 11-30-01
3- 2-97
5- 6-99
3-19-00
2-16-01 | 28.42
28.03
24.83
23.43
25.19 | 8,800
7,800 f
1,260 f
810 f
1,800 f | | North Fork
Obion River
River near
Union City,
TN
(07025500) | Lat 36°23'59", long 88°59'43",
Obion County, Hydrologic
Unit 08010202, at bridge on
State Highway 22, 3.9 mi
southeast of Union City.
Datum of gage is 285.80
ft
above NGVD of 1929.
Drainage area is 480 mi ² . | 1929-66†,
1967-71†,
1989-93†,
1994-99
2000-02 | 12- 1-01 | 20.38 | 14,400 | 1-22-37 | 23.08 | 49,200 | | North Fork
Forked Deer
River at U.S.
Highway 45W
Bypass at
Trenton, TN
(07028505) | Lat 35°58'58", long 88°55'49",
Gibson County, Hydrologic
Unit 08010204, at bridge on
U.S. Highway 45W Bypass,
0.25 mi north of intersection of
U.S. Highway 45W Bypass and
State Highways 77 and 104 in
Trenton. Datum of gage is 306.8
ft above NGVD of 1929. Drainagarea is 73.9 mi ² . | | 11-29-01 | 11.41 | - | 12-21-90 | 12.00 | - | | Lewis Creek near
Dyersburg, TN
(07029090) | Lat 36°03'14", long 89°21'42",
Dyer County, Hydrologic Unit
08010204, at bridge on U.S.
Highway 51 (Business Route),
2.1 mi northeast of square
in Dyersburg. Datum of gage
is 276.52 ft above NGVD of
1929. Drainage area is
25.5 mi ² . | 1955-78,
1980-83,
1985-99
2000-02 | 11-29-01 | 15.74 | 4,500 | 3-9-64
2-15-90
10-4-90
12-13-91
5-3-93
11-17-93
5-25-95
7-31-96
3-2-97
5-7-98
5-6-99
5-27-00
2-16-01 | 19.31
17.57
18.17
14.53
14.07
14.57
12.51
16.81
19.10
16.15
16.26
14.69
15.40 | 5,450
7,490 g
8,850 g
3,050 g
2,700 g
3,090 g
1,790 g
6,130 g
11,000 g
4,830 g
5,000 g
3,180 g
3,880 g | | Hatchie River at
Sunnyhill, TN
(07029900) | Lat 35°31'23", long 89°15'12",
Haywood County, Hydrologic
Unit 08010208, at bridge on
State Highway 76, 0.6 mi
south of Sunnyhill, 4.9 mi
south of Brownsville.
Drainage area is 1,858 mi ² . | 1997-99
2000-02 | 1-28-02 | 31.64 | - | 3-5-97 | 34.21 | - | | Cane Creek at
Ripley, TN
(07030100) | Lat 35°45'25", long 89°33'05",
Lauderdale County, Hydrologic
Unit 08010208, at bridge on
State Highway 19, 1.3 mi
upstream from Hyde Creek, 1.5
mi northwest of Ripley.
Datum of gage is 295.93 ft
above NGVD of 1929. Drainage
area is 33.9 mi ² . | 1957-62†,
1963-70,h
1986-88†,
1989-99
2000-02 | 12-17-01 | 17.83 | 3,110 | 7- 1-89 | 23.16 | 6,360 | [†] Operated as a continuous-record gaging station. a A gage height of 17.45 ft occurred on 3-23-29. b Gage destroyed c Operated as a flood hydrograph station. d A peak discharge of 11,000 ft³/s occurred on 5-30-27, from reports of Tennessee Valley Authority. e Datum of gage prior to 1995 water year unknown due to bridge replacement. f Not previously published. g Revised. h Operated as crest-stage partial-record station. #### Miscellaneous Sites Measurements of streamflow at points other than gaging stations are given in the following table. Measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger(†). Discharge measurements made at miscellaneous sites during water year 2002 | | | | Drainage | Measured previously | Measu | rements | |--|---|--|-------------------------|--|---|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | (water
years) | Date | Discharge (ft ³ /s) | | | | TENNESSEE RIVER | BASIN | | | | | 03594153
Indian
Creek | Tennessee River | Lat 35°16'33", long 88°01'12",
Hardin County, Hydrologic
Unit 06040001, at bridge on
U.S. Hwy 64, .75 mi east of
Olivehill, 14 mi east of
Savannah. | 158 | 2001 | 5-14-02 | 239 | | 03600085
Carters
Creek | Duck River to
Tennessee River | Lat 35°43'39", long 86°59'19",
Maury County, Hydrologic
Unit 06040003, at bridge on
Petty Lane, 0.8 mi north of
Carters Creek, and at mile 4.7. | 16.6 | 1986-99
2000-01 | 11-27-01
2-26-02
5-21-02
8-20-02 | 10.9
17.0
12.7
.32 | | 03600086
Carters
Creek
Tributary | Carters Creek
to Duck River
to Tennessee
River | Lat 35°43'34", long 86°59'19",
Maury County, Hydrologic
Unit 06040003, at culvert on
Carters Creek Road, 0.7 mi
north of Carters Creek. | 2.94 | 1986-99
2000-01 | 11-27-01
2-26-02
5-21-02
8-20-02 | 18.8
6.0
3.2
.46 | | 03604090
Coon Creek
above Chop
Hollow, near
Hohenwald, | Buffalo River to Duck
River to Tennessee
River | Lat 35°35'19", long 87°41'09",
Perry County, Hydrologic
Unit 06040004, at bridge on
State Highway 20, 9.0 mi
northwest of Hohenwald. | 6.02 | 1967-99a
2000-01a | 5-14-02 | 10.5* | | 03605555
Trace Creek
above
Denver, TN | Tennessee River | Lat 36°03'08", long 87°54'27",
Humphreys County, Hydrologic
Unit 06040005, on left bank at
bridge on U.S. Highway 70, 1.0
mi northeast of New Johnsonville. | 31.9 | 1963-88‡
1989-99
2000-01 | 5-15-02 | 68.6* | | | | OBION RIVER BASI | N | | | | | 07024760
Spring Creek
near Green-
field, TN | Middle Fork Obion
River to Mississippi
River | Lat 36°11'24", long 88°45'53",
Weakley County, Hydrologic
Unit 08010203, on State Highway
54, 3.2 mi northeast of Greenfield. | 93.4 | 1997-99a
2000-01a | 5-14-02
9-27-02 | 138
1210 | | 07025500
North Fork
Obion River
near Union
City, TN | Obion River to
Mississippi River | Lat 36°23'59", long 88°59'43",
Obion County, Hydrologic Unit
08010202, at bridge on State
Highway 22, 3.9 mi southeast
of Union City. | 480 | 1929-66‡
1967-71‡
1989-93‡
1994-99a
2000-01a | 5-22-02 | 811 | | 07027360
South Fork
Forked Deer | Mississippi River | Lat 35°29'48", long 88°42'43",
Madison County, Hydrologic
Unit 08010205, at bridge on
State Route 197, 1.0 mi northeast
of Pinson, and 4.0 mi northwest
of Henderson, and at mile 65.6. | 239 | 2001 | 3-12-02 | 1650 | ## Miscellaneous Sites--Continued Discharge measurements made at miscellaneous sites during water year 2002 | | | | Drainage | Measured previously | Measu | irements | |---|---|---|----------------------------|-------------------------|---|---------------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge (ft ³ /s) | | | | OBION RIVER BASIN | Continued | | | | | 07027780
Nixon
Creek | South Fork Forked
Deer to Mississippi
River | Lat 35°16'33", long 88°01'12",
Haywood County, Hydrologic
Unit 08010205, at bridge on
Rudolf Road 2.2 mi from
confluence with South Fork
Forked Deer River. | | | 4-24-01
8- 7-01 | 51.5
*0.98 | | 07027900
Black
Creek | South Fork Forked
Deer to Mississippi
River | Lat 35°48'57", long 89°19'15",
Crockett County, Hydrologic
Unit 08010205, at bridge on
State Hwy 88, 3.2 mi
south of Chestnut Bluff. | 27.3 | 1958-61
1963
2001 | 3-13-02
5-13-02 | 11.4
905 | | 07028000
South Fork
Forked Deer
River | Mississippi River | Lat 35°51'43", long 89°20'52",
Lauderdale County, Hydrologic
Unit 08010205, at bridge on
Espy Park Rd., 3 mi southeast
of Halls and 1 mi downstream
of confluence of Black Creek at
South Fork Forked Deer River. | 1003 | 1930-57
2001 | 3-13-02 | 3290 | | 07028838
Bethel
Branch | North Fork Forked
Deer to Mississippi
River | Lat 36°02'37", long 89°10'48",
Dyer County, Hydrologic
Unit 08010204, at bridge on
Nebo Road, 1.1 mi east of
Tatumville. | | | 9-25-02
9-26-02 | 0.38*
1010 | | 07028850
Doakville
Creek | North Fork Forked
Deer to Mississippi
River | Lat 36°02'18", long 89°12'09",
Dyer County, Hydrologic
Unit 08010204, at bridge on
Tatumville Road, 1.1 mi
southeast of Tatumville. | | | 9-26-02
9-27-02 | 946
484 | | 07029010
Buck Creek | Middle Fork Forked
Deer to North Fork
Forked Deer to
Mississippi River | Lat 35°57'08", long 89°07'04",
Gibson County, Hydrologic
Unit 08010204, at bridge on
Eaton Brazil Road, 1 mi
southeast of Eaton. | | | 9-26-02
9-27-02 | 581
1680 | | 07029080
Pond
Creek | North Fork Forked
Deer to Mississippi
River | Lat 35°59'48", long 89°22'37",
Dyer County, Hydrologic
Unit 08010204, at bridge on
Sorrell Chapel Road, 3.3 mi
north of Fowlkes. | 68.0 | | 9-25-02
9-26-02
9-27-02 | 3.7*
594
749 | | 07029090
Lewis
Creek near
Dyersburg,
TN | North Fork Forked
Deer to Mississippi
River | Lat 36°03'14", long 89°21'42",
Dyer County, Hydrologic
Unit 08010204, at bridge on
U.S. Highway 51 (Business
Route), 2.1 mi northeast of
square in Dyersburg. | 25.5 | 1980-83,a
1985-99,a | 5-17-02
5-17-02
5-17-02
5-17-02
5-22-02 | 4110*
3100
2770
2360
5.3* | ## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES ## Miscellaneous Sites--Continued Discharge measurements made at miscellaneous sites during water year 2002 | | | | Drainage | Measured previously | Measu | irements | |--------------------------------|---|---|----------------------------|---------------------|----------|--------------------------------| | Stream | Tributary
to | Location | area
(mi ²) | (water
years) | Date | Discharge (ft ³ /s) | | | | OBION RIVER BASINC | Continued | | | | | 07029880
Poplar
Creek | Hatchie River to
Mississippi River | Lat 35°26'38", long 89°14'12",
Haywood County, Hydrologic
Unit 08010208, at bridge on
State Route 179. | | | 12-18-01 | 27 | | 07030100
Cane
Creek | Hatchie River to
Mississippi River | Lat 35°45'25", long 89°33'05"
Lauderdale County, Hydrologic
Unit 08010208, at bridge on
State Highway 19, 1.3 mi
upstream from Hyde Creek,
1.5 mi northwest of Ripley. | 33.9 | 1957-62,
1985-88 | 5-21-00 | 4.2* | | | | WOLF RIVER BAS | SIN | | | | | 07031660
Wolf River | Mississippi River | Lat 35°07'58", long 89°51'18",
Shelby County, Hydrologic
Unit 08010210, at bridge on
Walnut Grove Road at
Memphis. | 709 | 1986-90‡
2001 | 7- 2-02 | *293 | | 07031670
Wolf River | Mississippi River | Lat 35°09'32", long 89°52'57",
Shelby County, Hydrologic
Unit 08010210, at bridge on
Summer Avenue at Memphis. | | 1963
1986 | 6-20-02 | 502 | | 07031675
Wolf River | Mississippi River | Lat 35°10'22", long 89°53'54",
Shelby County, Hydrologic
Unit 08010210, at bridge on
Covington Pike at Memphis. | | 2001 | 7- 2-02 | *298 | | 07031718
Wolf River | Mississippi River | Lat 35°11'14", long 89°56'37",
Shelby County, Hydrologic
Unit 08010210, at bridge on
North Highland Street at
Memphis. | | 2001 | 7- 2-02 | *341 | | 07032265
Cypress
Creek | Nonconnah Creek to
Mississippi River | Lat 35°02'01", long 90°04'12",
Shelby County, Hydrologic
Unit 08010211, at bridge on
Horn Lake Road, at Memphis. | | | 10-30-01 | *0.03 | | 07032305
Horn Lake
Creek | Mississippi River | Lat 34°59'51", long 90°05'47",
Shelby County, Hydrologic
Unit 08010211, at bridge on
Weaver Road at Memphis. | | | 10-30-01 | *3.5 | [‡] Operated as continuous record station. a Operated as crest-stage gage. #### Springs In 1931 a study of large springs in Tennessee was made and the results published in WSP 713. From 1950 to 1954 a more detailed study, including some of these springs, was made. Results of this study and all subsequent spring measurements were published annually in WSP'S from 1950 to 1960. Since 1960 results of measurements have been published in annual State reports. Measurements made in the 2002 water year are given in the following table. Discharge measurement of springs during water year 2002 | Site number and name | Location | tion Tributary to | | Discharg
(gpm) (ft | | |------------------------------------|--|--|---------------------|-----------------------|--------------| | | | COFFEE COUNTY | | | | | 03578400
Pond Spring | Lat 35°25'10", long 85°58'29",
Hydrologic Unit 06030003,
0.5 mi northwest of Hillsboro. | Bradley Creek to Elk
River to Tennessee River | 6-03-02
10-22-02 | 2,700
758 | 6.02
1.69 | | 03578448
Blue Spring | Lat 35°25'59", long 85°59'34",
Hydrologic Unit 06030003,
2.0 mi northwest of Hillsboro | Blue Spring Creek to
Bradley Creek to Elk
River to Tennessee River | 6-03-02
10-22-02 | 1,780
408 | 3.96
.91 | | 03578490
Joe Marlow
Spring | Lat 35°21'38", long 85°58'35",
Hydrologic Unit 06030003,
0.9 mi northwest of Prairie Plains. | Bradley Creek to
Elk River to
Tennessee River | 6-03-02 | 3,140 | 7.00 | | 03578495
Unnamed
Spring | Lat 35°21'23", long 85°58'43",
Hydrologic Unit 06030003,
0.9 mi west of Prairie Plains. | Bradley Creek to
Elk River to
Tennessee River | 6-03-02
10-22-02 | 2,370
1,270 | 5.28
2.82 | | 035785004
Unnamed
Spring | Lat 35°20'29", long 85°58'55",
Hydrologic Unit 06030003,
1.1 mi west of Prairie Plains. | Bradley Creek to
Elk River to
Tennessee River | 6-03-02
10-22-02 | 3,080
898 | 6.87
2.0e | | 03596094
Wiley
Spring | Lat 35°24'34", long 86°06'51",
Hydrologic Unit 06040002,
0.3 mi northwest of Belmont. | Wiley Creek to Crumpton
Creek to Duck River to
Tennessee River | 6-04-02
10-22-02 | 1,020
126 | 2.28 | | 03596300
Short
Spring | Lat 35°24'16", long 86°10'40",
Hydrologic Unit 06040002,
3.2 mi northeast of Tullahoma. | Bobo Creek to
Duck River to
Tennessee River | 6-04-02
10-22-02 | 4,140
2,320 | 9.22
5.16 | | | | FRANKLIN COUNTY | | | | | 03579045
Spring Creek
Spring | Lat 35°18'18", long 86°07'07",
Hydrologic Unit 06030003,
2.9 mi north of Estill Springs. | Spring Creek to
Elk River to
Tennessee River | 6-03-02
10-23-02 | 89.9
35.9 | .20
.08 | e Estimated #### Coffee and Franklin counties, TN special study A series of low-flow discharge measurements were made June and October 2002, in the vicinity of Coffee and Franklin counties, to define areas of potential ground-water supplies, low-flow hydrology and quality of water. The measurements were made during a period of constant base flow. Revised drainage area designated by an asterisk(*). | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured
discharge
(ft ³ /s) | Water temp. | Specific cond. (us/cm) | |---|--|--|--|--------------------|---|--------------|------------------------| | | | TENNESSEE RIVER | BASIN | | | | | | 03578300
Bean Creek at
Prairie Plains,
TN | Elk River to
Tennessee River | Lat 35°20'34", long 85°57'37"
Coffee County, Hydrologic
Unit 06030003, at County Road
Bridge, 0.5 mi east of Prairie
Plains. | *17.60 | 6-3-02
10-22-02 | 5.9
.50 | 21.1
16.0 | 285
366 | | 03578395
Bradley Creek | Elk River to
Tennessee River | Lat 35°24'50", long 85°58'31",
Coffee County, Hydrologic
Unit 06030003, on State
Route 41, 0.2 mi northwest
of Hillsboro. | *11.78 | 6-3-02
10-22-02 | 2.71
.06 | 19.5
18.9 | 140
310 | | 03578399
Bradley Creek
Tributary above
Pond Spring
at Hillsboro | Bradley Creek to
Elk River to
Tennessee River | Lat 35°25'11", long 85°58'28",
Coffee County, Hydrologic
Unit 06030003, 0.6 mi northwest
of Hillsboro. | 1.53 | 6-3-02
10-22-02 | 0 | | | | 03578404
Bradley Creek
Tributary | Bradley Creek to
Elk River to
Tennessee River | Lat 35°24'52", long 85°58'35",
Coffee County, Hydrologic
Unit 06030003, on State
Route 41, 0.3 mi northwest
of Hillsboro. | 1.75 | 6-3-02
10-22-02 | 6.60
1.46 | 20.5
15.5 | 285
407 | | 03578445
Blue Spring
Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°26'03", long 85°59'38",
Coffee County, Hydrologic
Unit 06030003, 2.1 mi
northeast of Hillsboro. | *3.98 | 6-3-02
10-22-02 | 0 | | | | 03578449
Warren Branch
near Blue
Spring near
Hillsboro | Blue Spring Creek
to Bradley Creek
Elk River to
Tennessee River | Lat 35°25'55", long 85°59'22",
Coffee County, Hydrologic
Unit 06030003 on Blue Spring
Road 1.7 mi northwest of
Hillsboro. | 5.84 | 6-3-02
10-22-02 | 0 | | | | 03578452
Blue Spring
Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°25'04", long 85°59'10",
Coffee County, Hydrologic
Unit 06030003, on old
Hillsboro Highway, 0.9 mi
northwest of Hillsboro. | *10.96 | 6-3-02
10-22-02 | 3.27
.62 | 15.5 |
445 | | 03578458
Bradley Creek
Tributary near
Cow Pond | Bradley Creek to
Elk River to
Tennessee River | Lat 35°23'34", long 86°01'29",
Coffee County, Hydrologic
Unit 0603003, on Access
Highway, 2.0 mi northwest
of AEDC. | 1.62 | 6-3-02
10-22-02 | 0 |
 |
 | | 03578460
Unnamed
Tributary to
Bradley Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°24'10", long 86°01'10"
Coffee County, Hydrologic
Unit 06030003, 3.0 mi
southwest of Hillsboro. | *2.16 | 6-3-02
10-22-02 | 0 | | | | 03578465
Unnamed
Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°24'12", long 85°59'51"
Coffee County, Hydrologic
Unit 06030003, 1.6 mi
southwest of Hillsboro. | *5.73 | 6-3-02
10-22-02 | 0 | | | | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |--|---|--|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BAS | INcontinued | | | | | | 03578467
Bradley Creek
at Hwy 127
near Hillsboro | Bradley Creek to
Elk River to
Tennessee River | Lat 35°23'45", long 85°58'40",
Coffee County, Hydrologic
Unit 06030003, on Hwy 127
1.2 mi south of Hillsboro. | *32.50 | 6-3-02
10-22-02 | 10.7
1.18 | 22.0
17.5 | 300
380 | | 03578468
Collier Branch
at Prairie Plains
Road near
Hillsboro | Bradley Creek to
Elk River to
Tennessee River | Lat 35°23'42", long 85°58'10"
Coffee County, Hydrologic
Unit 06030003, on Prairie
Plains Road 1.2 mi south
of Hillsboro. | *1.61 | 6-3-02
10-22-02 | .15 | 20.5 | 180 | | 03578469
Bradley Creek
at I-24 near
Hillsboro | Elk River to
Tennessee River
 Lat 35°22'52, long 85°58'46",
Coffee County, Hydrologic
Unit 06030003, on Interstate
24, 2.2 mi south of Hillsboro. | *36.17 | 6-3-02
10-22-02 | 11.6
0 | 20.5 | 302 | | 03578470
Bradley Creek | Elk River to
Tennessee River | Lat 35°22'16", long 85°58'23",
Coffee County, Hydrologic
Unit 06030003, 1.4 mi north-
west of Prairie Plains. | *36.80 | 6-3-02
10-22-02 | 10.8 | 20.7 | 447
 | | 03578485
Bradley Creek
near Unnamed
Spring near
Prairie Plains | Elk River to
Tennessee River | Lat 35°21'38", long 85°58'32",
Coffee County, Hydrologic
Unit 06030003, 1.1 mi north-
west of Prairie Plains. | *37.97 | 6-3-02
10-22-02 | 8.10
.66 | 21.4
15.7 | 301
435 | | 03578500
Bradley Creek | Elk River to
Tennessee River | Lat 35°21'21", long 85°58'45",
Coffee County, Hydrologic
Unit, 06030003, on Miller
Cross Road, 0.9 mi west of
Prairie Plains. | *38.53 | 6-3-02
10-22-02 | 27.2
11.8 | 17.5
15.6 | 469
411 | | 035785002
Bradley Creek | Elk River to
Tennessee River | Lat 35°20'32", long 85°59'01",
Coffee County, Hydrologic
Unit 06030003, 1.1 mi west
of Prairie Plains. | *39.73 | 6-3-02
10-22-02 | 46.4
9.75 | 20.5
15.0 | 300
372 | | 035785003
Bradley Creek
Tributary at
Prairie Plains | Bradley Creek to
Elk River to
Tennessee River | Lat 35°20'39", long 85°58'55",
Coffee County, Hydrologic
Unit 06030003, 0.9 mi west
of Prairie Plains. | *0.31 | 6-4-02
10-22-02 | 0 | | | | 035785015
Dry Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°22'47", long 86°01'06",
Coffee County, Hydrologic
Unit 06030003, on Banes
Road, 0.1 mi north of
junction will Miller Cross
Road. | *0.68 | 6-3-02
10-22-02 | 0 | | | | 035785016
Dry Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°22'07", long 85°59'44",
Coffee County, Hydrologic
Unit 06030003, on State
Route 127, 3.6 mi southwest
of Hillsboro | *3.68 | 6-3-02
10-22-02 | 0 | |
 | | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |--|---|---|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BASIN- | -continued | | | | | | 035785017
Dry Creek | Bradley Creek to
Elk River to
Tennessee River | Lat 35°21'39", long, 85°59'27",
Coffee County, Hydrologic
Unit 06030003, on Miller
Cross Road, 1.6 mi northwest
of Prairie Plains. | *4.17 | 6-3-02
10-22-02 | .003e
0 | |
 | | 035785018
Dry Creek
at mouth at
Prairie Plains | Bradley Creek to
Elk River to
Tennessee River | Lat 35°20'26", long, 85°59'07",
Coffee County, Hydrologic
Unit 06030003, 1.2 mi south-
west of Prairie Plains. | *5.11 | 6-3-02
10-22-02 | 8.26
1.91 | 18.7
14.5 | 282
307 | | 035785019
Bradley Creek
below Mill
Dam near
Prairie Plains | Elk River to
Tennessee River | Lat 35°20'21", long, 85°59'07",
Coffee County, Hydrologic
Unit 06030003, 1.3 mi south-
west of Prairie Plains. | *45.29 | 6-3-02
10-22-02 | 27.8
12.9 | 18.2
14.5 | 297
325 | | 03578502
Bradley Creek | Elk River to
Tennessee River | Lat 35°20'07", long, 85°59'46",
Coffee County, Hydrologic
Unit 06030003, on Dickerson
Road, 1.5 mi southwest of
Prairie Plains. | *45.49 | 6-3-02
10-22-02 | 34.5
13.0 | 18.1
14.0 | 298
331 | | 03578508
Possum
Branch
Tributary | Possum Branch to
Elk River to
Tennessee River | Lat 35°20'44", long, 86°01'31",
Coffee County, Hydrologic
Unit 06030003, on State Route
127, 1.5 mi northeast of
Duncantown. | 0.43 | 6-4-02
10-22-02 | .001 | | | | 03578509
Possum Branch
Tributary at
Wimbley Road | Possum Branch to
Elk River to
Tennessee River | Lat 35°20'27", long 86°01'04",
Coffee County, Hydrologic
Unit 06030003, on Wimbley
Road, 3.1 mi southeast of AEDC. | 0.20 | 6-4-02
10-22-02 | .20
.18 | 16.2
15.5 | 71
.76 | | 03578510
Possum
Branch | Elk River to
Tennessee River | Lat 35°20'02", long, 86°01'01",
Franklin County, Hydrologic
Unit 06030003, on Calls Circle
Road, 0.7 mi east of intersection
with State Route 127, 1.4 mi
northwest of Duncantown. | *1.53 | 6-4-02
10-22-02 | .27
.14 | 25.2
17.9 | 84
96 | | 03578515
Possum
Branch | Elk River to
Tennessee River | Lat 35°19'32", long, 86°01'08",
Franklin County, Hydrologic
Unit 06030003, on county road,
1.3 mi east of Duncantown. | *1.90 | 6-4-02
10-22-02 | .32
.19 | 23.2
16.3 | 82
102 | | 03578610
Brumalow
Creek | Elk River to
Tennessee River | Lat 35°21'55", long, 86°02'48",
Coffee County, Hydrologic
Unit 06030003, 0.8 mi
northwest of Duncantown. | *0.55 | 6-3-02
10-22-02 | .04
.02 | 19.3
14.5 | 165
286 | | 03578625
Brumalow
Creek | Elk River to
Tennessee River | Lat 35°21'23", long, 86°02'37",
Coffee County, Hydrologic
Unit 06030003, on unimproved
road, 1.5 mi north of Old Brick
Church Road, 2.1 mi north of
Duncantown. | *0.90 | 6-3-02
10-22-02 | .31
.18 | 20.0
15.0 | 134
198 | | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |---|--|--|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BASIN- | -continued | | | | | | 03578630
Brumalow
Creek
Tributary | Brumalow Creek to
Elk River to
Tennessee River | Lat 35°21'44", long, 86°01'41",
Coffee County, Hydrologic
Unit 06030003, on county road,
0.8 mi southeast of intersection
with Arnold Center Road. | 0.58 | 6-3-02
10-22-02 | .01 | 20.1 | 440 | | 03578635
Brumalow
Creek
Tributary | Brumalow Creek to
Elk River to
Tennessee River | Lat 35°21'26", long, 86°02'15",
Coffee County, Hydrologic
Unit 06030003, on county road,
1.5 mi north of Old Brick
Church Road, 2.2 mi north of
Duncantown. | 1.40 | 6-3-02
10-22-02 | .30 | 18.1
 | 18 | | 03578640
Brumalow
Creek
Tributary | Brumalow Creek to
Elk River to
Tennessee River | Lat 35°21'21", long, 86°02'34",
Coffee County, Hydrologic
Unit 06030003, 1.5 mi north
of Old Brick Church Road,
2.1 mi north of Duncantown. | *1.59 | 6-3-02
10-22-02 | .50
.07 | 18.3
14.5 | 74
125 | | 03578670
Brumalow
Creek
Tributary | Brumalow Creek to
Elk River to
Tennessee River | Lat 35°20'51", long, 86°02'46",
Coffee County, Hydrologic
Unit 06030003, on unimproved
road, 0.4 mi north of Old Brick
Church Road, 0.8 mi northwest
of Duncantown. | *0.67 | 6-3-02
10-22-02 | .02 | 17.1
 | 36 | | 03578680
Brumalow
Creek | Elk River to
Tennessee River | Lat 35°20'30", long, 86°02'41",
Franklin County, Hydrologic
Unit 06030003, on unimproved
road, 0.5 mi north of Old Brick
Church Road, 1.2 mi northwest
of Duncantown. | *3.92 | 6-3-02
10-22-02 | 1.31
.31 | 19.8
14.7 | 74
152 | | 03578700
Brumalow
Creek | Elk River to
Tennessee River | Lat 35°20'11", long, 86°02'39",
Franklin County, Hydrologic
Unit 06030003, 0.6 mi northwest
of Duncantown. | *4.13 | 6-3-02
10-22-02 | 1.36
.28 | 21.1
14.7 | 67
142 | | 03578712
Brumalow
Creek
Tributary at
Woods Reserve | Elk River to
Tennessee River | Lat 35°20'04", long 86°02'47",
Franklin County, Hydrologic
Unit 06030003, 0.7 mi northwest
of Duncantown. | 1.02 | 6-3-02
10-22-02 | 0 | | | | 03578714
Brumalow
Creek
Tributary at
Old Brick
Church Road | Brumalow Creek
to Elk River to
Tennessee River | Lat 35°20'09", long 86°02'24",
Franklin County, Hydrologic
Unit 06030003, on Old Brick
Church Road, 0.8 mi north of
Duncantown. | 0.86 | 6-3-02
10-22-02 | 0 | |
 | | 03578725
Hardaway
Branch at
Old Brick
Church Road | Elk River to
Tennessee River | Lat 35°20'18", long 86°03'35",
Franklin County, Hydrologic
Unit 06030003, on Old Brick
Church Road, 1.1 mi northeast
of Duncantown. | 0.75 | 6-3-02
10-22-02 | 0 | | | | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water
temp.
(C°) | Specific
cond.
(us/
cm) | |---|---|--|--|--------------------|---|------------------------|----------------------------------| | | | TENNESSEE RIVER BASIN- | -continued | | | | | | 03578975
Rowland Creek
at Arnold
Center Road | Elk River to
Tennessee River | Lat 35°21'29", long 86°04'05",
Coffee County, Hydrologic
Unit 06030003, on Arnold
Center Road, 1.5 mi southwest
of AEDC. | *0.81 | 6-4-02
10-23-02 |
38.1
9.17 | 29.1
18.3 | 146
179 | | 03578980
Rowland Creek
Tributary at
USTI Road
at AEDC near
Manchester | Rowland Creek to
Elk River to
Tennessee River | Lat 35°20'28", long 86°05'35",
Franklin County, Hydrologic
Unit 06030003, 3.4 mi
southwest of AEDC. | *3.11 | 6-4-02
10-23-02 | 38
9.11 | 25.2
19.3 | 161
173 | | 03578987
Rowland Creek
at End of
Roadway at
AEDC near
Manchester | Elk River to
Tennessee River | Lat 35°20'10", long 86°06'37",
Franklin County, Hydrologic
Unit 06030003, 4.3 mi
southwest of AEDC at Arnold
Road. | *5.19 | 6-5-02
10-23-02 | 34.1
11.5 | 24.6
18.9 | 162
161 | | 03578988
Rowland Creek
Tributary at
Rowland Creek
near Manchester | Tennessee River | Lat 35°20'11", long 86°06'42",
Franklin County, Hydrologic
Unit 06030003, on Arnold
Air Force Base Road, 4.2 mi
northeast of Estill Springs. | 1.02 | 6-5-02
10-23-02 | 0 | | | | 03579020
Spring Creek
in Saltwell
Hollow | Elk River to
Tennessee River | Lat 35°19'33", long 86°07'39",
Franklin County, Hydrologic
Unit 06030003, 2.6 mi north of
Estill Springs. | *2.75 | 6-5-02
10-23-03 | 0 | | | | 03579028
Spring Creek
Tributary in
Saltwell Hollow | Spring Creek to
Elk River to | Lat 35°19'06", long 86°07'42",
Franklin County, Hydrologic
Unit 06030003, 2.6 mi north of
Estill Springs. | *2.81 | 6-5-02
10-23-03 | 0 | | | | 03579035
Spring Creek
below Spring
Creek Cemetery
near Saltwell
Hollow | Spring Creek to
Elk River to
Tennessee River | Lat 35°19'06", long, 86°07'41",
Franklin County, Hydrologic
Unit 06030003, 1.8 mi north
Estill Springs. | *7.67 | 6-4-02
10-23-02 | 6.09
4.52 | 16.1
14.2 | 99
115 | | 03579040
Spring Creek
off Spring
Creek Road
at AEDC near
Manchester | Elk River to
Tennessee River | Lat 35°18'16", long, 86°07'21",
Franklin County, Hydrologic
Unit 06030003, 1.6 mi north
of Estill Springs. | *9.57 | 6-3-02
10-23-02 | 10.4
8.32 | 16.8
14.5 | 105
113 | | 03579050
Spring Creek
Tributary off
Spring Creek
Road near
Manchester | Spring Creek to
Elk River to
Tennessee River | Lat 35°18'17", long 86°07'08",
Franklin County, Hydrologic
Unit 06030003, 0.9 mi west
of Woods Reservoir Dam. | *0.27 | 6-3-02
10-23-02 | | 18.1
15.5 | 100
113 | | 03579502
Taylor Creek
at Hwy 41 at
Estill Springs | Elk River to
Tennessee River | Lat 35°16'36", long 86°07'59",
Franklin County, Hydrologic
Unit 06030003, 0.3 mi
northwest of Estill Springs. | 2.92 | 6-4-02
10-23-02 | 5.42
.71 | 15.9
14.9 | 118
126 | # TENNESSEE RIVER BASIN Coffee and Franklin counties, TN special study--continued | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water
temp.
(C°) | Specific cond. (us/cm) | |---|--|--|--|--------------------|---|------------------------|------------------------| | | | TENNESSEE RIVER BASIN | continued | | | | | | 035795025
Dry Creek
at Estill
Springs | Elk River to
Tennessee River | Lat 35°16'35", long 86°08'14",
Franklin County, Hydrologic
Unit 06030003, 0.4 mi
northwest of Estill Springs. | 4.75 | 6-4-02
10-23-02 | | 16.6
15.7 | 85
91 | | 03579503
Dry Creek
Northwest of
Estill Springs | Elk River to
Tennessee River | Lat 35°17'26", long 86°09'46",
Franklin County, Hydrologic
Unit 06030003, 1.5 mi
northwest of Estill Springs. | 3.05 | 6-4-02
10-23-02 | 0 | |
 | | 035796182
North Fork
Rock Creek
at Tullahoma | Rock Creek to
Elk River to
Tennessee River | Lat 35°22'44", long 86°13'49",
Coffee County, Hydrologic
Unit 06030003, 1.2 mi
northwest of Tullahoma | 2.65 | 6-5-02
10-23-02 | 0 | |
 | | 035796185
North Fork
Rock Creek
Tributary at
Hwy 41 at
Tullahoma | North Fork Rock
Creek to Rock Creek
to Elk River to
Tennessee River | Lat 35°22'27", long 86°13'21",
Coffee County, Hydrologic
Unit 06030003, at Hwy 41
in Tullahoma. | 0.73 | 6-5-02
10-23-02 | .03 | 25.3 | 250 | | 035796188
West Fork
Creek at
Tullahoma | Rock Creek to
Elk River to
Tennessee River | Lat 35°22'10", long 86°13'41",
Coffee County, Hydrologic
Unit 06030003, at Cedar Lane
in Tullahoma. | 7.43 | 6-5-02
10-23-02 | .51
.11 | 22.2
14.7 | 131
133 | | 03579620
Rock Creek
at Tullahoma | Rock Creek to
Elk River to
Tennessee River | Lat 35°21'34", long, 86°12'47",
Coffee County, Hydrologic
Unit 06030003, on Lincoln
Street at Tullahoma. | *12.68 | 6-5-02
10-23-02 | 2.65
1.19 | 20.6
15.5 | 116
142 | | 03579623
Rock Creek
above sewer
outfall at
Tullahoma | Rock Creek to
Elk River to
Tennessee River | Lat 35°20'46", long, 86°12'44",
Franklin County, Hydrologic
Unit 06030003, 0.4 mi south
of Tullahoma. | *13.02 | 6-5-02
10-23-02 | 2.40
1.50 | 20.8
15.7 | 130
154 | | 03579635
North Fork
Rock Creek
near Confluence
of West Branch
Branch | Rock Creek to
Elk River to
Tennessee River | Lat 35°19'37", long, 86°12'35",
Franklin County, Hydrologic
Unit 06030003, 1.6 mi south of
Tullahoma. | 16.35 | 6-5-02
10-23-02 | 7.49
5.63 | 21.6
17.4 | 437
464 | | 03579640
Blue Creek
near
Tullahoma | Blue Creek to
Elk River to
Tennessee River | Lat 35°19'33", long, 86°12'38",
Franklin County, Hydrologic
Unit 06030003, 2.5 mi south
of Tullahoma. | *9.11 | 6-5-02
10-23-02 | | 17.2
17.0 | 98
100 | | 03579655
Poorhouse
Creek at
Hwy 41A
near
Tullahoma | Rock Creek to
to Elk River to
Tennessee River | Lat 35°19'51", long, 86°10'54",
Franklin County, Hydrologic
Unit 06030003, on Hwy 41A,
2.0 mi southeast of Tullahoma. | 2.79 | 6-4-02
10-23-02 | | 23.3 | 258 | | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific cond. (us/cm) | |--|--|--|--|--------------------|---|--------------|------------------------| | TENNESSEE RIVER BASINcontinued | | | | | | | | | 03579660
Poorhouse
Creek near
Tullahoma | Poorhouse Creek to
Elk River to
Tennessee River | Lat 35°18'16", long, 86°11'38",
Franklin County, Hydrologic
Unit 06030003, 4.0 mi southeast
of Tullahoma. | *5.17 | 6-5-02
10-23-02 | | 19.0
14.6 | 106
111 | | 03579680
Rock Creek
near
Tullahoma | Rock Creek to
Elk River to
Tennessee River | Lat 35°17'16", long, 86°11'17",
Franklin County, Hydrologic
Unit 06030003, 5.2 mi southeast
of Tullahoma. | *36.50 | 6-4-02
10-23-02 | 19.0
13.5 | 22.6
15.9 | 218
260 | | 03595020
Huckleberry
Creek
Tributary near
Hill Cemetery | Huckleberry Creek
to Little Duck River
to Duck River to
Tennessee River | Lat 35°26'44", long, 86°04'40",
Coffee County, Hydrologic
Unit 06040002, on Hills
Chapel Road, 2.2 mi south
of Manchester. | 0.84 | 6-3-02
10-22-02 | 0 | |
 | | 03595030
Huckleberry
Creek near
Huckleberry
Creek Dam | Little Duck River
to Duck River to
Tennessee River | Lat 35°26'18", long, 86°03'58",
Coffee County, Hydrologic
Unit 06040002, 2.7 mi
southeast of Manchester. | 0.75 | 6-3-02
10-22-02 | 0 |
 |
 | | 03595040
Hunt Creek
near Dam
near I-24 | Little Duck River to
Duck River to
Tennessee River | Lat 35°26'57", long, 86°02'54",
Coffee County, Hydrologic
Unit 06040002, near I-24, 2.7
mi southeast of Manchester. | 6.16 | 6-4-02
10-22-02 | .28 | 31.3 | 66
 | | 03595050
Hunt Creek
Tributary at
I-24 | Hunt Creek to Little
Duck River to Duck
River to Tennessee
River | Lat 35°26'59", long, 86°02'53",
Coffee County, Hydrologic
Unit 06040002, on I-24, 2.6
mi southeast of Manchester. | 2.46 | 6-4-02
10-22-02 | 0 | | | | 03595100
Little Duck
River southeast
of Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°27'44", long, 86°03'54",
Coffee County, Hydrologic
Unit 06040002, on Hwy 41
1.0 mi north of Interstate 24. | *13.02 | 6-4-02
10-23-02 | 3.32
2.39 | 20.7
16.9 | 185
235 | | 03595110
Hickory Flat
Creek near
White Oaks
at Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°27'48", long, 86°03'40",
Coffee County, Hydrologic
Unit 06040002, on Duck River
Road, 1.4 mi southeast of
Manchester. | 1.67 | 6-4-02
10-22-02 | .05 | 21.2 | 206 | | 03595200
Wolf Creek
near
Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°28'52", long, 86°03'51",
Coffee County, Hydrologic
Unit 06040002. 1.0 mi
northeast of Manchester. | *19.32 | 6-3-02
10-22-02 | 4.69
4.41 | 23.0
19.0 | 189
200 | | 03595255
Roan Buck
Branch at
Shedd Road
near
Manchester | Wolf Creek to Little
Duck River to Duck
River to Tennessee
River | Lat 35°29'17", long, 86°01'56",
Coffee County, Hydrologic
Unit 06040002, on Shedd
Road, 2.7 mi northeast of
Manchester. | 3.36 | 6-4-02
10-23-02 | | 23.6
12.9 |
111
230 | # Coffee and Franklin counties, TN special study--continued | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. (C°) | Specific cond. (us/cm) | |---|--|--|--|--------------------|---|------------------|------------------------| | | | TENNESSEE RIVER BASIN | Icontinued | | | | | | 03595258
Wolf Creek
at Shedd
Road near
Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°29'28", long, 86°01'57",
Coffee County, Hydrologic
Unit 06040002, on Shedd
Road, 2.8 mi northeast of
Manchester. | 12.12 | 6-3-02
10-23-02 | 2.83
1.57 | 23.0
12.8 | 210
238 | | 03595300
Little Duck
River at
Hwy 55 at
Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°28'49", long, 86°04'46",
Coffee County, Hydrologic
Unit 06040002, at bridge on
State Hwy 55, 0.5 mi south of
Interstate 24. | *35.58 | 6-4-02
10-22-02 | 10.4
7.29 | 20.1
13.2 | 180
215 | | 03595520
Grindstone
Hollow Creek
at Manchester | Grindstone Hollow
Creek to Duck River
to Tennessee River | Lat 35°28'56", long, 86°05'32",
Coffee County, Hydrologic
Unit 06040002, on Oak Street
at Manchester. | *2.17 | 6-4-02
10-22-02 | 0 | | | | 03595700
Little Duck
at Grindstone
Hollow at
Manchester | Little Duck River to
Duck River to
Tennessee River | Lat 35°29'08", long, 86°06'06",
Coffee County, Hydrologic
Unit 06040002, 0.7 mi east
of Manchester. | *40.87 | 6-4-02
10-23-02 | 14.9
13.2 | 22.7
14.7 | 177
205 | | 03596000
Duck River
below
Manchester | Duck River to
Tennessee River | Lat 35°28'15", long, 86°07'18",
Coffee County, Hydrologic
Unit 06040002, 2.0 mi
southeast of Manchester. | *112.61 | 6-4-02
10-22-02 | 42.8
44.6 | 23.5
16.0 | 176
180 | | 03596020
Bates Spring
Branch near
Manchester | Duck River to
Tennessee River | Lat 35°27'17", long, 86°08'09",
Coffee County, Hydrologic
Unit 06040002, 1.7 mi
southeast of Manchester. | 1.30 | 6-4-02
10-23-02 | .59
.48 | 18.0
13.5 | 70
85 | | 03596023
Cat Creek
near Cat
Creek Road | Duck River to
Tennessee River | Lat 35°27'17", long, 86°06'52",
Coffee County, Hydrologic
Unit 06040002, 1.6 mi
southwest of Manchester. | 1.24 | 6-4-02
10-22-02 | .36
.41 | 20.3
16.0 | 72
82 | | 035960745
Crumpton
Creek at
AEDC near
Old Hillsboro
Road | Duck River to
Tennessee River | Lat 35°24'00", long, 86°03'15",
Coffee County, Hydrologic
Unit 06040002, 1.5 mi north
of AEDC. | 1.47 | 6-4-02
10-22-02 | 0 | | | | 035960755
Sinking Pond
Outfall at
AEDC near
Manchester | Sinking Pond to
Crumpton Creek
to Duck River to
Tennessee River | Lat 35°24'00", long, 86°03'40",
Coffee County, Hydrologic
Unit 06040002, on Old
Hillsboro Road, 1.6 mi
northwest of AEDC. | *1.60 | 6-4-02
10-23-02 | | | | | 035960758
Crumpton
Creek
Southwest of
Sinking Pond
at AEDC | Duck River to
Tennessee River | Lat 35°23'40", long, 86°03'56",
Coffee County, Hydrologic
Unit 06040002, 1.2 mi
northwest of AEDC. | 3.58 | 6-4-02
10-23-02 | .11 | 20.6 | 62 | # Coffee and Franklin counties, TN special study--continued | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |--|--|---|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BASIN- | -continued | | | | | | 03596076
Crumpton
Creek near
Chapel Hill
Cemetery | Duck River to
Tennessee River | Lat 35°23'23", long, 86°04'26",
Coffee County, Hydrologic
Unit 06040002, 1.7 mi
northwest of AEDC. | *4.16 | 6-4-02
10-22-02 | .15 | 20.2 | 36 | | 035960765
Crumpton
Creek above
Retention Pond
Outflow | Duck River to
Tennessee River | Lat 35°22'54", long, 86°04'41",
Coffee County, Hydrologic
Unit 06040002, 1.6 mi west
of AEDC. | 5.35 | 6-4-02
10-22-02 | 0 |
 |
 | | 035960768
Crumpton
Creek
Tributary from
Retention Pond | Crumpton Creek
to Duck River to
Tennessee River | Lat 35°22'50", long, 86°04'32",
Coffee County, Hydrologic
Unit 06040002, 1.6 west of
AEDC. | 1.35 | 6-4-02
10-22-02 | .05 | 21.4 | 87
 | | 03596077
Unnamed trib
to Crumpton
Creek below
AEDC near
Manchester | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°22'46", long, 86°04'01",
Coffee County, Hydrologic
Unit 06040002, on Arnold Air
Force Road below Lake outfall. | *1.50 | 6-4-02
10-23-02 | .04
.08 | 19.0
13.8 | 175
195 | | 035960775
Crumpton
Creek
Tributary at
Confluence | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°22'45", long, 86°04'33",
Coffee County, Hydrologic
Unit 06040002, 1.5 mi west
of AEDC. | 0.69 | 6-4-02
10-22-02 | .005e
0 | | | | 03596078
Crumpton
Creek near
Arnold Airport
at AEDC near
Manchester | Duck River to
Tennessee River | Lat 35°22'37", long, 86°05'01",
Coffee County, Hydrologic
Unit 06040002, on Hillsboro
Road, 2.0 mi west of AEDC. | *7.74 | 6-4-02
10-22-02 | 0 | |
 | | 03596079
Crumpton
Creek at
Old Hillsboro
Road near
Hickerson | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°23'30", long, 86°06'43",
Coffee County, Hydrologic
Unit 06040002, on Old Hillsboro
Road, 2.0 mi south of Belmont. | *10.45 | 6-4-02
10-22-02 | .95
.37 | 18.3
15.6 | 148
171 | | 03596081
Crumpton
Creek
Tributary at
Belmont Road
near Hickerson
Station | Crumpton Creeek to
Duck River to
Tennessee River | Lat 35°24'14", long, 86°06'27",
Coffee County, Hydrologic
Unit 06040002, on Belmont
Road, 1.2 mi south of Belmont. | *1.49 | 6-4-02
10-22-02 | 0 | | | # Coffee and Franklin counties, TN special study--continued | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |--|---|--|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BASIN | -continued | | | | | | 03596082
Unnamed
Tributary to
Crumpton
Creek at
Belmont Road | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°23'59", long, 86°06'27",
Coffee County, Hydrologic
Unit 06040002, on Belmont
Road, 1.6 mi south southwest
of Belmont. | *1.62 | 6-4-02
10-22-02 | 0 | | | | 03596086
Crumpton
Creek at Old
Manchester
Hwy near
Hickerson
Station | Duck River to
Tennessee River | Lat 35°24'45", long, 86°07'26",
Coffee County, Hydrologic
Unit 06040002, on Old
Manchester Hwy, 1.0 mi
southwest of Belmont. | *15.90 | 6-4-02
10-23-02 | .65
0 | 20.8 | 148 | | 035960875
Hickerson
Spring Branch
at Old
Manchester
Hwy | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°24'38", long, 86°07'49",
Coffee County, Hydrologic
Unit 06040002, 1.1 mi
southwest of Belmont. | *4.79 | 6-4-02
10-23-02 | .95
.96 | 21.0
13.7 | 167
187 | | 03596088
Crumpton
Creek
Tributary
at Rutledge
Falls | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°24'47", long, 86°08'08",
Coffee County, Hydrologic
Unit 06040002, 1.2 mi
southwest of Belmont. | *1.08 | 6-4-02
10-23-02 | .52
.41 | 14.3
13.1 | 102
183 | | 03596090
Crumpton
Creek above
Rutledge Falls | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°25'18", long, 86°08'08",
Coffee County, Hydrologic
Unit 06040002, above county
bridge, 0.1 mi north of Rutledge
Falls, 0.5 mi northwest of Belmont. | *22.36 | 6-4-02
10-23-02 | 4.60
3.05 | 18.5
12.6 | 146
188 | | 035960910
Wiley Creek
above
Landfill | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°26'10", long, 86°05'49",
Coffee County, Hydrologic
Unit 06040002, 1.3 mi
northeast of Belmont. | 1.53 | 6-3-02
10-22-02 | 0 |
 | | | 03596092
Wiley Creek
at Old
Manchester
Hwy | Crumpton Creek to
Duck River to
Tennessee River | Lat 35°24'45", long, 86°07'26",
Coffee County, Hydrologic
Unit 06040002, on Old
Manchester Hwy, 0.9 mi
north of Belmont. | *1.74 | 6-3-02
10-22-02 | 0 | | | | 03596096
Wiley Creek
below Wiley
Spring at
Belmont | Wiley Creek to
Crumpton Creek to
Duck River to
Tennessee River | Lat 35°25'33", long, 86°06'56",
Coffee County, Hydrologic
Unit 06040002, 0.3 mi
northwest of Belmont. | *3.08 | 6-4-02
10-22-02 | 3.78
.89 | 15.0
15.5 | 155
200 | | 03596099
Wiley Creek
at Rutledge
Falls | Crumpton Creek
to
Duck River to
Tennessee River | Lat 35°25'21", long, 86°08'07",
Coffee County, Hydrologic
Unit 06040002, on Rutledge
Falls Road, 1.6 mi north of
Hickerson Station. | *4.65 | 6-4-02
10-23-02 | 5.81
2.72 | 16.7
12.7 | 157
195 | # TENNESSEE RIVER BASIN Coffee and Franklin counties, TN special study--continued | Stream | Tributary to | Location | Drainage
area
(mi ²) | Date | Measured
discharge
(ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |---|---|---|--|--------------------|---|--------------|----------------------------------| | | | TENNESSEE RIVER BASINc | ontinued | | | | | | 03596120
Crumpton
Creek below
Rutledge Falls | Duck River to
Tennessee River | Lat 35°25'18", long, 86°06'20",
Coffee County, Hydrologic
Unit 06040002, 1.2 mi west
of Belmont. | 27.04 | 6-4-02
10-23-02 | 12.7
7.62 | 18.8
13.9 | 153
176 | | 03596201
Calanthe Lake
Overflow near
Tullahoma | Duck River to
Tennessee River | Lat 35°24'36", long, 86°12'08",
Coffee County, Hydrologic
Unit 06040002, 2.4 mi north
of Tullahoma. | 3.68 | 6-5-02
10-23-02 | 1.43
1.13 | 24.8
16.3 | 101
126 | | 03596295
Bobo Creek
at Carter
Blake Road | Duck River to
Tennessee River | Lat 35°23'36", long, 86°10'55",
Coffee County, Hydrologic
Unit 06040002, on Blake Road,
2.5 mi northeast of Tullahoma. | 6.47 | 6-4-02
10-23-02 | .77
.65 | 17.1
15.5 | 105
143 | | 03596302
Bobo Creek
above Short
Spring | Duck River to
Tennessee River | Lat 35°24'21", long, 86°10'42",
Coffee County, Hydrologic
Unit 06040002, 2.8 mi
northeast of Tullahoma. | 8.32 | 6-4-02
10-23-02 | 1.19
1.21 | 21.7
13.7 | 111
149 | | 03596304
Machine Falls
Branch above
Falls near
Mt. Vernon | Bobo Creek to
Duck River to
Tennessee River | Lat 35°24'45", long, 86°10'43",
Coffee County, Hydrologic
Unit 06040002, 0.6 mi
southwest of Mt. Vernon. | 1.43 | 6-5-02
10-23-02 | .61
.41 | 18.1
12.9 | 64
81 | # Hamilton county, TN special study A series of low-flow discharge measurements were made April 16, 2002, in the vicinity of Chattanooga, TN (Hamilton county), to define areas of potential ground-water supplies, low-flow hydrology and quality of water. The measurements were made during a period of constant base flow. | Stream | Tributary to | Location | Date | Drainage
area
(mi ²) | Measured
discharge
(ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |---|-----------------|---|---------|--|---|-------------|----------------------------------| | | | TENNESSEE RIVE | R BASIN | | | | | | 03566516
North
Chickamauga
Creek | Tennessee River | Lat 35°14'54", long 85°15'24",
Hamilton County, Hydrologic
Unit 06020001, 1.1 mi east
of Boston Branch Lake, and
at river mile 20.7. | 4-16-02 | 58.43 | 40 | 15.5 | 24 | | 03566520
North
Chickamauga
Creek | Tennessee River | Lat 35°14'49", long 85°14'55",
Hamilton County, Hydrologic
Unit 06020001, 1.4 mi west
of Montlake, 2.6 mi northwest
of Mile Straight, and at river
mile 20.2. | 4-16-02 | 58.96 | 41 | 16.5 | 24 | | 03566522
North
Chickamauga
Creek | Tennessee River | Lat 35°14'54", long 85°14'21"
Hamilton County, Hydrologic
Unit 06020001, 0.9 mi north-
west of Montlake, 2. 4 mi north
of Mile Straight, and at river
mile 19.6. | 4-16-02 | 59.59 | 41 | 17.5 | 24 | | 03566524
North
Chickamauga
Creek | Tennessee River | Lat 35°14'33, long 85°14'12",
Hamilton County, Hydrologic
Unit 06020001, 0.6 mi west
of Montlake, 2.0 mi north of
Mile Straight, and at river mile
19.1. | 4-16-02 | 60.21 | 49 | 18.0 | 32 | | 03566525
North
Chickamauga
Creek | Tennessee River | Lat 35°14'18", long 85°14'05",
Hamilton County, Hydrologic
Unit 06020001, 0.6 mi west of
Montlake, 1.7 mi north of Mile
Straight, and at river mile 18.8. | 4-16-02 | 60.55 | 46 | 19.0 | 29 | | 03566528
North
Chickamauga
Creek | Tennessee River | Lat 35°14'10", long 85°14'03",
Hamilton County, Hydrologic
Unit 06020001, 0.6 mi south-
west of Montlake, 1.6 mi north
of Mile Straight, and at river
mile 18.6. | 4-16-02 | 60.99 | 51 | 18.5 | 34 | | 03566530
North
Chickmauga
Creek | Tennessee River | Lat 35°13'20", long 85°13'16",
Hamilton County, Hydrologic
Unit, 06020001, between Mile
Straight and Daisy at Dayton
Pike bridge crossing. | 4-16-02 | 62.63a | 49 | 16.0 | 33 | | 0356653019
North
Chickamauga
Creek | Tennessee River | Lat 35°12'52", long 85°12'58",
Hamilton County, Hydrologic
Unit 06020001, at U.S. Highway
27 bridge crossing, 2.6 mi
southwest of Daisy. | 4-16-02 | 63.61 | 30 | 16.0 | 34 | # TENNESSEE RIVER BASIN Hamilton county, TN special study--continued | Stream | Tributary to | Location | Date | Drainage
area
(mi ²) | Measured discharge (ft ³ /s) | Water temp. | Specific
cond.
(us/
cm) | |---|--|---|--------------|--|---|-------------|----------------------------------| | | | TENNESSEE RIVER BA | ASINcontinue | d | | | | | 035665348
Poe
Branch | North Chickamauga
Creek to Tennessee
River | Lat 35°12'48", long 85°12'52",
Hamilton County, Hydrologic
Unit 06020001, 0.8 mi east
of Mile Straight, 2.4 mi
northwest of Middle Valley. | 4-16-02 | 9.81a | 3.7 | 19.5 | 150 | | 03566535
North
Chickamauga
Creek | Tennessee River | Lat 35°12'40", long 85°12'55",
Hamilton County, Hydrologic
Unit 06020001, at Thrasher
Pike, 2 mi upstream from
Falling Water Creek, and 3
mi southwest of Daisy. | 4-16-02 | 74.0 | 35 | 16.5 | 51 | | 03566543
Falling
Water
Creek | North Chickamauga
Creek to Tennessee
River | Lat 35°11'39", long, 85°14'36",
Hamilton County, Hydrologic
Unit 06020001, at bridge on
Dayton Pike, at Falling
Water. | 4-16-02 | 13.3 | 19 | 12.5 | 104 | a Revised # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|--|--|--|------|------|---|--|---| |------|------|---|--|--|--|------|------|---|--|---| # CUMBERLAND RIVER BASIN # 03408500 NEW RIVER AT NEW RIVER, TN | SEP 2002
30 | 1120 | 194 | 263 | 20.5 | | | | | | |----------------|--------------|------------|------------|-------------|----------------------|--------------|-------------|------------|--------------| | | | | 0340 | 9500 CLEAF | R FORK NEAR ROBBINS, | TN | | | | | DEC 2001 | | | | | SEP 2002 | | | | | | 12
APR 2002 | 1350 | 434 | 59 | 9.5 | 18 | 1045 | 5.0 | 68 | 24.5 | | 10 | 1450 | 327 | 50 | 13.5 | | | | | | | | | 03410210 | SOUTH | FORK CUMBER | RLAND RIVER AT LEATH | ERWOOD FO | ORD, TN | | | | JUN 2002
04 | 1100 | 166 | 156 | 26.5 | SEP 2002
30 | 1510 | 392 | 214 | 21.0 | | 14 | 1330 | 22 | 126 | 27.5 | | | | | | | | | 03 | 414500 | EAST FORK (| BEY RIVER NEAR JAME | STOWN, TI | N | | | | OCT 2001 | | | | | APR 2002 | | | | | | 03
NOV | 1120 | 18 | 285 | 16.5 | 02
MAY | 1124 | | 95 | | | 15
JAN 2002 | 1405 | 19 | 316 | 10.0 | 21
JUL | 1215 | 314 | 135 | 15.0 | | 15 | 1215 | 255 | 130 | 6.5 | 18 | 1505 | 23 | 342 | 25.0 | | | | (| 03415000 | WEST FORK | OBEY RIVER NEAR ALE | PINE, TN | | | | | OCT 2001 | 0840 | 8.4 | 447 | 14.5 | APR 2002 | 1240 | 556 | 208 | 14.5 | | 03
NOV | | | | | 02
MAY | 1340 | | | | | 15
JAN 2002 | 1225 | 9.1 | 521 | 10.0 | 21
JUL | 1025 | 142 | 225 | 12.5 | | 15
24 | 0940
1100 | 94
8410 | 420
215 | 4.5
10.0 | 18 | 1356 | 17 | 312 | 27.0 | | 25 | 1540 | 1900 | 237 | 11.5 | 27 | 1430 | 7.4 | 356 | 27.5 | | | | | 03418070 | ROARING | RIVER ABOVE GAINESBO | DRO, TN | | | | | OCT 2001 | | | | | MAR 2002 | | | | | | 16
JAN 2002 | 1220 | 52 | 277 | 14.0 | 13
18 | 1240
1205 | 50
10700 | 250
138 | 11.0
13.0 | | 08 | 1045 | 42 | 266 | 3.0 | 19
MAY | 1240 | 2530 | 165 | 14.0 | | | | | | | MAY
16 | 1030 | 405 | 225 | 15.5 | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD
DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | D A | ATE | CHA
IN
CU
F
TIME P
SE | BIC CON
EET DUC
ER ANG
COND (US) | FIC
N- TEMPER-
CT- ATURE | |-----------------------|--------------|---|--------------------------|---|-----------------------|-----------|--------------------------------------|---|--------------------------------| | | | | C | CUMBERLAND I | RIVER BASINContinue | ed | | | | | | | | 034210 | 00 COLLINS | RIVER NEAR MCMINNVI | LLE, TN | | | | | OCT 2001
02
NOV | | 176 | 261 | 15.5 | MAY 2002
29
JUL | 1826 | 607 | 195 | 20.0 | | 14
JAN 2002 | 1445 | 136 | 292 | 12.0 | 18 | 1045 | 187 | 263 | 24.5 | | 14
25 | 1335
1130 | | 219
131 | 7.5
10.5 | | | | | | | | | | 034247 | 30 SMITH | FORK AT TEMPERANCE H | ALL, TN | | | | | OCT 2001
04 | | 18 | 335 | 17.7 | MAY 2002
28 | 1505 | 98 | 301 | 23.5 | | NOV
16 | 1125 | | 318 | 9.0 | JUL
18 | 1105 | 36 | 289 | 28.0 | | MAR 2002
18 | | | | 13.0 | AUG
27 | 1120 | 39 | 213 | 26.0 | | | | | 03426385 | MANSKER C | REEK ABOVE GOODLETTS | SVILLE, T | 'N | | | | OCT 2001 | | 65 | 455 | 00.5 | MAY 2002 | 0000 | 20 | 205 | 16.5 | | 01
NOV | | | 475 | 20.5 | 08
JUL | 0830 | 39 | 395 | 16.5 | | 14
JAN 2002 | | | 498 | 11.0 | AUG | 1035 | 10 | 341 | 24.5 | | 07
MAR | 0910 | | 410 | 3.0 | 22 | 1241 | 2.2 | 417 | 28.5 | | 13 | 1430 | 45 | 352 | 12.5 | CREEK NEAR EDENWOLD | IIINI | | | | | OCT 2001 | | | 034 | 120470 DKI | MAY 2002 | , 110 | | | | | 01
NOV | 1415 | .16 | 414 | 17.0 | 08
JUL | 1130 | 9.3 | 452 | 17.5 | | 14
JAN 2002 | 1320 | .53 | 608 | 13.0 | 10 | 0855 | 4.0 | 557 | 22.5 | | 07
MAR | 1145 | 2.5 | 520 | 6.0 | 22 | 1027 | .81 | 661 | 24.5 | | 13 | 1610 | 9.3 | 560 | 12.5 | | | | | | | | | | 03427500 | EAST FORK | STONES RIVER NEAR LA | SCASSAS, | TN | | | | OCT 2001
09
NOV | 1035 | 46 | 390 | 20.2 | MAR 2002
11
MAY | 1254 | 96 | 466 | 10.5 | | 06
JAN 2002 | 1135 | 28 | 425 | 14.5 | мау
23 | 1035 | 120 | 368 | 16.5 | | 18
24 | 1035
1100 | | 410
241 | 7.0
13.0 | 09 | 1030 | 16 | 294 | 25.5 | 480 250 600 579 682 405 516 400 486 337 388 525 530 602 1.9 18 .61 1.5 .46 5.6 90 68 10 396 338 22 7.9 5.0 27.5 24.5 27.0 24.5 23.0 23.5 16.0 27.5 27.0 14.0 19.0 24.0 23.0 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | INST. CUBIC FEET PER SECOND (| SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DA' | TE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | |-----------------------|------|-------------------------------|---|---|-----------------------|--------|------|---|--|------| | | | | | CUMBERLAND RIV | ER BASINContiue | d | | | | | | | | | 03430 | 147 STONERS C | REEK NEAR HERMITA | GE, TN | | | | | | OCT 2001
01
NOV | 1520 | .67 | 525 | 18.5 | MAY 2002
08
JUL | 1430 | | 24 4 | 57 2 | 20.5 | | 14
JAN 2002 | 0900 | 1.3 | 577 | 10.5 | 25
AUG | 1045 | | 10 4 | 43 2 | 24.5 | 03430550 MILL CREEK NEAR NOLENSVILLE, TN 03431060 MILL CREEK AT THOMPSON LANE NEAR WOODBINE, TN 03431300 BROWNS CREEK AT STATE FAIRGROUNDS AT NASHVILLE, TN 22... JUL 2002 AUG 13... SEP 11... 21... 06... 19... MAY 2002 20... JUL AUG 11... 21... MAR 2002 20... 20... 15... 11... JUL MAY AUG 21... 1343 1115 1245 1130 1130 1035 1100 1355 1235 0910 1000 1515 1450 1015 315 268 600 615 538 508 470 430 569 540 515 515 606 573 625 581 6.3 575 .79 3.2 9.7 40 31 4.8 37 5.1 27 82 1.5 1.3 2.1 3.5 4.1 1315 1315 1005 1000 0915 1130 1130 1250 1346 0805 1050 1015 0845 1010 1105 07... MAR 20... OCT 2001 JAN 2002 09... MAR 14... OCT 2001 NOV 05... MAR 14... JAN 2002 OCT 2001 01... 23... 08... JAN 2002 09... NOV 17... 09... 16... NOV 05... MAY 20... 04... 4.0 13.0 18.0 16.0 3.5 10.0 17.0 19.5 15.5 15.5 6.5 11.0 15.5 21.5 12.5 9.0 9.5 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | : | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CN | TEMPER ATURE WATER () (DEG C) | |-----------------------|--------------|---|--|---|------------------------|---------|---------|---|--|-------------------------------| | | | | | CUMBERLAND 1 | RIVER BASINContinued | | | | | | | | | | 0343 | 31599 WHITE | S CREEK NEAR BORDEAUX, | TN | | | | | | OCT 2001 | | | | | MAY 2002 | | | | | | | 01
NOV | 1055 | .62 | 655 | 14.5 | 14
JUL | 1310 | 1 | | 360 | 18.0 | | 14
JAN 2002 | 1450 | 4.1 | 578 | 14.5 | 11
AUG | 0915 | | | 475 | 24.5 | | 17
MAR | 1020 | 14 | 480 | 7.0 | 22 | 0843 | 3 | 3.8 | 687 | 25.0 | | 20 | 0955 | 2470 | 160 | 13.0 | | | | | | | | 0000 | | 0343 | 31700 RIG | CHLAND CREEK | AT CHARLOTTE AVE AT N | IASHV11 | LLE, TI | N | | | | OCT 2001
09 | 0930 | 2.5 | 496 | 14.0 | MAY 2002
20 | 1300 | | 20 | 535 | 17.5 | | NOV
20
JAN 2002 | 1150 | 10 | 470 | 13.0 | JUL
17
AUG | 0915 | | 12 | 512 | 23.5 | | 17
MAR | 1235 | 6.4 | 490 | 11.5 | 22 | 1400 | 4 | 1.3 | 480 | 27.5 | | 27 | 0945 | 65 | 450 | 12.0 | | | | | | | | | | | 034 | 32350 HARPI | ETH RIVER AT FRANKLIN, | TN | | | | | | OCT 2001
09 | 0941 | 24 | 367 | 13.5 | MAY 2002
29 | 0837 | | 60 | 393 | 21.0 | | JAN 2002
17 | 1335 | 62 | 406 | 6.5 | JUN
28 | 1110 | - | | 354 | 30.0 | | MAR
19 | 1200 | 2300 | 296 | 13.0 | JUL
29 | 0858 | | | 649 | 25.0 | | APR 29 | 1320 | 97 | 320 | 19.0 | 25 | 0030 | | | 045 | 23.0 | | | | 0: | | | VER TRIB AT MACK HATCH | ER PAR | KWAY | | | | | OCT 2001 | | | | | MAY 2002 | | | | | | | 05
16 | 1422
1037 | .02
1.6 | 628
626 | 20.0
16.0 | 13
JUL | 1049 | | 25 | 413 | 18.5 | | NOV
16 | 1410 | .04 | 578 | 14.0 | 15
AUG | 1025 | | .08 | 487 | 22.0 | | JAN 2002
17 | 0935 | .28 | 583 | 10.0 | 23
SEP | 1125 | - | .27 | 496 | 24.5 | | MAR
13 | 0950 | .74 | 550 | 12.5 | 26 | 1355 | | 30 | 192 | 19.5 | | | | 0: | 3432387 | SOUTH PRONG | SPENCER CREEK NEAR FRA | ANKLIN | , TN | | | | | OCT 2001 | | | | | MAY 2002 | | | | | | | 09
NOV | 1335 | .34 | 775 | 17.0 | 13
JUL | 1155 | | | 685 | 18.0 | | 16
JAN 2002 | 1142 | .19 | 730 | 12.0 | 15
AUG | 0941 | | | 628 | 21.5 | | 17
MAR | 1050 | .93 | 587 | 10.0 | 20 | 1250 | • | .16 | 684 | 24.5 | | 13 | 0800 | 2.3 | 521 | 11.0 | | | | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | CHARGE, SPE- INST. CIFIC CUBIC CON- TEMPER- FEET DUCT- ATURE | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |--|------|------|---|--|---| |--|------|------|---|--|---| #### CUMBERLAND RIVER BASIN--Continued 03432390 SPENCER CREEK NEAR FRANKLIN, TN OCT 2001 MAR 2002 09... 1235 706 13... 1100 588 12.0 NOV MAY 13... 13.0 16... 1254 2.0 727 1325 111 432 18.5 JUL 1058 15... DEC 1235 6.2 613 22.0 11... 1315 29 593 13.5 AUG JAN 2002 20... 1140 665 24.0 1240 9.5 17... 4.4 644 03432400 HARPETH RIVER BELOW FRANKLIN, TN OCT 2001 MAY 2002 09... NOV 29... JUN 1238 38 461 16.0 1021 80 439 20.5 30... 1155 4900 214 14.5 28... 1255 18 539 24.0 JUL 29... JAN 2002 76 458 7.5 17... 1420 1145 20 511 26.0 MAR AUG 18... 19... 1035 7580 183 14.0 26... 1220 43 461 25.0 1200 2360 310 13.5 APR 29... 1145 126 379 18.5 03433500 HARPETH RIVER AT BELLEVUE, TN OCT 2001 MAY 2002 04... 1335 15 513 19.5 22... 302 403 16.5 JUL NOV 20... 10... 1236 40 726 11.5 1400 32 416 30.0 JAN 2002 30... 1135 30 350 29.5 179 401 2.5 10... 1230 28... 1430 1420 373 12.0 03434500 HARPETH RIVER NEAR KINGSTON SPRINGS, TN OCT 2001 MAR 2002 02... 1650 58 348 19.5 22... 27... NOV 1434 2330 290 12.5 20.. 0933 107 507 9.5 JUL JAN 2002 1130 186 328 28.5 10... 1030 314 401 5.5 03435305 RED RIVER BELOW HIGHWAY 161 NEAR BARREN PLAIN, TN OCT 2001 MAR 2002 04... 0840 29 467 16.0 21... 1433 4630 258 13.0 NOV MAY 20.. 10.5 14... 1300 81 496 1100 2340 223 16.5 JUL 16... 1215 356 23.5 266 7.5 432 JAN 2002 16... 1215 339 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DA: | ΓE | CHAR INS CUE FE TIME PE | T. CIE
SIC CON
SET DUC
SR ANC
SOND (US/ | FIC N- TEMPER- CT- ATURE CE WATER /CM) (DEG C) | |---------------|--------|---|--|---|---------------------|---------|-------------------------|---|--| | | | | (| CUMBERLAND RI | VER BASINContinue | ed. | | | | | | | | 034 | 35970 MILLER | S CREEK AT TURNERSV | ILLE | | | | | OCT 200
03 | | .51 | 476 | 14.5 | MAR 2002
20 | 0922 | 706 | 156 | 12.5 | | NOV
19 | | 2.7 | 437 | 12.5 | MAY
14 | 1530 | 121 | 309 | 15.5 | | JAN 200
16 | | 8.5 | 378 | 4.5 | JUL
16 | 0910 | 3.4 | 418 | 22.0 | | FEB 20 | 1025 | 5 14 | 351 | 12.5 | | | | | | | | | | 03 | 436100 RED R | IVER AT PORT ROYAL, | TN | | | | | OCT 200 | | | | | MAR 2002 | | | | | | 03
NOV | | 0 80 | 468 | 19.0 | 21
MAY | 1201 | 11000 | 245 | 12.5 | | 20
JAN 200 | | 170 | 478 | 9.5 | 13
JUL | 1100 | 2450 | 238 | 19.0 | | 15 | 1530 | 590 | 348 | 6.0 | 16 | 1015 | 494 | 344 | 25.0 | | | | | 0343 | 6690 YELLOW | CREEK AT ELLIS MILL | S, TN | | | | | OCT 200
03 | |) 19 | 308 | 20.0 | MAR 2002
25 | 1330 | 337 | 221 | 15.0 | | NOV 19 | | | 297 | 13.5 | MAY
15 | 1200 | 560 | 212 | 17.0 | | JAN 200
15 |)2 | | 262 | 8.5 | JUL
15 | 1045 | 39 | 277 | 25.5 | | 13 | . 1200 | | 202 | 0.5 | 13 | 1015 | 3,5 | 2,, | 23.3 | | | | | | TENNESS | EE RIVER BASIN | | | | | | | | | 034550 | 00 FRENCH BR | OAD RIVER NEAR NEWP | ORT, TN | | | | | NOV 200 | | 759 | 98 | 10.5 | AUG 2002
20 | 1740 | 665 | 159 | 27.0 | | JUN 200
20 | | 805 | 96 | 26.0 | | | | | | | | | | 03- | 461500 PIGEO | N RIVER AT NEWPORT, | TN | | | | | NOV 200 | 11 | | | | AUG 2002 | | | | | | 05
APR 200 | 1050 | 196 | 394 | 12.0 | 20 | 1400 | 255 | 336 | 25.5 | | 18 | | 449 | 154 | 16.0 | | | | | | | | | | 034655 | 00 NOLICHUCK | Y RIVER AT EMBREEVI | LLE, TN | | | | | OCT 200 | | 316 | 100 | 11.5 | AUG 2002
28 | 1140 | 459 | 108 | 23.5 | | APR 200 |)2 | | | | SEP | | | 116 | 23.5 | | 24
JUL | | | 61 | 15.5 | 11 | 1240 | 123 | TTP | 44.5 | | 11 | . 1505 | 346 | 88 | 27.0 | | | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued DIS-CHARGE DIS-CHARGE EMPER-ATURE VATER DEG C) 00010) | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | D | ATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEM
ATI
WA'
(DEC | |----------------|------|---|--|---|---------------------|--------------|------|---|--|---------------------------| | | | | | TENNESSEE RI | VER BASINContinu | ed | | | | | | | | | 03466208 | BIG LIMEST | ONE CREEK NEAR LIM | ESTONE, | TN | | | | | NOV 2001 | | | | | MAY 2002 | | | | | | | 19 | 1140 | | | 10.0 | 06 | 1125 | | 50 47 | | 7.0 | | 20
DEC | 1445 | 21 | 434 | 11.5 | 29
JUN | 1330 | 2 | 24 44 | .9 21 | 0.5 | | 11 | 1130 | 53 | 464 | 9.5 | 20 | 1430 | 1 | L6 42 | 0 2 | 2.5 | | JAN 2002
22 | 1500 | 50 | 464 | 7.0 | JUL
02 | 1135 | | 22 44 | 2 2 | 4.0 | | 31 | 1200 | | | 12.5 | 25 | 1500 | | 12 49
12 42 | | 4.0 | | FEB | | | | | AUG | | | | | | | 22
MAR | 1430 | 43 | 455 | 8.0 | 08
21 | 1230
1340 | | .6 44
L3 42 | | 2.5
4.5 | | 21 | 1315 | 155 | 431 | 13.5 | SEP | 1340 | ١ | .5 42 | J 2. | 4.0 | | 22 | 0945 | 170 | 468 | 10.0 | 04 | 1500 | 9. | .2 43 | 4 2 | 4.0 | | APR
18 | 1445 | 55 | 430 | 21.0 | | | | | | | | | | | | | HUCKY RIVER NEAR LO | CIMA, TM | | | | | | | | | 034 | 07005 NOBICI | | WILLIAD | | | | | | OCT 2001
01 | 1230 | 747 | 234 | 16.5 | MAY 2002
30 | 1400 | 108 | 30 19 | | 4.0 | | NOV | 1230 | /4/ | 234 | 10.5 | 31 | 1100 | 94 | | | 4.0 | | 20 | 1130 | 484 | 235 | 16.0 | JUN | | | | | | | JAN 2002
22 | 1100 | 3350 | 141 | 5.5 | 20
JUL | 1100 | 60 |)1 19 | .9 2 | 4.5 | | FEB | 1100 | 3330 | | | 25 | 1115 | 74 | 16 23 | 9 2 | 6.0 | | 22 | 1045 | 1300 | 220 | 8.0 | SEP
04 | 1020 | 2.5 | -0 00 | | 7.0 | | MAR
20 | 1300 | 11300 | 142 | 13.5 | 11 | 1030
1230 | | | | 5.0 | | APR | | | | | | | | | | | | 18 | 1030 | 1600 | 191 | 20.5 | | | | | | | | | | | 03469175 | LITTLE PIGEO | ON RIVER ABOVE SEVI | ERVILLE, | TN | | | | | DEC 2001 | | | | | MAY 2002 | | | | | | | 20 | 1330 | 248 | 65 | 10.0 | 21
SEP | 1245 | 20 |)8 9 | 2 13 | 3.0 | | MAR 2002
13 | 1152 | 136 | 97 | 9.0 | 13 | 1150 | 1 | L5 13 | 8 2: | 2.0 | | | | | 0349 | | EEK NEAR ROGERSVIL | | | | | | | | | | | | | • | | | | | | DEC 2001
11 | 1330 | 17 | 390 | 10.0 | SEP 2002
12 | 1335 | 1. | .3 40 | 18 2 | 1.5 | | MAY 2002 | 1330 | 1/ | 390 | 10.0 | ±4 | 1333 | Ι. | . 40 | U 2. | 1.5 | | 16 | 1100 | 39 | 294 | 15.0 | | | | | | | | | | | | | | | | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DUCT-
ANCE
(US/CM) | CEMPER-
ATURE
WATER
DEG C)
00010) | DA: | PE TI | DI:
CHARC
INS'
CUB:
FE:
ME PE:
SEC(| GE, SPI F. CII IC COI ET DUG R ANG | FIC
N- TEMPER-
CT- ATURE | | |-----------------------|------|---|--------------------------|---|-----------------------|---------|---|------------------------------------|--------------------------------|--| | | | | Т | 'ENNESSEE I | RIVER BASINContinued | 1 | | | | | | | | | 03497 | 300 LITTL | E RIVER ABOVE TOWNSEN | D, TN | | | | | | JAN 2002
14
MAR | 1255 | 131 | 16 | 3.0 | JUL 2002
18
SEP | 1030 | 75 | 21 | 22.0 | | | 15 | 1055 | 197 | 17 | 10.0 | 05 | 1355 | 58 | 21 | 23.0 | | | MAY
17 | 1025 | 216 | 17 | 14.5 | | | | | | | | | | | 03498 | 500 LITTL | E RIVER NEAR MARYVILL | E, TN | | | | | | MAR 2002 | | | | | SEP 2002 | | | | | | | 12
MAY | 1400 | 246 | 118 | 10.5 | 04 | 1110 | 88 | 109 | 24.5 | | | 29 | 1025 | 325 | 90 | 17.5 | | | | | | | | | | | 034 | 98850 LIT | TLE RIVER NEAR ALCOA, | TN | | | | | | MAR 2002
11
MAY | 1435 | 215 | 137 | 11.0 | SEP 2002
05 | 1050 | 78 | 145 | 24.5 | | | 29 | 1325 | 338 | 106 | 19.0 | | | | | | | | | | | 0351850 | 0 TELLICO | RIVER AT TELLICO PLA | INS, TN | | | | | | MAR 2002
28
JUL | 1440 | 277 | 21 | 11.5 | SEP 2002
06 | 1430 | 54 | 28 | 26.0 | | | 31 | 1500 | 92 | 26 | 27.0 | | | | | | | | | | | 03528 | 000 CLINC | H RIVER ABOVE TAZEWEL | L, TN | | | | | | NOV 2001 | | | | | AUG 2002 | | | | | | | 13
JUN 2002 | 1145 | | 432 | 9.0 | 13
SEP | 1530 | 169 | 316 | 29.0 | | | 06 | 1155 | 561 | 342 | 27.0 | 23 | 1650 | 238 | 373 | 24.5 | | | | | | 0353 | 2000 POWI | ELL RIVER NEAR ARTHUR | TN | | | | | | JUN 2002
05 | 1100 | 355 | 402 | 25.0 | SEP 2002
23 | 1320 | 399 | 401 | 22.0 | | | AUG
13 | 1125 | | 386 | 25.5 | | | | | | | | 13 | 1123 | 113 | 500 | 23.3 | | | | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | | DATE | TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | D A | ATE TI | DI;
CHAR
INS'
CUB
FE;
ME PE;
SEC(000) | GE, SPIT. CITOR COLOR COLOR CUST | FIC
N- TEMPER-
CT- ATURE | |---|----------------------------|------|----------|--|---|-----------------------|------------|---|----------------------------------|--------------------------------| | | | | | | TENNESSEE I | RIVER BASINContinue | ed | | | | | | | | | 03 | 3535400 BEA | VER CREEK AT SOLWAY, | TN | | | | | | NOV 2001
19
FEB 2002 | 1550 | 22 | 489 | 12.0 | JUL 2002
08
AUG | 1340 | 27 | 379 | 24.0 | | | 12 | 1135 | 148 | 353 | 8.5 | 15 | 1410 | 21 | 456 | 23.5 | | 1 | APR
29 | 1240 | 76 | 366 | 17.0 | SEP
17 | 1545 | 32 | 468 | 22.5 | | | | | 03538235 | EAST FOR | RK POPLAR CE | REEK AT BEAR CREEK RO | DAD AT OAK | RIDGE, TN | | | | | DEC 2001
03
APR 2002 | 1210 | 11 | 340 | 16.5 | AUG 2002
05
SEP | 1030 | 11 | 318 | 18.5 | | • | 02 | 1105 | 15 | 350 | 15.5 | 03 | 1045 | 11 | 321 | 21.0 | | | | | | 035396 | 00 DADDYS | CREEK NEAR HEBBERTSE | BURG, TN | | | | | | DEC 2001
04
APR 2002 | 1145 | 74 | 85 | 8.0 | JUN 2002
26
AUG | 1125 | 3.7 | 138 | 25.5 | | 1 | 05 | 1200 | 312 | 60 | 9.5 | 26 | 1140 | .83 | 140 | 25.0 | | | | | 035 | 539778 (| CLEAR CREEK | AT LILLY BRIDGE NEAF | R LANCING, | TN | | | | 1 | NOV 2001
19 | 1045 | 10 | 87 | 9.0 | JUN 2002
07 | 1130 | 143 | 47 | 23.5 | | ı | JAN 2002
16 | 1115 | 142 | 47 | 2.0 | 19
JUL | 1100 | 19 | 54 | 23.0 | | 1 | FEB 21 | 1300 | 196 | 41 | 6.5 | 24
AUG | 1145 | 36 | 46 | 25.5 | | I | MAR
19 | 1230 | 2110 | 34 | 11.5 | 23
SEP | 1115 | 3.0 | 91 | 26.5 | | | 19 | 1230 | 2110 | 34 | 11.5 | 03 | 1200 | 2.7 | 76 | 27.0 | | | | | | 03 | 3540500
EM | RY RIVER AT OAKDALE, | TN | | | | | · | JUN 2002
25 | 1125 | 23 | 85 | 28.5 | SEP 2002
03 | 1130 | 9.3 | 119 | 28.0 | | | | | | 03566 | 000 HIWAS | SEE RIVER AT CHARLEST | ON, TN | | | | | | OCT 2001
22
MAY 2002 | 1735 | 3400 | 103 | 18.5 | AUG 2002
27 | 1305 | 1790 | 56 | 22.0 | | , | 07 | 1250 | 2870 | 100 | 17.5 | | | | | | | | | | 03566128 | 5 NORTH | MOUSE CREE | K NEAR ROCKY MT HOLL | OW NEAR AT | HENS, TN | | | 352 10.5 9.0 21.5 287 321 JUL 2002 31... SEP 06... 22 17 359 350 22.5 20.5 1220 1030 NOV 2001 14... MAR 2002 28... JUN 27... 1520 1150 1620 14 102 28 OCT 2001 24... 1500 48400 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DA | TE 1 | CHAR
INS
CUE
FE
FIME PE | T. CI
SIC CO
SET DU
SR ANG
COND (US | FIC
N- TEMPER-
CT- ATURE | |-----------------------|--------------|---|--|---|------------------------|--------------|-------------------------------------|---|--------------------------------| | | | | | TENNESSEE | RIVER BASINContinue | đ | | | | | | | | 035710 | 00 SEQUA | ICHIE RIVER NEAR WHITW | ELL, TN | | | | | OCT 2001
02
NOV | 0755 | 66 | 363 | 15.5 | MAY 2002
29
JUL | 1435 | 370 | 228 | 19.5 | | 07
JAN 2002 | 1335 | 52 | 348 | 13.0 | 17
AUG | 1005 | 145 | 391 | 24.5 | | 08
APR | 1230 | 224 | 153 | 1.5 | 21 | 1320 | 63 | 265 | 27.0 | | 12 | 1335 | 5160 | 129 | 13.0 | | | | | | | | | | 03 | 3578000 I | LK RIVER NEAR PELHAM, | TN | | | | | OCT 2001
01 | 1315 | 22 | 231 | 14.0 | JUL 2002
01 | 1115 | 11 | 263 | 23.0 | | NOV
07 | 1015 | 14 | 233 | 10.5 | 17
26 | 1300
1357 | 4.9
3.3 | 278
306 | 24.5
24.0 | | DEC
14
MAY 2002 | 1125 | 2130 | 154 | 15.5 | AUG
12 | 1100 | 1.7 | 302 | 24.0 | | MAY 2002
29 | 1040 | 36 | 193 | 16.0 | 20
SEP | 1300 | 4.5 | 260 | 26.5 | | | | | | | 20 | 0700 | 1.9 | 309 | 23.0 | | | | 03579040 | SPRING C | REEK OFF | SPRING CREEK ROAD AT A | EDC NEAR | MANCHESTER | | | | FEB 2002
04 | 1100 | 14 | 83 | 11.5 | JUN 2002
03 | 1856 | 10 | 105 | 17.0 | | MAR
18 | 1110 | 391 | 36 | 12.5 | JUL
17 | 1655 | 9.0 | 109 | 18.5 | | MAY
29 | 1255 | 11 | 105 | 16.5 | AUG
22 | 1110 | 7.4 | 77 | 17.5 | | | | | 03584020 | RICHLAND | CREEK AT HWY 64 NEAR H | PULASKI, | TN | | | | OCT 2001 | | | | | MAY 2002 | | | | | | 03
NOV | 1132 | | 320 | 16.0 | 15
17 | 1230
1019 | 407
310 | 236
246 | 16.5
18.0 | | 15
JAN 2002 | 1205 | 101 | 313 | 11.0 | JUL
23 | 1233 | 80 | 255 | 25.5 | | 17
MAR | 1358 | 213 | 274 | 8.0 | AUG
12 | 1005 | 38 | 257 | 23.0 | | 12 | 1251 | 1410 | 244 | 9.5 | | | | | | | | | | 035 | 88500 SH | OAL CREEK AT IRON CITY | , TN | | | | | OCT 2001
03
NOV | 0840 | 187 | 213 | 16.5 | MAR 2002
12
MAY | 0853 | 2070 | 112 | 9.5 | | 15
30 | 0902
1447 | | 132
71 | 10.5
13.5 | 15
JUL | 0931 | 415 | 95 | 16.5 | | JAN 2002
08 | 1550 | | 90 | 7.0 | 23 | 1005 | 191 | 121 | 25.0 | | 00 | 1000 | 394 | 90 | 7.0 | | | | | | 03593500 TENNESSEE RIVER AT SAVANNAH, TN 189 17.5 AUG 2002 29... 1330 1260 164 29.0 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DIS- | |------| |------| | | TENNESSEE RIVER BASINContinued | | | | | | | | | | | | |-----------------------|--------------------------------|--------------|------------|-------------|-----------------------|-----------|-------|-----|------|--|--|--| | | | 0359 | 5100 LIT | TLE DUCK R | IVER SOUTHEAST OF MA | NCHESTER, | TN | | | | | | | MAR 2002 | | | | | JUN 2002 | , | | | | | | | | 18
APR | 1405 | 665 | 40 | 14.0 | 04
JUL | 0745 | 3.3 | 185 | 20.5 | | | | | 01
MAY | 1805 | 177 | 44 | 14.5 | 18
AUG | 0825 | 1.8 | 233 | 20.0 | | | | | | 0850 | 3.5 | 205 | 16.5 | 22 | 1610 | 1.5 | 191 | 25.0 | | | | | | | | 03596100 | CRUMPTON | CREEK AT RUTLEDGE FA | LLS, TN | | | | | | | | FEB 2002
19
MAR | 1535 | 21 | 161 | 13.5 | JUL 2002
17
AUG | 1930 | 7.2 | 179 | 19.0 | | | | | 18
MAY | 1545 | 1020 | 58 | 12.0 | 22 | 1415 | 5.7 | 158 | 19.5 | | | | | 29 | 1550 | 12 | 162 | 16.5 | | | | | | | | | | | | 035972 | 210 GARR | ISON FORK A | BOVE L&N RAILROAD AT | WARTRACE | E, TN | | | | | | | OCT 2001
01 | 1033 | 6.3 | 337 | 15.0 | MAR 2002
13
MAY | 1012 | 125 | 404 | 11.0 | | | | | 14 | 1253 | 11 | 353 | 10.5 | 16 | 0934 | 142 | 292 | 16.5 | | | | | JAN 2002
15 | 0951 | 43 | 396 | 5.0 | AUG
26 | 1027 | 17 | 270 | 25.0 | | | | | | | 035975 | 90 WART | RACE CREEK | BELOW COUNTY ROAD AT | WARTRACE | E, TN | | | | | | | OCT 2001 | | | | | MAR 2002 | | | | | | | | | 01
NOV | 1238 | .70 | 545 | 14.5 | 13
MAY | 0802 | 79 | 450 | 10.5 | | | | | 14
JAN 2002 | 1029 | 1.8 | 485 | 10.5 | 09
JUL | 1318 | 28 | 484 | 20.0 | | | | | | 0808
1530 | 14
7090 | 465
78 | 4.0
12.5 | 17 | 0945 | .61 | 345 | 25.5 | | | | | | | | 035980 | 000 DUCK R | IVER NEAR SHELBYVILL | E, TN | | | | | | | | OCT 2001
04 | 0835 | 194 | 310 | 18.5 | MAR 2002
14
MAY | 1548 | 437 | 411 | 13.0 | | | | | 06
JAN 2002 | 1405 | 403 | 172 | 15.0 | 16
JUL | 1558 | 514 | 275 | 21.0 | | | | | 15
25 | 1430
1235 | 262
18900 | 342
145 | 6.5
9.0 | 16 | 1030 | 236 | 180 | 28.0 | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | : | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
00061) | SPE-
CIFIC
CON-
DUCT-
ANCE WATER
(US/CM) (DEG C)
(00095) (00010) | |-----------------------|--------------|---|--|---|------------------------|-----------|------|--|--| | | | | | TENNESSEE | E RIVER BASINContin | ued | | | | | | | | 03 | 3599500 D | OUCK RIVER AT COLUMBIA | A, TN | | | | | OCT 2001
05 | 0930 | 228 | 319 | 18.5 | MAR 2002
15 | 1212 | 1970 |) 34 | 4 12.5 | | NOV
16 | 1025 | 418 | 299 | 11.0 | MAY
22 | 1043 | 688 | 31 | 6 17.5 | | JAN 2002
09
25 | 1035
1633 | | 353
135 | 3.5
11.5 | JUL
11 | 1200 | 398 | 3 22 | 0 29.0 | | | | | | | PER AT HWY 100 AT CEN | TERVILLE, | TN | | | | OCT 2001
02 | 1310 | 575 | 275 | 19.0 | MAR 2002
27 | 1043 | 6890 |) 22 | 8 11.5 | | NOV
19 | 0930 | 716 | 266 | 12.0 | MAY
16 | 1020 | 4650 |) 27 | 5 18.0 | | JAN 2002
14
26 | 1035
1248 | | 230
130 | | JUL
15 | 1555 | 1570 | 23 | 8 28.0 | | 30 | 1115 | | 176 | | | | | | | | | | | 036 | 02219 PII | NEY RIVER AT CEDAR HI | LL, TN | | | | | OCT 2001
02 | 0835 | 7.2 | 290 | 14.5 | MAY 2002
16 | 1430 | 97 | 22 | 4 18.5 | | NOV
19 | 1445 | 14 | 280 | 12.5 | JUL
15 | 1300 | 18 | 3 27 | 0 24.0 | | JAN 2002
14 | 1430 | 36 | 242 | 10.0 | | | | | | | | | | 0 | 3602500 | PINEY RIVER AT VERNON | I, TN | | | | | OCT 2001
02 | 1035 | 58 | 258 | 15.5 | MAR 2002
27 | 1302 | 736 | 5 16 | 6 11.5 | | NOV
19 | 1115 | | 256 | | MAY
16 | 1302 | 489 | | | | JAN 2002
14 | 1235 | | 231 | | JUL
11 | 1445 | 179 | | | | | | | | | ALO RIVER NEAR FLAT W | | | | | | FEB 2002 | | | | | SEP 2002 | | | | | | 20
AUG | 1400 | | | | 19 | 1115 | 203 | 10 | 4 25.0 | | 07 | 1200 | 233 | 104 | | | | | | | | | | | 03 | 605078 C | YPRESS CREEK AT CAMDE | in, TN | | | | | NOV 2001
14 | 1050 | 5.6 | 143 | 11.0 | MAY 2002
15 | 0835 | 17 | 9 | 6 16.0 | | FEB 2002
21
APR | 1045 | 37 | 66 | 9.0 | JUN
25
AUG | 1215 | 3.2 | 13 | 7 25.0 | | 04 | 0845 | 39 | 58 | 10.0 | 07 | 1615 | 1.1 | . 11 | 2 | | | | | 0360 | 6500 BIG | SANDY RIVER AT BRUCE | TON, TN | | | | | OCT 2001
04 | 1055 | 43 | 33 | 16.5 | JUN 2002
26 | 1100 | 107 | ' 3 | 6 23.5 | | FEB 2002
20 | 1215 | | 39 | | AUG
08 | 0900 | 56 | | 1 22.0 | | APR 04 | 1200 | 284 | 33 | 12.0 | SEP
19 | 0900 | 65 | | 1 23.0 | | MAY
15 | 1130 | 169 | 56 | 17.0 | | | | | | # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DA' | PE TI | CHARC
CHARC
INS'
CUB'
FEI
ME PEI
SECC
(0006 | GE, SPI F. CII IC COI ET DUG R ANG | FIC
N- TEMPER
CT- ATURE | |----------------------------|--------------|---|--|---|-----------------------|--------------|--|------------------------------------|-------------------------------| | | | | | OBION H | RIVER BASIN | | | | | | | | 0702 | 4305 BEA | VER CREEK AT H | Y 22 BYPASS NEAR | HUNTINGDO | N, TN | | | | OCT 2001
03
NOV | 1730 | 26 | 54 | 17.5 | JUN 2002
26
AUG | 1730 | 31 | 55 | 24.0 | | 13
APR 2002 | 1530 | 36 |
85 | 11.5 | 08
21 | 1045
1245 | 18
43 | 60
78 | 21.5 | | 04
MAY | 1520 | 75 | 56 | 13.0 | SEP
18 | 1630 | 31 | 70 | 23.0 | | 15 | 0900 | 55 | 80 | 17.0 | 18 | 1630 | 31 | 70 | 23.0 | | | | 0 | 7024500 | SOUTH FORK OBI | ON RIVER NEAR GRE | ENFIELD, T | N | | | | OCT 2001
03
NOV | 1430 | 120 | 46 | 19.0 | MAY 2002
14
JUN | 1530 | 662 | 80 | 18.0 | | 13
APR 2002 | 1325 | 166 | 60 | 13.0 | 25
SEP | 1530 | 147 | 56 | 26.5 | | 03 | 1535 | 2190 | 54 | 15.5 | 18 | 1305 | 168 | 61 | 23.0 | | | | | 07025400 | NORTH FORK C | BION RIVER NEAR M | ARTIN, TN | | | | | APR 2002
02
JUL | 1000 | 768 | 63 | 15.0 | AUG 2002
07
SEP | 1500 | 150 | 85 | 27.0 | | 10
22 | 1200
1300 | 155
10400 | 56
58 | 26.0
22.0 | 26
07 | 1600
1030 | 248
679 | 96
85 | 20.0
27.0 | | | | 070 | 27720 sc | OUTH FORK FORKE | D DEER RIVER NEAR | OWL CITY, | TN | | | | OCT 2001
09
FEB 2002 | 1400 | 242 | 94 | 15.5 | MAY 2002
02
JUN | 1145 | 468 | 85 | 20.0 | | 08
MAR | 1100 | 1450 | 79 | 5.5 | 13
JUL | 1005 | 462 | 88 | 25.0 | | 27
APR | 1245 | 4120 | 57 | | 29 | 1050 | 243 | 88 | 26.5 | | 10 | 1145 | 1160 | 69 | 15.5 | | | | | | | | | 0' | 7028960 | MIDDLE FORK FOR | RKED DEER RIVER NE | AR FAIRVI | ΞW | | | | OCT 2001
03
NOV | 1200 | 56 | 38 | 16.5 | JUN 2002
25
AUG | 1400 | 71 | 59 | 23.0 | | 13
APR 2002 | 1030 | 78 | 47 | 12.5 | 21
SEP | 1515 | 96 | 49 | 29.0 | | 02 | 1400 | 1430 | 45 | 15.5 | 18 | 1100 | 135 | 50 | 22.0 | | | | | | HATCHIE | RIVER BASIN | | | | | | | | | | | | | | | | 76 7.0 70 20.0 JUN 2002 26... SEP 18... 1215 444 74 29.0 1400 350 54 25.0 JAN 2002 11... MAY 01... 1515 1930 1510 1245 # MISCELLANEOUS TEMPERATURE MEASUREMENTS AND FIELD DETERMINATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued | DATE | TIME | INST. (CUBIC FEET PER SECOND (| SPE-
CIFIC
CON-
DUCT-
ANCE
US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | ŗ | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CI | TEMPER ATURE WATER M) (DEG C) | |-----------------|--------------|--------------------------------|--|---|------------------------|--------------|--------|---|--|-------------------------------| | | | | | LOOSAHA | TCHIE RIVER BASIN | | | | | | | | | | 0703024 | 0 LOOSAHATC | HIE RIVER NEAR ARLINGT | CON, TN | 1 | | | | | FEB 2002
19 | 0930 | 144 | | 12.5 | JUL 2002
23 | 1300 | 1 | 123 | 59 | 23.5 | | APR
11 | 0930 | 157 | 66 | 16.5 | SEP
25 | 1045 | 1 | 108 | 62 | | | MAY
06 | 1345 | 165 | 65 | 21.0 | | | | | | | | | | | | WOLI | F RIVER BASIN | | | | | | | | | | 07 | 030392 WOLE | F RIVER AT LAGRANGE, T | N | | | | | | NOV 2001
14 | 1000 | 83 | 38 | 12.0 | MAY 2002
02 | 1130 | - | 265 | 48 | 21.0 | | DEC 05 | 1445 | | 30 | 12.5 | 08
JUN | 1200 | | 306 | 38 | 22.0 | | JAN 2002
09 | 1230 | | 32 | 4.5 | 28
JUL | 1040 | 1 | 160 | 47 | 23.0 | | FEB 04 | 1500 | | 32 | 7.5 | 15
AUG | 1400 | 2 | 250 | 37 | 24.0 | | MAR
12 | 1200 | 1120 | 28 | 11.0 | 08
21 | 1015
1000 | | l11
l22 | 43
37 | 22.0
23.5 | | APR 04 | 1400 | 409 | 35 | 13.0 | | | | | | | | 24 | 1230 | 202 | 49 | 19.5 | | | | | | | | | | | 071 | 030500 WOLF | RIVER AT ROSSVILLE, 1 | 'N | | | | | | OCT 2001
02 | 1200 | 162 | 38 | 16.5 | AUG 2002
16 | 1315 | | 793 | 47 | 24.5 | | FEB 2002
20 | 1200 | 1450 | 22 | 12.5 | 19 | 1430 | - | 550 | 49 | 29.0 | | JUN
28 | 1410 | 277 | 45 | 25.0 | | | | | | | | | | | 070 | 31650 WOLF | RIVER AT GERMANTOWN, | TN | | | | | | NOV 2001
14 | 1200 | 311 | 55 | 13.5 | JUL 2002
02 | 1225 | 2 | 295 | 54 | 27.5 | | JAN 2002
04 | 1345 | 550 | 48 | 4.0 | AUG
15 | 1345 | | 360 | 47 | 24.0 | | MAR
28 | 1300 | | 49 | 13.0 | | | | | | | | | | 07031 | .692 FLI | ETCHER CREEK | AT SYCAMORE VIEW ROAL | AT ME | EMPHIS | | | | | OCT 2001 | | | | | APR 2002 | | | | | | | NOV NOV | 1450 | | 84 | 20.0 | 24
MAY | 1500 | | | 180 | 22.5 | | 13
DEC | 1800 | | 114 | 11.0 | 06
08 | 1430
1430 | | | 111
119 | 19.5
23.5 | | 05
JAN 2002 | 1230 | | 197 | 11.0 | JUN
11 | 1530 | | | 108 | 26.5 | | 09
FEB
04 | 0730
1700 | | 103
118 | 3.5
8.5 | 28
JUL
15 | 1600
1730 | | 18
7.4 | 58
95 | 26.0
27.5 | | MAR
12 | 1015 | | 52 | 7.5 | 22
AUG | 1545 | | 5.6 | 76 | 28.0 | | 26 | 1430 | | 85 | 5.0 | 08 | 0730 | 4 | 1.6 | 112 | 26.5 | | | | 07 | 7031740 | WOLF RIVER | AT HOLLYWOOD ST AT MEN | MPHIS, | TN | | | | | OCT 2001
22 | 1240 | 593 | 53 | 17.5 | MAY 2002
07 | 1320 | 18 | 360 | 50 | 21.0 | | FEB 2002
22 | 1045 | 1790 | 42 | 10.5 | AUG
15 | 1130 | 17 | 770 | 61 | 25.0 | | APR 01 | 1110 | | 61 | 13.0 | SEP
17 | 1115 | 6 | 592 | 80 | 25.0 | | | | | | NONCON | NAH RIVER BASIN | | | | | | | | | | 070322 | 00 NONCONNA | H CREEK NEAR GERMANTOV | N, TN | | | | | | NOV 2001
14 | 0830 | .56 | 162 | 12.0 | MAR 2002
28 | 1015 | | 31 | 92 | 11.5 | In 1993, the U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Transportation (TDOT), began monitoring a degraded wetland area near Millington, Shelby County, Tennessee. The monitoring effort was designed to define land-surface inundation and saturation conditions prior to the implementation of a plan to restore the wetland area to a more natural condition. Restoring and preserving wetlands have become an important initiative in recent years as indicated by the no net loss of wetlands objective of Section 404 of the Clean Water Act (U.S. Congress, 1977). In certain instances, the construction of buildings, roads, and other manmade structures have disrupted natural wetlands and their functions. The Millington site is located along a channelized reach of Big Creek, east of State Route 240, and near the southeastern boundary of the Naval Support Activity Midsouth, Millington (fig. 7). As part of the monitoring effort, 11 wells were augered approximately 2 feet into poorly drained soils, which include the Calloway silt loam, Falaga silt loam, Waverly silt loam, and Henry silt loam. Additional information on this study area may be obtained from the USGS at 640 Grassmere Park, Suite 100, Nashville, TN 37211 or by telephone (615) 837-4700. Figure 7. Location of study area and data-collection sites. ### MILLINGTON WETLAND 351859089520101. Local number, Sh:V-60 (W1-1). LOCATION.--Lat 35°18'59", long 89°52'01", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder--60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing approximately 3.60 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.22 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--June 1993 to current year. WTR YR 2002 HIGHEST -.34 NOV 29, 2001 | | DEP | TH BELOW 1 | LAND SURFA | CE (WATER | | (FEET), W
Y MEAN VA | | OCTOBER | 2001 TO | SEPTEMBER | 2002 | | |----------------------------------|--|---------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.22 | 2.22 | 0.43 | 1.01 | 0.38 | 0.86 | 0.31 | 0.64 | 1.57 | 2.22 | 2.22 | 2.22 | | 2 | 2.22 | 2.22 | 0.56 | 1.12 | 0.47 | 0.68 | 0.38 | 1.01 | 1.98 | 2.22 | 2.22 | 2.22 | | 3 | 2.22 | 2.22 | 0.62 | 1.17 | 0.46 | 0.62 | 0.57 | 0.76 | 2.22 | 2.22 | 2.22 | 2.22 | | 4 | 2.22 | 2.22 | 0.68 | 1.33 | 0.52 | 0.80 | 0.72 | 0.33 | 2.22 | 2.22 | 2.22 | 2.22 | | 5 | 2.22 | 2.22 | 0.77 | 1.28 | 0.57 | 0.87 | 0.84 | 0.54 | 2.22 | 2.22 | 2.22 | 2.22 | | 6 | 2.22 | 2.22 | 0.67 | 0.58 | 0.40 | 0.95 | 0.95 | 0.73 | 2.22 | 2.22 | 2.22 | 2.22 | | 7 | 2.22 | 2.22 | 0.36 | 0.37 | 0.22 | 0.98 | 1.03 | 1.06 | 2.22 | 2.22 | 2.22 | 2.22 | | 8 | 2.22 | 2.22 | 0.39 | 0.45 | 0.31 | 1.02 | 0.95 | 1.39 | 2.22 | 2.22 | 2.22 | 2.22 | | 9 | 2.22 | 2.22 | 0.52 | 0.47 | 0.37 | 0.60 | 0.63 | 1.61 | 2.22 | 2.22 | 2.22 | 2.22 | | 10 | 2.22 | 2.22 | 0.57 | 0.50 | 0.45 | 0.46 | 0.80 | 0.80 | 2.22 | 2.22 | 2.22 | 2.22 | | 11 | 2.08 | 2.22 | 0.62 | 0.36 | 0.55 | 0.39 | 0.93 | 0.52 | 2.22 | 2.22 | 2.22 | 2.22 | | 12 | 1.98 | 2.22 | 0.46 | 0.43 | 0.55 | 0.17 | 1.08 | 0.85 | 2.22 | 2.22 | 2.22 | 2.22 | | 13 | 1.78 | 2.22 | 0.23 | 0.49 | 0.63 | 0.30 | 1.23 | 0.50 | 2.22 | 2.22 | 2.22 | 2.22 | | 14 | 0.79 | 2.22 | 0.21 | 0.53 | 0.69 | 0.37 | 1.35 | 0.60 | 2.22 | 2.22 | 2.22 | 2.22 | | 15 | 1.39 | 2.22 | 0.38 | 0.64 | 0.69 | 0.44 | 1.54 | 0.96 | 2.22 | 2.22 | 2.22 | 2.22 | | 16 | 1.89 | 2.22 | 0.32 | 0.66 | 0.52 | 0.51 | 1.76 | 1.33 | 2.22 | 2.22 | 2.22 | 2.22 | | 17 | 2.17 | 2.22 | 0.03 | 0.69 | 0.62 | 0.0 | 1.95 | 0.81 | 2.22 | 2.22 | 2.22 | 2.22 | | 18 | 2.22 | 2.22 | 0.22 | 0.33 | 0.69 | 0.09 | 2.13 | 0.54 | 2.22 | 2.22 | 2.22 | 2.22 | | 19 | 2.22 | 2.22 | 0.40 | 0.26 | 0.64 | 0.19 | 2.21 | 0.87 | 2.22 | 2.22 | 2.22 | 2.22 | | 20 | 2.22 | 2.22 | 0.56 | 0.38 | 0.28 | 0.20 | 2.22 | 1.21 | 2.22 | 2.22 | 2.22 | 1.77 | | 21 | 2.22 | 2.22 | 0.60 | 0.46 | 0.42 | 0.35 | 2.22 | 1.59 | 2.22 |
2.22 | 2.22 | 1.98 | | 22 | 2.22 | 2.22 | 0.58 | 0.49 | 0.52 | 0.47 | 2.22 | 1.79 | 2.22 | 2.22 | 2.22 | 2.22 | | 23 | 2.22 | 2.22 | 0.29 | 0.34 | 0.56 | 0.48 | 2.22 | 2.02 | 2.22 | 2.22 | 2.22 | 2.22 | | 24 | 2.22 | 2.22 | 0.44 | 0.22 | 0.60 | 0.50 | 2.22 | 2.21 | 2.22 | 2.22 | 2.22 | 2.22 | | 25 | 2.22 | 2.22 | 0.52 | 0.38 | 0.62 | 0.54 | 2.22 | 2.22 | 2.22 | 2.22 | 2.22 | 2.22 | | 26
27
28
29
30
31 | 2.22
2.22
2.22
2.22
2.22
2.22 | 2.17
0.42
0.22
-0.28
0.15 | 0.56
0.59
0.59
0.66
0.80
0.88 | 0.45
0.49
0.49
0.48
0.49
0.48 | 0.59
0.72
0.82
 | 0.30
0.37
0.42
0.40
0.17
0.19 | 2.22
2.22
2.22
2.22
1.60 | 2.22
2.22
2.22
0.66
0.65
1.03 | 2.22
2.22
2.22
2.22
2.22 | 2.22
2.22
2.22
2.22
2.22
2.22 | 2.22
2.22
2.22
2.22
2.22
2.22 | 1.96
0.46
1.37
1.97
2.22 | LOWEST 2.22 MANY DAYS ### MILLINGTON WETLAND--Continued 351859089515501. Local number, Sh:V-61 (W1-2). LOCATION.--Lat 35°18'59", long 89°51'55", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing 3.00 ft above land-surface datum. REMARKS.--Missing record, Nov. 6 to Nov. 12 and March 4 to April 2. Bottom of well, 2.24 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--October 1993 to current year. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|---|---|-----------------------------|---------------------------------------|--|--------------------------------------|--|--|---------------------------------------| | 1
2
3
4
5 | 2.24
2.24
2.24
2.24
2.24 | 0.65
0.82
0.59
0.49
0.61 | -0.07
-0.03
-0.01
0.0
0.02 | 0.03
0.04
0.05
0.07
0.05 | -0.09
-0.06
-0.06
-0.05
-0.03 | -0.07
-0.11
-0.10
 | 1.41
1.43
1.45 | -0.09
-0.02
-0.05
-0.13
-0.07 | 0.20
0.93
1.90
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 6
7
8
9
10 | 2.24
2.24
2.24
2.24
2.24 |

 | -0.03
-0.16
-0.14
-0.07
-0.05 | -0.11
-0.09
-0.07
-0.06
-0.06 | -0.06
-0.13
-0.11
-0.09
-0.07 |

 | 1.47
1.49
1.31
0.60
0.02 | -0.03
0.08
0.29
0.60
0.16 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 11
12
13
14
15 | 0.25
-0.10
-0.18
-0.18
-0.09 | 1.92
1.95
2.00 | -0.04
-0.21
-0.23
-0.25
-0.10 | -0.08
-0.07
-0.05
-0.04
-0.02 | -0.06
-0.05
-0.04
-0.02
-0.03 |

 | -0.02
0.00
0.02
0.05
0.09 | -0.06
0.03
-0.10
-0.07
0.01 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 16
17
18
19
20 | -0.03
0.03
0.07
0.13
0.22 | 2.05
2.11
2.16
2.20
2.23 | -0.26
-0.27
-0.11
-0.08
-0.05 | -0.01
-0.02
-0.10
-0.19
-0.10 | -0.05
-0.04
-0.02
-0.07
-0.16 |

 | 0.15
0.25
0.43
0.84
1.35 | 0.20
0.04
-0.09
-0.02
0.07 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.09
-0.20 | | 21
22
23
24
25 | 0.36
0.60
0.88
0.99
-0.05 | 2.24
2.24
2.24
1.26
0.80 | -0.04
-0.04
-0.22
-0.10
-0.07 | -0.08
-0.06
-0.08
-0.22
-0.10 | -0.09
-0.07
-0.07
-0.06
-0.06 |

 | 1.83
1.99
2.10
2.20
2.24 | 0.28
0.74
1.30
1.92
2.21 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24 | 0.04
0.69
1.82
2.24
2.24 | | 26
27
28
29
30
31 | 0.02
0.06
0.13
0.22
0.35
0.50 | 0.73
-0.21
-0.28
-0.43
-0.14 | -0.06
-0.05
-0.04
-0.02
0.00
0.01 | -0.08
-0.06
-0.06
-0.05
-0.05 | -0.07
-0.06
-0.08
 |

 | 2.24
2.24
2.24
2.24
1.44 | 2.24
2.24
2.23
-0.10
-0.07
0.02 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24
2.24 | 1.64
-0.14
0.03
0.17
0.41 | WTR YR 2002 HIGHEST -.61 NOV 28, 2001 LOWEST 2.22 MANY DAYS # MILLINGTON WETLAND--Continued 351906089515601. Local number, Sh:V-62 (W1-3). LOCATION.--Lat 35°19'06", long 89°51'56", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.80 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.10 ft below land surface. PERIOD OF RECORD. -- October 1993 to current year. | | DEP1 | TH BELOW I | LAND SURFA | CE (WATER | | (FEET), W
Y MEAN VA | | OCTOBER | 2001 TO : | SEPTEMBER | 2002 | | |----------------------------------|--|--------------------------------------|--|--|----------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.10 | 2.10 | 0.38 | 1.01 | 0.20 | 0.90 | 0.21 | 0.68 | 1.49 | 2.10 | 2.10 | 2.10 | | 2 | 2.10 | 2.10 | 0.58 | 1.13 | 0.28 | 0.71 | 0.27 | 1.23 | 1.72 | 2.10 | 2.10 | 2.10 | | 3 | 2.10 | 2.10 | 0.81 | 1.18 | 0.28 | 0.45 | 0.43 | 0.91 | 1.89 | 2.10 | 2.10 | 2.10 | | 4 | 2.10 | 2.10 | 1.01 | 1.30 | 0.33 | 0.67 | 0.63 | 0.23 | 2.04 | 2.10 | 2.10 | 2.10 | | 5 | 2.10 | 2.10 | 1.19 | 1.32 | 0.43 | 0.80 | 0.85 | 0.41 | 2.10 | 2.10 | 2.10 | 2.10 | | 6 | 2.10 | 2.10 | 1.03 | 0.29 | 0.30 | 0.91 | 1.02 | 0.73 | 2.10 | 2.10 | 2.10 | 2.10 | | 7 | 2.10 | 2.10 | 0.26 | 0.19 | 0.15 | 0.96 | 1.17 | 1.19 | 2.10 | 2.10 | 2.10 | 2.10 | | 8 | 2.10 | 2.10 | 0.21 | 0.24 | 0.19 | 0.99 | 1.12 | 1.51 | 2.10 | 2.10 | 2.10 | 2.10 | | 9 | 2.10 | 2.10 | 0.30 | 0.27 | 0.22 | 0.44 | 0.55 | 1.72 | 2.10 | 2.10 | 2.10 | 2.10 | | 10 | 2.10 | 2.10 | 0.40 | 0.28 | 0.28 | 0.27 | 0.73 | 0.77 | 2.10 | 2.10 | 2.10 | 2.10 | | 11 | 1.31 | 2.10 | 0.51 | 0.18 | 0.37 | 0.27 | 0.92 | 0.44 | 2.10 | 2.10 | 2.10 | 2.10 | | 12 | 1.19 | 2.10 | 0.25 | 0.23 | 0.43 | 0.16 | 1.07 | 0.90 | 2.10 | 2.10 | 2.10 | 2.10 | | 13 | 1.08 | 2.10 | 0.16 | 0.27 | 0.55 | 0.20 | 1.21 | 0.36 | 2.10 | 2.10 | 2.10 | 2.10 | | 14 | 0.70 | 2.10 | 0.17 | 0.33 | 0.67 | 0.26 | 1.35 | 0.52 | 2.10 | 2.10 | 2.10 | 2.10 | | 15 | 1.44 | 2.10 | 0.23 | 0.45 | 0.72 | 0.32 | 1.47 | 1.04 | 2.10 | 2.10 | 2.10 | 2.10 | | 16 | 1.84 | 2.10 | 0.16 | 0.54 | 0.42 | 0.35 | 1.58 | 1.48 | 2.10 | 2.10 | 2.10 | 2.10 | | 17 | 2.06 | 2.10 | 0.15 | 0.55 | 0.54 | 0.13 | 1.69 | 0.81 | 2.10 | 2.10 | 2.10 | 2.10 | | 18 | 2.10 | 2.10 | 0.21 | 0.18 | 0.69 | 0.16 | 1.78 | 0.43 | 2.10 | 2.10 | 2.10 | 2.10 | | 19 | 2.10 | 2.10 | 0.25 | 0.16 | 0.68 | 0.16 | 1.84 | 0.93 | 2.10 | 2.10 | 2.10 | 2.10 | | 20 | 2.10 | 2.10 | 0.35 | 0.20 | 0.18 | 0.15 | 1.89 | 1.39 | 2.10 | 2.10 | 2.10 | 1.36 | | 21 | 2.10 | 2.10 | 0.44 | 0.24 | 0.26 | 0.23 | 1.94 | 1.65 | 2.10 | 2.10 | 2.10 | 1.34 | | 22 | 2.10 | 2.10 | 0.41 | 0.27 | 0.36 | 0.33 | 1.98 | 1.81 | 2.10 | 2.10 | 2.10 | 1.86 | | 23 | 2.10 | 2.10 | 0.17 | 0.17 | 0.45 | 0.41 | 2.02 | 1.89 | 2.10 | 2.10 | 2.10 | 2.09 | | 24 | 2.10 | 2.10 | 0.23 | 0.15 | 0.54 | 0.47 | 2.07 | 1.97 | 2.10 | 2.10 | 2.10 | 2.10 | | 25 | 2.09 | 2.10 | 0.29 | 0.21 | 0.62 | 0.53 | 2.10 | 2.07 | 2.10 | 2.10 | 2.10 | 2.10 | | 26
27
28
29
30
31 | 2.10
2.10
2.10
2.10
2.10
2.10 | 2.01
0.50
0.38
0.10
0.23 | 0.35
0.41
0.46
0.57
0.75
0.87 | 0.26
0.31
0.34
0.33
0.34
0.31 | 0.46
0.65
0.80 | 0.18
0.25
0.32
0.32
0.14
0.15 | 2.10
2.10
2.10
2.10
1.21 | 2.10
2.10
2.10
0.70
0.64
1.12 | 2.10
2.10
2.10
2.10
2.10 | 2.10
2.10
2.10
2.10
2.10
2.10 | 2.10
2.10
2.10
2.10
2.10
2.10 | 1.65
0.67
1.42
1.74
1.96 | ### MILLINGTON WETLAND--Continued 351912089515301. Local number, Sh:V-63 (W1-4). LOCATION.--Lat 35°19'12", long 89°51'53", Hydrologic Unit 08010209, 0.5 mi east of interestion of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth.
Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.27 below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--October 1993 to current year. | | DEP | TH BELOW | LAND SURFA | CE (WATER | | (FEET), W | | OCTOBER | 2001 TO S | EPTEMBER : | 2002 | | |----------------------------------|--|--|--|--|--------------------------------------|--|--------------------------------------|--|--|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.27
2.27
2.27
2.27
2.27 | 2.27
2.27
2.27
2.27
2.27 | 0.18
0.30
0.43
0.54
0.66 | 0.52
0.60
0.66
0.75
0.81 | 0.14
0.18
0.18
0.19
0.23 | 0.28
0.23
0.16
0.26
0.28 | 0.08
0.10
0.12
0.15
0.18 | 0.07
0.13
0.05
0.01
0.06 | 0.94
1.27
1.45
1.59 | 2.27
2.27
2.27
2.27
2.27 | 2.27
2.27
2.27
2.27
2.27 | 2.27
2.27
2.27
2.27
2.27 | | 6 | 2.27 | 2.27 | 0.65 | 0.28 | 0.19 | 0.30 | 0.21 | 0.13 | 1.76 | 2.27 | 2.27 | 2.27 | | 7 | 2.27 | 2.27 | 0.28 | 0.13 | 0.09 | 0.30 | 0.24 | 0.29 | 1.83 | 2.27 | 2.27 | 2.27 | | 8 | 2.27 | 2.27 | 0.17 | 0.19 | 0.11 | 0.29 | 0.18 | 0.54 | 1.88 | 2.27 | 2.27 | 2.27 | | 9 | 2.27 | 2.27 | 0.26 | 0.20 | 0.14 | 0.14 | 0.10 | 0.81 | 1.94 | 2.27 | 2.27 | 2.27 | | 10 | 2.27 | 2.27 | 0.34 | 0.23 | 0.16 | 0.12 | 0.14 | 0.26 | 1.99 | 2.27 | 2.27 | 2.27 | | 11 | 1.22 | 2.27 | 0.38 | 0.14 | 0.18 | 0.12 | 0.18 | 0.12 | 2.04 | 2.27 | 2.27 | 2.27 | | 12 | 0.86 | 2.27 | 0.36 | 0.19 | 0.20 | 0.04 | 0.19 | 0.28 | 2.09 | 2.27 | 2.27 | 2.27 | | 13 | 1.25 | 2.27 | 0.04 | 0.22 | 0.21 | 0.11 | 0.23 | 0.06 | 2.14 | 2.27 | 2.27 | 2.27 | | 14 | 0.54 | 2.27 | 0.04 | 0.24 | 0.25 | 0.14 | 0.27 | 0.08 | 2.19 | 2.27 | 2.27 | 2.27 | | 15 | 1.28 | 2.27 | 0.10 | 0.30 | 0.26 | 0.15 | 0.33 | 0.24 | 2.22 | 2.27 | 2.27 | 2.27 | | 16 | 1.74 | 2.27 | 0.12 | 0.34 | 0.17 | 0.15 | 0.41 | 0.52 | 2.24 | 2.27 | 1.97 | 2.27 | | 17 | 1.98 | 2.27 | -0.09 | 0.35 | 0.20 | -0.07 | 0.53 | 0.29 | 2.26 | 2.27 | 1.96 | 2.27 | | 18 | 2.13 | 2.27 | -0.02 | 0.13 | 0.25 | -0.07 | 0.64 | 0.02 | 2.27 | 2.27 | 2.11 | 2.27 | | 19 | 2.24 | 2.27 | 0.14 | 0.07 | 0.27 | 0.06 | 0.79 | 0.13 | 2.27 | 2.27 | 2.22 | 2.12 | | 20 | 2.27 | 2.27 | 0.20 | 0.13 | 0.08 | 0.04 | 0.95 | 0.31 | 2.27 | 2.27 | 2.27 | 0.55 | | 21 | 2.27 | 2.27 | 0.24 | 0.16 | 0.13 | 0.10 | 1.14 | 0.59 | 2.27 | 2.27 | 2.27 | 1.16 | | 22 | 2.27 | 2.27 | 0.27 | 0.18 | 0.16 | 0.13 | 1.22 | 0.87 | 2.27 | 2.27 | 2.27 | 1.69 | | 23 | 2.27 | 2.27 | 0.08 | 0.13 | 0.18 | 0.15 | 1.27 | 1.10 | 2.27 | 2.27 | 2.27 | 1.95 | | 24 | 2.27 | 2.27 | 0.14 | 0.06 | 0.20 | 0.15 | 1.35 | 1.29 | 2.27 | 2.27 | 2.17 | 2.12 | | 25 | 2.27 | 2.27 | 0.18 | 0.13 | 0.22 | 0.16 | 1.43 | 1.42 | 2.27 | 2.27 | 1.78 | 2.24 | | 26
27
28
29
30
31 | 2.27
2.27
2.27
2.27
2.27
2.27 | 2.27
0.41
0.34
-0.39
-0.06 | 0.21
0.24
0.27
0.31
0.38
0.45 | 0.16
0.18
0.19
0.19
0.20
0.19 | 0.16
0.22
0.27
 | 0.07
0.11
0.12
0.11
0.02
0.03 | 1.50
1.56
1.61
1.68
0.97 | 1.53
1.61
1.66
0.14
0.20
0.51 | 2.27
2.27
2.27
2.27
2.27
 | 2.27
2.27
2.27
2.27
2.27
2.27 | 1.97
2.11
2.22
2.27
2.27
2.27 | 1.55
0.62
1.44
1.77
2.00 | WTR YR 2002 HIGHEST -.46 NOV 29, 2001 LOWEST 2.27 MANY DAYS ### MILLINGTON WETLAND--Continued 351853089515101. Local number, Sh:V-64 (W1-5). LOCATION.--Lat 35°18'53", long 89°51'51", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Missing record, May 3 to May 23 and Sept. 10 to Sept. 16. Bottom of well, 2.25 ft below land surface. Negative values indicate water levels above land surface. Recording stops at 1.71 ft due to blockage at well bottom for the entire 2002 water year. PERIOD OF RECORD.--October 1993 to current year. | | DEP | TH BELOW | LAND SURF. | ACE (WATE | | (FEET), W
Y MEAN VA | | OCTOBER 2 | 2001 TO S | EPTEMBER : | 2002 | | |----------------------------------|--|---|--|--|---------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.71
1.71
1.71
1.71
1.71 | 1.53
1.67
1.49
1.19
1.39 | 0.09
0.11
0.14
0.16
0.17 | 0.20
0.25
0.28
0.35
0.33 | 0.02
0.04
0.04
0.05
0.07 | 0.16
0.12
0.12
0.18
0.20 | 0.0
0.0
0.03
0.06
0.11 | 0.11
0.23
 | 0.87
1.60
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | | 6
7
8
9
10 | 1.71
1.71
1.71
1.71
1.71 | 1.59
1.71
1.71
1.71
1.71 | 0.14
0.01
0.02
0.08
0.10 | 0.05
0.02
0.04
0.05
0.06 | 0.03
-0.02
0.01
0.02
0.03 | 0.23
0.24
0.25
0.05
0.03 | 0.15
0.18
0.15
0.11
0.17 |

 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.55 | | 11
12
13
14
15 | 0.62
0.00
0.01
-0.06
0.05 | 1.71
1.71
1.71
1.71
1.71 | 0.12
-0.03
-0.10
-0.12
0.02 | 0.02
0.04
0.05
0.06
0.09 | 0.04
0.05
0.07
0.09
0.10 | 0.0
-0.11
0.01
0.03
0.03 | 0.22
0.26
0.32
0.41
0.55 |

 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 |

 | | 16
17
18
19
20 | 0.14
0.28
0.44
0.65
0.95 | 1.71
1.71
1.71
1.71
1.71 | -0.12
-0.17
0.00
0.03
0.05 | 0.11
0.12
0.0
-0.06
0.02 | 0.06
0.09
0.11
0.11
-0.05 | 0.03
-0.23
-0.06
-0.04
-0.10 | 0.78
1.08
1.40
1.69
1.71 |

 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.46
-0.15 | | 21
22
23
24
25 | 1.23
1.46
1.66
1.71
0.37 | 1.71
1.71
1.71
1.03
0.19 | 0.07
0.08
-0.08
0.02
0.04 | 0.04
0.05
0.03
-0.09
0.02 | 0.03
0.04
0.05
0.06
0.07 | 0.0
0.03
0.03
0.04
0.04 | 1.71
1.71
1.71
1.71
1.71 |

1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.53
0.54 | 0.07
0.42
1.34
1.71 | | 26
27
28
29
30
31 | 0.33
0.64
0.92
1.12
1.30
1.42 | 0.29
-0.05
-0.10
-0.26
0.02 | 0.06
0.06
0.07
0.09
0.13
0.15 | 0.04
0.05
0.05
0.05
0.05
0.05 | 0.07
0.13
0.14
 | -0.03
0.01
0.02
-0.03
-0.12
-0.11 | 1.71
1.71
1.71
1.71
0.93 | 1.71
1.71
1.59
0.03
0.11
0.33 | 1.71
1.71
1.71
1.71
1.71 | 1.71
1.71
1.71
1.71
1.71
1.71 | 1.70
1.71
1.71
1.71
1.71
1.71 | 1.09
-0.01
0.14
0.33
0.66 | WTR YR 2002 HIGHEST -.57 NOV 28, 2001 LOWEST 1.71 MANY DAYS #### MILLINGTON WETLAND--Continued 351909089513301. Local number, $Sh:V-68 \ (W2-4)$. LOCATION.--Lat 35°19'09", long 89°51'33", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum. REMARKS.--Missing record, Nov. 30 to Dec. 10, Jan. 21 to Jan. 22, Jan. 25 to Feb. 7, and May 9 to May 23. Bottom of well, 2.21 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD. -- October 1993 to current year. | | DEP | TH BELOW | LAND SURFA | ACE (WATER | | (FEET), W | | OCTOBER | 2001 TO S | EPTEMBER : | 2002 | | |----------------------------------|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|--------------------------------------
--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 |

 | 0.83
0.93
0.99
1.13
1.08 |

 | 0.50
0.38
0.33
0.45
0.52 | 0.12
0.15
0.23
0.34
0.44 | 0.12
0.09
-0.19
-0.43
-0.54 | 1.39
1.92
2.19
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | | 6
7
8
9
10 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 |

 | 0.38
0.33
0.37
0.40
0.41 | 0.12
0.15
0.18 | 0.59
0.62
0.65
0.27
0.16 | 0.54
0.64
0.55
0.30
0.38 | -0.58
-0.42
-0.05
 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | | 11
12
13
14
15 | 2.19
2.21
2.10
1.49
1.70 | 2.21
2.21
2.21
2.21
2.21 | 0.32
0.11
-0.11
-0.22
0.07 | 0.34
0.37
0.41
0.47
0.55 | 0.23
0.28
0.35
0.40
0.41 | 0.13
0.08
0.13
0.16
0.20 | 0.46
0.54
0.63
0.75
0.96 |

 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | | 16
17
18
19
20 | 2.04
2.20
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | -0.08
-0.30
-0.04
0.25
0.31 | 0.60
0.60
0.34
0.51
0.66 | 0.27
0.35
0.42
0.38
0.12 | 0.20
-0.32
-0.50
-0.04
0.03 | 1.23
1.47
1.65
1.82
1.96 |

 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
1.37 | | 21
22
23
24
25 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 0.34
0.30
0.27
0.30
0.33 |
0.67
-0.08 | 0.16
0.20
0.25
0.31
0.34 | 0.12
0.17
0.21
0.25
0.28 | 2.09
2.12
2.11
2.17
2.21 | 2.19
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21 | 2.12
2.21
2.21
2.21
2.21 | | 26
27
28
29
30
31 | 2.21
2.21
2.21
2.21
2.21
2.21 | 2.12
0.26
0.11
-0.63 | 0.38
0.42
0.46
0.54
0.64 |

 | 0.28
0.38
0.45
 | 0.10
0.13
0.16
0.16
0.05
0.06 | 2.21
2.21
2.21
2.21
1.33 | 2.21
2.21
1.55
0.15
0.27
0.68 | 2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21
2.21 | 2.21
2.21
2.21
2.21
2.21
2.21 | 1.69
0.52
1.33
1.89
2.20 | WTR YR 2002 HIGHEST -.86 JAN 24, 2002 LOWEST 2.21 MANY DAYS ### MILLINGTON WETLAND--Continued 351848089511001. Local number, Sh:V-70 (W3-2). LOCATION.--Lat 35°18'48", long 89°51'10", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.24 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--October 1993 to current year. | | DEP1 | TH BELOW | LAND SURFACE | (WATER | | (FEET),
LY MEAN V | | OCTOBER | 2001 TO | SEPTEMBER | 2002 | | |----------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.57
1.64
1.71
1.79
1.83 | 1.17
1.20
1.09
1.15
1.19 | 0.86 | 1.09
1.10
1.12
1.14
1.11 | 0.98
1.04
1.05
1.09
1.10 | 1.13
1.09
1.13
1.15
1.15 | 0.65
0.78
0.88
0.93
0.98 | 0.97
1.06
0.91
0.84
0.98 | 1.13
1.22
1.29
1.36
1.38 | 2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 6
7
8
9
10 | 1.62
1.67
1.78
1.90
1.98 | 1.22
1.24
1.25
1.27
1.26 | 0.72 | 0.83
1.02
1.06
1.08 | 1.03
0.88
1.01
1.05
1.10 | 1.16
1.17
1.17
0.88
1.03 | 1.01
1.04
1.04
1.01
1.08 | 1.03
1.10
1.16
1.18
0.95 | 1.23
1.33
1.43
1.52 | 2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 11
12
13
14
15 | 0.55
0.65
0.52
0.51
0.71 | 1.27
1.30
1.30
1.31
1.32 | 0.55
0.36
0.32 | 1.02
1.08
1.10
1.13
1.17 | 1.10
1.11
1.14
1.14
1.14 | 0.91
0.36
0.69
0.79
0.88 | 1.11
1.14
1.17
1.19
1.24 | 1.04
1.14
0.85
1.03
1.11 | 1.29
1.43
1.58
1.63
1.81 | 2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | | 16
17
18
19
20 | 0.81
0.86
0.89
0.94
0.98 | 1.34
1.35
1.34
1.30
1.24 | 0.36
0.21
0.57
0.73
0.83 | 1.15
1.13
0.98
0.75
0.96 | 1.10
1.14
1.15
1.03
0.81 | 0.93
0.08
0.37
0.55
0.38 | 1.29
1.32
1.33
1.39
1.42 | 1.18
0.70
0.74
0.85
0.94 | 2.01
2.08
2.23
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
1.25 | | 21
22
23
24
25 | 1.01
1.02
1.04
0.96
0.95 | 1.29
1.32
1.32
1.00
1.19 | 0.87
0.89
0.56
0.79
0.86 | 1.02
1.03
1.01
0.49
0.72 | 1.01
1.05
1.06
1.08
1.09 | 0.69
0.78
0.84
0.90
0.95 | 1.50
1.40
1.50
1.57
1.82 | 1.02
1.09
1.15
1.20
1.25 | 2.24
2.24
2.24
2.24
2.24 | 2.24 | 2.24
2.24
2.24
2.24
2.24 | 0.84
0.93
1.00
1.06
1.08 | | 26
27
28
29
30
31 | 1.06
1.09
1.11
1.13
1.14
1.15 | 1.18
0.59
0.42
0.03
0.47 | 0.91
0.95
0.98
1.03
1.05 | 0.81
0.88
0.92
0.96
0.99 | 1.09
1.12
1.13
 | 0.74
0.91
0.96
0.86
0.47
0.34 | 2.04
2.12
2.18
2.24
1.61 | 1.28
1.30
1.23
0.73
0.92
1.04 | 2.24
2.24
2.24
2.24
2.24 | 2.24
2.24
2.24 | 2.24
2.24
2.24
2.24
2.24
2.24 | 0.70
0.35
0.69
0.80
0.87 | WTR YR 2002 HIGHEST -.11 NOV 28, 2001 LOWEST 2.24 MANY DAYS ### MILLINGTON WETLAND--Continued 351856089511901. Local number, Sh:V-71 (W3-3). LOCATION.--Lat 35°18'56", long 89°51'19", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.37 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--October 1993 to current year. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|---|---|--|--|---| | 1
2
3
4
5 | -0.46
-0.41
-0.37
-0.33
-0.31 | -0.82
-0.80
-0.80
-0.79
-0.77 | -1.31
-1.21
-1.14
-1.09
-1.04 | -0.86
-0.83
-0.82
-0.79
-0.79 | -0.92
-0.88
-0.87
-0.84
-0.81 | -0.69
-0.68
-0.69
-0.67
-0.65 | -1.28
-1.18
-1.09
-1.04
-0.99 | -0.99
-0.95
-0.96
-1.03
-1.00 | -0.99
-0.94
-0.90
-0.86
-0.81 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | | 6
7
8
9
10 | -0.33
-0.30
-0.27
-0.23
-0.18 | -0.76
-0.73
-0.71
-0.68
-0.65 | -1.01
-1.05
-1.23
-1.16
-1.11 | -0.88
-0.89
-0.86
-0.85
-0.84 | -0.83
-0.88
-0.87
-0.86
-0.83 | -0.63
-0.62
-0.60
-0.68
-0.82 | -0.95
-0.91
-0.89
-0.88
-0.85 | -0.96
-0.91
-0.87
-0.85
-0.90 |
-0.81
-0.78
-0.74
-0.69
-0.65 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | | 11
12
13
14
15 | -0.68
-1.32
-1.27
-1.39
-1.31 | -0.62
-0.59
-0.55
-0.52
-0.49 | -1.07
-1.19
-1.49
-1.50
-1.32 | -0.84
-0.82
-0.80
-0.78
-0.76 | -0.80
-0.77
-0.73
-0.71
-0.69 | -0.81
-1.31
-1.27
-1.16
-1.09 | -0.82
-0.80
-0.77
-0.74
-0.71 | -0.91
-0.88
-0.98
-0.98
-0.94 | -0.65
-0.62
-0.57
-0.54
-0.49 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.37
2.37 | | 16
17
18
19
20 | -1.24
-1.18
-1.14
-1.10
-1.06 | -0.46
-0.43
-0.40
-0.39 | -1.42
-1.64
-1.39
-1.26
-1.17 | -0.75
-0.73
-0.78
-0.97
-1.01 | -0.69
-0.68
-0.66
-0.64
-0.86 | -1.02
-1.53
-1.52
-1.31
-1.39 | -0.67
-0.63
-0.60
-0.56
-0.52 | -0.90
-1.12
-1.27
-1.17
-1.10 | -0.46
-0.44
-0.40
-0.35
-0.29 | 2.37
2.37
2.37
2.37
2.37 | 2.28
2.34
2.37
2.37
2.37 | 2.37
2.37
2.37
1.95
-0.74 | | 21
22
23
24
25 | -1.04
-1.01
-0.99
-0.96
-0.99 | -0.37
-0.35
-0.35
-0.45
-0.51 | -1.11
-1.06
-1.23
-1.18
-1.11 | -0.97
-0.93
-0.92
-1.29 | -0.94
-0.88
-0.83
-0.79
-0.76 | -1.27
-1.17
-1.11
-1.06
-1.01 | -0.49
-0.47
-0.44
-0.41 | -1.04
-0.99
-0.94
-0.90
-0.88 | -0.21
-0.08
0.21
0.56
0.93 | 2.37
2.37
2.37
2.37
2.37 | 2.37
2.37
2.37
2.27
1.68 | -1.30
-1.18
-1.10
-1.05
-1.00 | | 26
27
28
29
30
31 | -0.96
-0.93
-0.90
-0.88
-0.86
-0.84 | -0.49
-1.16
-1.34
-1.84
-1.49 | -1.05
-1.01
-0.99
-0.95
-0.92
-0.89 | -1.17
-1.10
-1.05
-1.00
-0.96
-0.93 | -0.75
-0.72
-0.71
 | -1.05
-1.03
-0.98
-0.97
-1.24
-1.42 | -0.33
-0.31
-0.28
-0.23
-0.52 | -0.85
-0.82
-0.79
-1.02
-1.09 | 1.24
1.59
1.87
2.17
2.34 | 2.37
2.37
2.37
2.37
2.37
2.37 | 1.98
2.19
2.35
2.37
2.37
2.37 | -1.05
-1.48
-1.32
-1.24
-1.19 | WTR YR 2002 HIGHEST -1.99 NOV 28-29, 2001 LOWEST 2.37 MANY DAYS # MILLINGTON WETLAND--Continued 351855089515301. Local number, Sh:V-74 (W2-5). LOCATION.--Lat 35°18'55", long 89°51'53", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.12 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--January 1997 to current year. | | DEP | TH BELOW I | LAND SURFA | ACE (WATER | | (FEET), WA | | OCTOBER 2 | 2001 TO SI | EPTEMBER 2 | 2002 | | |----------------------------------|--|--|--|--|--------------------------------------|--|--|--|--|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 1.52
1.95
2.12
2.12
2.12 | 1.47
1.58
1.67
1.75
1.82 | 0.48
0.65
0.81
0.89
1.10 | 1.76
1.80
1.77
1.81
1.85 | 0.23
0.41
0.80
1.24
1.53 | 2.08
2.12
2.12
2.11
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | | 6
7
8
9
10 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.10
1.66
1.03
1.78
1.90 | 1.14
0.33
0.41
0.51
0.60 | 1.16
0.47
0.19
0.29
0.42 | 1.90
1.95
1.99
1.44
1.08 | 1.73
1.89
1.97
1.99
2.06 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | | 11
12
13
14
15 | 0.99
1.53
1.65
1.16
2.11 | 2.12
2.12
2.12
2.12
2.12 | 1.98
2.01
0.32
0.17
0.26 | 0.37
0.41
0.52
0.66
0.89 | 0.65
0.89
1.10
1.30
1.42 | 1.06
0.08
0.22
0.36
0.56 | 2.11
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
1.72
1.90
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | | 16
17
18
19
20 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 0.46
0.05
0.12
0.24
0.34 | 1.10
1.24
0.48
0.13
0.19 | 1.41
1.42
1.51
1.54
0.18 | 0.86
0.11
0.10
0.10
0.09 | 2.12
2.12
2.12
2.12
2.12 | 2.12
1.15
1.48
2.10
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
1.87
0.74 | | 21
22
23
24
25 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 0.52
0.73
0.37
0.21
0.34 | 0.28
0.39
0.24
0.10
0.20 | 0.40
0.70
1.02
1.23
1.39 | 0.23
0.47
0.70
0.92
1.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12 | 2.10
2.12
2.12
2.12
2.12 | | 26
27
28
29
30
31 | 2.12
2.12
2.12
2.12
2.12
2.12 | 2.10
1.43
1.34
0.06
0.74 | 0.47
0.62
0.79
0.96
1.18
1.35 | 0.32
0.43
0.55
0.64
0.73
0.85 | 1.45
1.56
1.67
 | 0.46
0.50
0.72
0.78
0.08
0.09 | 2.12
2.12
2.12
2.12
1.85 | 2.12
2.12
2.06
1.76
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
 | 2.12
2.12
2.12
2.12
2.12
2.12
2.12 | 2.12
2.12
2.12
2.12
2.12
2.12
2.12 | 1.71
1.03
2.12
2.12
2.12 | WTR YR 2002 HIGHEST -.03 JAN 24, 2002 LOWEST 2.12 MANY DAYS ### MILLINGTON WETLAND--Continued 351852089512501. Local number, Sh:V-75 (W2-6). LOCATION.--Lat 35°18'52", long 89°51'25", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 265 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum. REMARKS.--No missing record. Bottom of well, 2.10 ft below land surface. Negative values indicate water levels above land surface. PERIOD OF RECORD.--January 1997 to current year. | | DEP | TH BELOW | LAND SURF | ACE (WATE | | (FEET), V
LY MEAN VA | VATER YEAR
ALUES | OCTOBER | 2001 TO S | SEPTEMBER : | 2002 | | |----------------------------------|--|--|--|--|----------------------|---|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.10 | 2.10 | 0.00 | 0.77 | 0.03 | 0.66 | -0.06 | 1.36 | 1.48 | 2.10 | 2.10 | 2.10 | | 2 | 2.10 | 2.10 | 0.07 | 0.84 | 0.14 | 0.37 | 0.05 | 1.52 | 1.74 | 2.10 | 2.10 | 2.10 | | 3 | 2.10 | 2.10 | 0.15 | 0.82 | 0.13 | 0.39 | 0.34 | 1.25 | 1.95 | 2.10 | 2.10 | 2.10 | | 4 | 2.10 | 2.10 | 0.22 | 1.03 | 0.24 | 0.63 | 0.61 | -0.05 | 2.08 | 2.10 | 2.10 | 2.10 | | 5 | 2.10 | 2.10 | 0.29 | 0.80 | 0.33 | 0.72 | 0.88 | 0.15 | 2.10 | 2.10 | 2.10 | 2.10 | | 6 | 2.10 | 2.10 | 0.17 | -0.08 | 0.07 | 0.78 | 1.07 | 0.47 | 2.10 | 2.10 | 2.10 | 2.10 | | 7 | 2.10 | 2.10 | -0.08 | -0.07 | -0.12 | 0.76 | 1.18 | 1.05 | 2.10 | 2.10 | 2.10 | 2.10 | | 8 | 2.10 | 2.10 | -0.06 | 0.00 | -0.06 | 0.76 | 1.04 | 1.38 | 2.10 | 2.10 | 2.10 | 2.10 | | 9 | 2.10 | 2.10 | 0.05 | 0.05 | 0.0 | 0.13 | 0.50 | 1.63 | 2.10 | 2.10 | 2.10 | 2.10 | | 10 | 2.10 | 2.10 | 0.13 | 0.07 | 0.14 | 0.02 | 0.74 | 0.65 | 2.10 | 2.10 | 2.10 | 2.10 | | 11 | 1.72 | 2.10 | 0.23 | -0.05 | 0.23 | -0.03 | 1.00 | 0.21 | 2.10 | 2.10 | 2.10 | 2.10 | | 12 | 2.01 | 2.10 | -0.06 | 0.01 | 0.30 | -0.17 | 1.22 | 0.71 | 2.10 | 2.10 | 2.10 | 2.10 | | 13 | 1.79 | 2.10 | -0.16 | 0.10 | 0.47 | -0.06 | 1.38 | 0.14 | 2.10 | 2.10 | 2.10 | 2.10 | | 14 | 1.63 | 2.10 | -0.15 | 0.20 | 0.54 | 0.02 | 1.51 | 0.19 | 2.10 | 2.10 | 2.10 | 2.10 | | 15 | 1.84 | 2.10 | -0.03 | 0.39 | 0.51 |
0.13 | 1.66 | 0.82 | 2.10 | 2.10 | 2.10 | 2.10 | | 16 | 1.93 | 2.10 | -0.15 | 0.41 | 0.23 | 0.21 | 1.81 | 1.35 | 2.10 | 2.10 | 2.10 | 2.10 | | 17 | 2.04 | 2.10 | -0.23 | 0.40 | 0.41 | -0.27 | 1.93 | 0.67 | 2.10 | 2.10 | 2.10 | 2.10 | | 18 | 2.10 | 2.10 | -0.10 | -0.08 | 0.52 | -0.19 | 2.02 | 0.11 | 2.10 | 2.10 | 2.10 | 2.10 | | 19 | 2.10 | 2.10 | 0.0 | -0.16 | 0.38 | -0.14 | 2.09 | 0.63 | 2.10 | 2.10 | 2.10 | 2.10 | | 20 | 2.10 | 2.10 | 0.12 | -0.05 | -0.09 | -0.15 | 2.10 | 1.20 | 2.10 | 2.10 | 2.10 | 1.69 | | 21 | 2.10 | 2.10 | 0.18 | 0.05 | 0.04 | 0.00 | 2.10 | 1.58 | 2.10 | 2.10 | 2.10 | 2.07 | | 22 | 2.10 | 2.10 | 0.10 | 0.07 | 0.18 | 0.13 | 2.10 | 1.80 | 2.10 | 2.10 | 2.10 | 2.10 | | 23 | 2.10 | 2.10 | -0.12 | -0.06 | 0.27 | 0.20 | 2.10 | 1.93 | 2.10 | 2.10 | 2.10 | 2.10 | | 24 | 2.10 | 2.10 | 0.0 | -0.16 | 0.37 | 0.27 | 2.10 | 2.04 | 2.10 | 2.10 | 2.10 | 2.10 | | 25 | 2.10 | 2.08 | 0.09 | -0.04 | 0.40 | 0.36 | 2.10 | 2.10 | 2.10 | 2.10 | 2.10 | 2.10 | | 26
27
28
29
30
31 | 2.10
2.10
2.10
2.10
2.10
2.10 | 1.92
-0.04
-0.17
-0.29
-0.12 | 0.16
0.21
0.25
0.42
0.58
0.62 | 0.05
0.12
0.14
0.14
0.14
0.11 | 0.28
0.48
0.62 | -0.08
0.00
0.09
0.10
-0.19
-0.17 | 2.10
2.10
2.10
2.10
1.90 | 2.10
2.10
1.95
0.15
0.37
1.03 | 2.10
2.10
2.10
2.10
2.10 | 2.10
2.10
2.10
2.10
2.10
2.10 | 2.10
2.10
2.10
2.10
2.10
2.10 | 1.68
0.53
0.78
1.24
1.55 | WTR YR 2002 HIGHEST -.36 NOV 28, 2001 LOWEST 2.10 MANY DAYS ### MILLINGTON WETLAND--Continued 351900089511100. Local number, Beaver Pond. LOCATION.--Lat 35°19'00", long 89°51'11", Hydrologic Unit 08010209, 0.5 mi east of intersection of State Route 385 and Singleton Parkway, near the southeastern boundary of the Naval Support Activity Midsouth. Owner: Tennessee Department of Transportation (TDOT) and USGS. DRAINAGE AREA.--0.88 mi². PERIOD OF RECORD.--June 1993 to current year. GAGE.--Water-level recorders--15-minute interval. REMARKS.--No missing record. Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 3.91 ft. from recorded range in stage, Mar. 2, 1997; minimum .43 ft. Nov. 14, 1994. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 4.05 ft. Nov. 29; minimum, .63 ft. Sept. 16, 18-19. GAGE HEIGHT, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | 7 | | 1 | 1.41 | 1.38 | 1.39 | 2.84 | 2.84 | 2.84 | 3.25 | 3.07 | 3.18 | 3.33 | 3.32 | 3.33 | | 2 | 1.38 | 1.34 | 1.36 | 2.84 | 2.82 | 2.83 | 3.19 | 3.08 | 3.17 | 3.32 | 3.32 | 3.32 | | 3 | 1.34 | 1.31 | 1.33 | 2.86 | 2.82 | 2.85 | 3.19 | 3.19 | 3.19 | 3.32 | 3.31 | 3.31 | | 4 | 1.31 | 1.29 | 1.30 | 2.85 | 2.83 | 2.84 | 3.21 | 3.19 | 3.20 | 3.31 | 3.30 | 3.31 | | 5 | 1.29 | 1.27 | 1.28 | 2.83 | 2.83 | 2.83 | 3.22 | 3.21 | 3.22 | 3.34 | 3.30 | 3.31 | | 6 | 1.29 | 1.26 | 1.28 | 2.82 | 2.80 | 2.81 | 3.27 | 3.22 | 3.24 | 3.36 | 3.34 | 3.35 | | 7 | 1.26 | 1.23 | 1.24 | 2.80 | 2.78 | 2.79 | 3.34 | 3.25 | 3.28 | 3.34 | 3.34 | 3.34 | | 8 | 1.23 | 1.20 | 1.21 | 2.78 | 2.75 | 2.76 | 3.38 | 3.33 | 3.37 | 3.34 | 3.33 | 3.33 | | 9 | 1.20 | 1.17 | 1.18 | 2.75 | 2.73 | 2.74 | 3.37 | 3.36 | 3.37 | 3.33 | 3.33 | 3.33 | | 10 | 1.24 | 1.15 | 1.16 | 2.73 | 2.72 | 2.73 | 3.36 | 3.35 | 3.36 | 3.35 | 3.33 | 3.33 | | 11 | 1.97 | 1.24 | 1.75 | 2.72 | 2.70 | 2.71 | 3.35 | 3.35 | 3.35 | 3.35 | 3.34 | 3.34 | | 12 | 2.00 | 1.97 | 1.99 | 2.70 | 2.68 | 2.69 | 3.67 | 3.35 | 3.50 | 3.34 | 3.34 | 3.34 | | 13 | 2.38 | 2.00 | 2.18 | 2.68 | 2.66 | 2.67 | 3.65 | 3.46 | 3.52 | 3.34 | 3.33 | 3.33 | | 14 | 2.74 | 2.38 | 2.61 | 2.66 | 2.64 | 2.65 | 3.63 | 3.43 | 3.51 | 3.33 | 3.32 | 3.33 | | 15 | 2.79 | 2.74 | 2.78 | 2.64 | 2.63 | 2.63 | 3.43 | 3.39 | 3.40 | 3.33 | 3.32 | 3.32 | | 16 | 2.82 | 2.79 | 2.80 | 2.63 | 2.61 | 2.62 | 3.65 | 3.38 | 3.53 | 3.32 | 3.31 | 3.32 | | 17 | 2.84 | 2.82 | 2.83 | 2.61 | 2.59 | 2.60 | 3.89 | 3.47 | 3.66 | 3.35 | 3.31 | 3.32 | | 18 | 2.85 | 2.84 | 2.84 | 2.59 | 2.57 | 2.58 | 3.47 | 3.38 | 3.42 | 3.37 | 3.33 | 3.34 | | 19 | 2.86 | 2.85 | 2.86 | 2.59 | 2.57 | 2.58 | 3.38 | 3.37 | 3.38 | 3.39 | 3.37 | 3.38 | | 20 | 2.87 | 2.86 | 2.87 | 2.59 | 2.57 | 2.58 | 3.37 | 3.35 | 3.36 | 3.39 | 3.39 | 3.39 | | 21 | 2.88 | 2.87 | 2.88 | 2.57 | 2.55 | 2.56 | 3.35 | 3.34 | 3.35 | 3.39 | 3.38 | 3.38 | | 22 | 2.89 | 2.88 | 2.89 | 2.55 | 2.54 | 2.54 | 3.40 | 3.34 | 3.36 | 3.38 | 3.38 | 3.38 | | 23 | 2.89 | 2.89 | 2.89 | 2.54 | 2.53 | 2.53 | 3.44 | 3.40 | 3.43 | 3.38 | 3.38 | 3.38 | | 24 | 2.97 | 2.89 | 2.91 | 2.63 | 2.53 | 2.60 | 3.42 | 3.40 | 3.41 | 3.64 | 3.38 | 3.53 | | 25 | 2.97 | 2.95 | 2.96 | 2.63 | 2.62 | 2.62 | 3.40 | 3.39 | 3.40 | 3.46 | 3.42 | 3.44 | | 26
27
28
29
30
31 | 2.95
2.92
2.89
2.88
2.86
2.85 | 2.92
2.89
2.88
2.86
2.85
2.84 | 2.93
2.91
2.88
2.87
2.85
2.85 | 2.90
2.96
3.97
4.05
3.79 | 2.61
2.90
2.96
3.79
3.25 | 2.64
2.95
3.20
3.99
3.45 | 3.39
3.38
3.37
3.35
3.34
3.33 | 3.38
3.37
3.35
3.34
3.33
3.33 | 3.39
3.37
3.36
3.34
3.33
3.33 | 3.42
3.40
3.38
3.37
3.37
3.38 | 3.40
3.38
3.37
3.37
3.36
3.36 | 3.41
3.39
3.38
3.37
3.37
3.36 | | MONTH | 2.97 | 1.15 | 2.26 | 4.05 | 2.53 | 2.78 | 3.89 | 3.07 | 3.36 | 3.64 | 3.30 | 3.36 | # MILLINGTON WETLAND--Continued # GAGE HEIGHT, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | AGE HEIGHI, | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--
--|--| | DAY | MAX | MIN | MEAN | | MIN | MEAN | MAX | | MEAN | MAX | | MEAN | | | | FEBRUARY | | | | | | APRIL | | | MAY | | | 1 2 | 3.38 | 3.36 | 3.36
3.35 | 3.34
3.35
3.34
3.33
3.31 | 3.33 | 3.33
3.34
3.33
3.32
3.31 | 3.43
3.37
3.34 | 3.37 | 3.40
3.35
3.33
3.32
3.32 | 3.18 | 3.17 | 3.18 | | 3
4 | 3.35 | 3.34 | 3.34 | 3.34 | 3.33 | 3.33 | 3.34 | 3.32 | 3.33 | 3.29
3.29 | 3.17 | 3.22 | | 5 | 3.33 | 3.32 | | | | | | | | | 3.27 | 3.27 | | 6
7 | 3.35 | 3.33
3.35 | 3.35
3.35 | 3.30
3.29
3.29
3.38
3.34 | | 3.29
3.29 | 3.32
3.31 | 3.31 | 3.32
3.31
3.32
3.32
3.31 | 3.27
3.25 | 3.25
3.23 | 3.26
3.24 | | 8
9 | 3.35 | 3.34
3.34 | 3.35
3.35 | 3.29 | 3.28
3.28 | 3.28
3.33 | 3.34
3.33 | 3.30 | 3.32
3.32 | 3.23 | 3.21
3.20 | 3.22 | | 10 | 3.34 | 3.34 | | | 3.33 | 3.33 | 3.32 | | | 3.27 | 3.21 | 3.25 | | 11
12 | 3.34 | 3.33
3.32 | 3.33 | 3.43
3.61
3.43
3.40
3.39 | 3.33 | 3.35
3.51
3.42
3.39
3.39 | 3.30 | 3.29
3.29 | 3.30 | 3.26
3.23 | 3.23 | 3.25 | | 13
14 | 3.33 | 3.32 | 3.32
3.31 | 3.43 | 3.40 | 3.42 | 3.29 | 3.28 | 3.28 | 3.30 | 3.20
3.20
3.25 | 3.28 | | 15 | 3.32 | 3.30 | 3.31 | 3.39 | 3.38 | 3.39 | 3.27 | 3.25 | 3.26 | 3.25 | 3.21 | 3.23 | | 16
17 | 3.32
3.31 | 3.31 | 3.31
3.30 | 3.49 | 3.36
3.47 | 3.37 | 3.25 | 3.23
3.21 | 3.24
3.22
3.19
3.16
3.13 | 3.21 | 3.18
3.18 | 3.20
3.35 | | 18 | 3.30 | 3.28 | 3.29 | 3.78 | 3.42 | 3.54 | 3.21
3.18 | 3.18 | 3.19 | 3.54
3.44
3.37 | 3.37 | 3.39 | | 19
20 | 3.38
3.39 | 3.28
3.37 | 3.30
3.38 | 3.49
3.84
3.78
3.42
3.53 | 3.39
3.41 | 3.42
3.39
3.39
3.37
3.72
3.54
3.40
3.47 | 3.18 | 3.15
3.11 | 3.16 | 3.34 | 3.34
3.32 | 3.35
3.33 | | 21 | 3.39 | 3.38 | 3.38 | 3.42 | 3.36 | 3.38 | 3.11 | 3.08 | 3.10
3.10 | 3.32 | 3.29 | 3.30 | | 22
23 | 3.38
3.37 | 3.37
3.36 | 3.38
3.37 | 3.36
3.33 | 3.33 | 3.34
3.32 | 3.11
3.11
3.08 | 3.08
3.05 | 3.10
3.07 | 3.29
3.27 | 3.26
3.24 | 3.27
3.25 | | 24
25 | 3.37
3.37 | 3.36
3.36 | 3.36
3.36 | 3.42
3.36
3.33
3.31
3.33 | 3.31 | 3.38
3.34
3.32
3.31
3.31 | 3.05
3.03 | 3.03
2.99 | 3.07
3.04
3.01 | 3.24 | 3.22
3.20 | 3.23 | | 26 | 3.37 | 3.35 | | | | | | | | 3.21 | 3.19 | 3.21 | | 27
28 | 3.35 | 3.35
3.34 | 3.35
3.34 | 3.36
3.34
3.33
3.42
3.50
3.55 | | 3.33
3.33 | 2.99
2.97
2.97
2.94
3.18 | 2.97
2.94 | 2.98
2.97
2.96
2.93
3.06 | 3.19 | 3.17
3.16 | 3.18
3.21 | | 29
30 | | | | 3.42 | | 3.34 | 2.94 | 2.92 | 2.93 | 3.32 | 3.29
3.26 | 3.30 3.28 | | 31 | | | | 3.55 | | 3.50 | | | | 3.26 | 3.23 | 3.25 | | MONTH | 3.39 | 3.28 | 3.34 | 3.84 | 3.28 | 3.38 | 3.43 | 2.92 | 3.20 | 3.54 | 3.16 | 3.25 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | | MEAN | | MIN
SEPTEMBE | | | 1 | 3.23 | JUNE
3.20 | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R
1.22 | | 1
2
3 | 3.23
3.20
3.16 | JUNE 3.20 3.16 3.12 | 3.22
3.18
3.14 | 2.19
2.15
2.14 | JULY | | 1 | AUGUST | | | 1.21
1.17
1.13 | 1.22
1.19
1.15 | | 1
2 | 3.23
3.20 | JUNE
3.20
3.16 | 3.22
3.18
3.14 | MAX 2.19 2.15 2.14 2.11 2.07 | JULY | | 1 | AUGUST | MEAN 1.68 1.65 1.61 1.57 1.52 | | 1.21
1.17
1.13 | 1.22
1.19 | | 1
2
3
4
5 | 3.23
3.20
3.16
3.12
3.09 | JUNE 3.20 3.16 3.12 3.08 3.06 | 3.22
3.18
3.14
3.10
3.07 | 2.19
2.15
2.14
2.11
2.07 | JULY 2.15 2.11 2.11 2.07 2.02 | 2.17
2.13
2.13
2.09
2.05 | 1.70
1.67
1.63
1.59
1.54 | 1.67
1.63
1.59
1.54
1.50 | 1.68
1.65
1.61
1.57
1.52 | 1.24
1.21
1.17
1.13
1.09 | 1.21
1.17
1.13
1.09
1.04 | 1.22
1.19
1.15
1.11
1.07 | | 1
2
3
4
5 | 3.23
3.20
3.16
3.12
3.09
3.09
3.07
3.03 | JUNE 3.20 3.16 3.12 3.08 3.06 | 3.22
3.18
3.14
3.10
3.07 | 2.19
2.15
2.14
2.11
2.07 | JULY 2.15 2.11 2.11 2.07 2.02 | 2.17
2.13
2.13
2.09
2.05 | 1.70
1.67
1.63
1.59
1.54 | 1.67
1.63
1.59
1.54
1.50 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92 | | 1
2
3
4
5 | 3.23
3.20
3.16
3.12
3.09
3.09
3.07 | JUNE 3.20 3.16 3.12 3.08 3.06 | 3.22
3.18
3.14
3.10
3.07 | 2.19
2.15
2.14
2.11
2.07 | JULY 2.15 2.11 2.11 2.07 2.02 | 2.17
2.13
2.13
2.09
2.05 | 1.70
1.67
1.63
1.59
1.54 | 1.67
1.63
1.59
1.54
1.50 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95 | SEPTEMBE
1.21
1.17
1.13
1.09
1.04
1.00
0.95 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82 | | 1
2
3
4
5
6
7
8
9 | 3.23
3.20
3.16
3.12
3.09
3.07
3.07
3.03
2.98 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.05
2.96
2.93 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.94
1.89
1.85 | JULY 2.15 2.11 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82 | | 1
2
3
4
5
6
7
8
9
10 | 3.23
3.20
3.16
3.12
3.09
3.09
3.07
3.03
2.98
2.96 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.05
2.96
2.93 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.83 | JULY 2.15 2.11 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82
0.70
0.66
0.65 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 3.23
3.20
3.16
3.12
3.09
3.07
3.03
2.98
2.96
2.96
2.93
2.89
2.86 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.83
1.86 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.84 |
2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35 | 1.67
1.63
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.21 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.35
1.33
1.29
1.25
1.23 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.65 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82
0.70
0.66
0.65
0.65 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 3.23
3.20
3.16
3.12
3.09
3.07
3.03
2.98
2.96
2.93
2.89
2.89
2.86
2.83 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.94
1.85
1.81
1.83
1.86
1.86
1.85 | JULY 2.15 2.11 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.84 1.84 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85
1.84 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35
1.31
1.27
1.25
1.27 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.21
1.25 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.65
0.65
0.65 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.70
0.66
0.65
0.65
0.64 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 3.23
3.20
3.16
3.12
3.09
3.07
3.03
2.98
2.96
2.93
2.89
2.86
2.83
2.78 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.99
1.85
1.81
1.83
1.86
1.85
1.85 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.84 1.84 1.81 1.78 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.84
1.82 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35
1.31
1.27
1.25
1.27
1.32 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.34
1.31
1.27
1.24
1.21
1.25
1.25 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.70
0.66
0.65
0.65
0.64
0.64 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 3.23
3.20
3.16
3.12
3.09
3.09
3.07
3.03
2.98
2.96
2.93
2.86
2.83
2.75
2.71
2.67 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 2.75 2.71 2.67 2.62 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.83
1.86
1.85
1.81
1.85 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.84 1.84 1.84 1.77 1.78 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.81 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35
1.31
1.27
1.25
1.27
1.32 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.25 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.35
1.33
1.29
1.25
1.23
1.26
1.27 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.65
0.65
0.64
0.64
0.73
0.64 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64
0.64
0.64 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.82
0.70
0.66
0.65
0.64
0.64
0.64
0.65
0.63 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 3.23
3.20
3.16
3.12
3.09
3.07
3.07
3.08
2.96
2.96
2.83
2.89
2.86
2.83
2.75
2.71
2.67
2.62 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.89 2.86 2.83 2.78 2.75 2.67 2.62 2.58 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65
2.60 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.99
1.85
1.81
1.83
1.86
1.85
1.86
1.85
1.81 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.81 1.78 1.79 1.81 1.84 1.81 1.78 1.77 1.78 1.81 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85
1.85
1.84
1.82
1.79
1.78
1.81 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35
1.31
1.27
1.25
1.27
1.27
1.27
1.50
1.48
1.46
1.42 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.21
1.25
1.25
1.48
1.46
1.42
1.38 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64
0.73
0.64
1.15
1.86 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64
0.63
0.63
0.63
0.63 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82
0.70
0.65
0.65
0.64
0.64
0.63
0.75
1.58 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 3.23
3.20
3.16
3.12
3.09
3.07
3.03
2.98
2.96
2.93
2.89
2.86
2.83
2.75
2.71
2.67
2.62
2.58
2.53 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.75 2.71 2.67 2.62 2.58 2.53 2.49 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.69
2.60 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.99
1.85
1.81
1.83
1.86
1.85
1.86
1.85
1.84
1.81
1.79
1.84 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.78 1.79 1.81 1.78 1.78 1.77 1.78 1.78 1.77 1.78 1.77 1.78 1.77 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.79
1.78
1.84
1.82
1.79
1.78
1.81
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.25
1.27
1.27
1.27
1.27
1.32 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.48
1.46
1.42
1.38 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.40
1.40 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64
0.64
0.73
0.64
1.15
1.86 | \$\text{SEPTEMBE}\$ 1.21 1.17 1.13 1.09 1.04 1.00 0.95 0.87 0.73 0.67 0.66 0.65 0.64 0.64 0.63 0.64 0.63 0.63 1.15 1.86 1.86 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82
0.70
0.66
0.65
0.64
0.64
0.64
0.65
0.63
0.75
1.58 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 3.23
3.20
3.16
3.12
3.09
3.09
3.07
3.03
2.98
2.96
2.93
2.86
2.83
2.75
2.71
2.67
2.62
2.58 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 2.75 2.71 2.67 2.62 2.58 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65
2.60 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.86
1.86
1.85
1.81
1.84
1.81
1.78
1.78
1.78 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.78 1.78 1.78 1.78 1.78 1.78 1.78 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.81
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.25
1.27
1.32
1.50
1.48
1.46
1.42 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.25
1.48
1.46
1.42
1.38 |
1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.35
1.35
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44
1.40 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.65
0.65
0.65
0.64
0.73
0.64
0.73
0.115
1.86
1.87
1.94
2.00
2.04 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64
0.64
0.63
0.63
0.63
0.63
1.15 | 1.22
1.19
1.11
1.07
1.02
0.97
0.82
0.70
0.66
0.65
0.65
0.64
0.64
0.64
0.65
0.63
0.75
1.58 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 3.23
3.20
3.16
3.12
3.09
3.07
3.07
3.03
2.98
2.96
2.93
2.89
2.86
2.83
2.75
2.71
2.67
2.58
2.53
2.49 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 2.75 2.67 2.62 2.58 2.53 2.49 2.45 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65
2.60
2.56
2.51
2.47 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.99
1.85
1.81
1.83
1.86
1.85
1.81
1.85
1.81
1.79
1.84
1.84
1.84
1.84 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.81 1.84 1.84 1.81 1.77 1.78 1.77 1.78 1.81 1.77 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.78
1.81
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.25
1.27
1.32
1.50
1.48
1.46
1.42
1.38
1.42 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.21
1.25
1.32
1.48
1.46
1.42
1.38
1.34
1.34 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44
1.40 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64
0.73
0.64
1.15
1.86
1.87
1.94
2.00 | \$\text{SEPTEMBE}\$\text{1.21} \\ 1.17 \\ 1.13 \\ 1.09 \\ 1.04 \\ \$1.00 \\ 0.95 \\ 0.87 \\ 0.73 \\ 0.67 \\ \$0.66 \\ 0.65 \\ 0.64 \\ 0.63 \\ 0.64 \\ 0.63 \\ 0.63 \\ 1.15 \\ \$1.86 \\ 1.86 \\ 1.94 \\ \$\text{1.86} \\ 1.94 \\ \$\text{1.94} | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.70
0.65
0.65
0.65
0.64
0.64
0.63
0.75
1.58
1.86
1.86
1.98 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 3.23
3.20
3.16
3.12
3.09
3.09
3.03
2.98
2.96
2.96
2.83
2.86
2.83
2.75
2.67
2.67
2.62
2.58
2.53
2.45 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 2.75 2.71 2.67 2.62 2.58 2.53 2.49 2.41 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.65
2.60
2.56
2.51
2.47 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.86
1.86
1.85
1.81
1.84
1.81
1.78
1.78
1.78 | JULY 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.84 1.84 1.84 1.78 1.77 1.78 1.81 1.78 1.77 1.78 1.71 1.78 1.71 1.78 1.77 1.78 1.71 1.78 1.77 1.78 1.77 1.78 1.77 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.81
1.83 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.25
1.27
1.32
1.50
1.48
1.46
1.42 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.25
1.32
1.48
1.46
1.42
1.38 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44
1.40 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.65
0.65
0.65
0.64
0.73
0.64
0.73
0.115
1.86
1.87
1.94
2.00
2.04 | 1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.66
0.65
0.64
0.64
0.64
0.63
0.63
0.63
0.63
1.15 | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.82
0.70
0.66
0.65
0.64
0.64
0.65
0.63
0.75
1.58
1.86
1.89
1.89
1.98 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 3.23
3.20
3.16
3.12
3.09
3.07
3.03
2.98
2.96
2.93
2.89
2.86
2.75
2.71
2.62
2.58
2.49
2.45
2.41
2.37
2.33
2.30 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.86 2.83 2.78 2.75 2.71 2.67 2.62 2.58 2.53 2.49 2.45 2.41 2.37 2.33 2.30 2.26 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65
2.60
2.51
2.47
2.43
2.39
2.35
2.32
2.28 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.83
1.86
1.85
1.81
1.79
1.84
1.81
1.79
1.84
1.81
1.79
1.84 | 2.15
2.11
2.07
2.02
1.98
1.94
1.89
1.85
1.81
1.78
1.79
1.81
1.78
1.77
1.78
1.84
1.77
1.78
1.77
1.77
1.77
1.77
1.77
1.77 | 2.17
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.85
1.84
1.82
1.79
1.78
1.81
1.83
1.77
1.78
1.79
1.78
1.77
1.74
1.73
1.71 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.25
1.27
1.32
1.50
1.48
1.46
1.42
1.38
1.42
1.34
1.44
1.30
1.47
1.48 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.32
1.48
1.46
1.42
1.38
1.34
1.31 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.35
1.33
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44
1.40
1.36
1.32
1.29
1.29
1.47 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64
0.64
1.86
1.87
1.94
2.00
2.04
2.09
2.67
3.19 | \$\text{SEPTEMBE}\$\text{1.21} \\ 1.17 \\ 1.13 \\ 1.09 \\ 1.04 \\ 1.00 \\ 0.95 \\ 0.87 \\ 0.67 \\ 0.66 \\ 0.65 \\ 0.64 \\ 0.63 \\ 0.63 \\ 0.65 \\ 0.64 \\ 0.63 \\ 0.65 \ | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.92
0.82
0.70
0.66
0.65
0.65
0.64
0.64
0.65
1.58
1.86
1.98
2.02
2.06
2.27 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 3.23
3.20
3.16
3.12
3.09
3.07
3.09
3.07
2.98
2.96
2.93
2.89
2.86
2.83
2.75
2.75
2.67
2.62
2.53
2.45
2.41
2.37
2.33
2.30 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.86 2.83 2.78 2.75 2.71 2.67 2.62 2.58 2.49 2.45 2.41 2.37 2.33 2.30 2.26 2.23 2.19 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.69
2.65
2.60
2.56
2.51
2.47
2.43
2.39
2.35
2.32
2.28
2.28
2.28
2.22
2.22
2.22
2.22 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.83
1.86
1.85
1.84
1.81
1.78
1.78
1.73
1.72 |
1.78
1.78
1.78
1.78
1.78
1.78
1.78
1.78 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.91
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.78
1.81
1.83
1.79
1.79
1.71
1.67
1.71
1.67
1.63
1.59
1.59
1.59 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.36
1.35
1.31
1.27
1.27
1.32
1.50
1.48
1.46
1.42
1.38
1.44
1.40
1.47
1.44
1.40
1.36
1.32 | 1.67
1.63
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.25
1.48
1.46
1.42
1.38
1.34
1.42
1.42
1.42
1.44
1.42
1.38 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.39
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.40
1.36
1.32
1.29
1.47 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.66
0.65
0.65
0.64
0.73
0.64
1.15
1.86
1.87
1.94
2.00
2.04
2.09
2.67
3.19
3.14
3.06
3.00 | \$\text{SEPTEMBE}\$ 1.21 1.17 1.13 1.09 1.04 1.00 0.95 0.87 0.73 0.67 0.66 0.65 0.64 0.64 0.64 0.63 0.64 0.63 1.15 1.86 1.94 2.00 2.04 2.09 2.67 3.06 3.00 2.95 | 1.22
1.19
1.11
1.07
1.02
0.97
0.82
0.70
0.66
0.65
0.65
0.64
0.64
0.65
0.63
1.58
1.86
1.89
1.98
2.06
2.06
2.06
3.09
3.09
3.09
3.09
3.09
3.09
3.09
3.09 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 3.23
3.20
3.16
3.12
3.09
3.09
3.03
2.98
2.96
2.96
2.83
2.86
2.83
2.75
2.67
2.67
2.62
2.58
2.53
2.45
2.41
2.37
2.33
2.30 | JUNE 3.20 3.16 3.12 3.08 3.06 3.07 3.03 2.98 2.94 2.91 2.93 2.89 2.83 2.78 2.75 2.71 2.67 2.62 2.58 2.53 2.49 2.41 2.37 2.33 2.30 2.26 2.23 | 3.22
3.18
3.14
3.10
3.07
3.08
3.05
3.01
2.96
2.93
2.94
2.91
2.87
2.85
2.80
2.77
2.73
2.65
2.60
2.56
2.51
2.47
2.43
2.39
2.35
2.32
2.28
2.28 | 2.19
2.15
2.14
2.11
2.07
2.02
1.98
1.89
1.85
1.81
1.86
1.86
1.85
1.81
1.79
1.79
1.84
1.81
1.78
1.79
1.84
1.81
1.79
1.84
1.85 | 2.15 2.11 2.07 2.02 1.98 1.94 1.89 1.85 1.81 1.78 1.79 1.84 1.84 1.84 1.84 1.77 1.78 1.81 1.78 1.79 1.69 1.65 1.61 1.56 | 2.17
2.13
2.13
2.09
2.05
2.00
1.96
1.87
1.83
1.79
1.81
1.83
1.85
1.84
1.82
1.79
1.81
1.83
1.79
1.71
1.63
1.77 | 1.70
1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.35
1.31
1.27
1.25
1.27
1.32
1.50
1.48
1.46
1.42
1.38
1.44
1.40
1.47
1.48 | 1.67
1.63
1.59
1.54
1.50
1.47
1.41
1.36
1.34
1.31
1.27
1.24
1.25
1.25
1.32
1.48
1.42
1.38
1.42
1.38
1.44
1.30
1.27 | 1.68
1.65
1.61
1.57
1.52
1.48
1.44
1.35
1.35
1.29
1.25
1.23
1.26
1.27
1.43
1.50
1.47
1.44
1.40
1.36
1.32
1.29
1.47 | 1.24
1.21
1.17
1.13
1.09
1.04
1.00
0.95
0.87
0.73
0.67
0.65
0.65
0.65
1.15
1.86
1.87
1.94
2.09
2.67
3.19
3.19
3.19
3.19
3.19
3.19 | \$\text{SEPTEMBE}\$\text{1.21} \\ 1.17 \\ 1.13 \\ 1.09 \\ 1.04 \\ 1.00 \\ 0.87 \\ 0.73 \\ 0.65 \\ 0.64 \\ 0.64 \\ 0.64 \\ 0.63 \\ 0.64 \\ 0.63 \\ 1.15 \\ 1.86 \\ 1.86 \\ 1.86 \\ 1.94 \\ 2.00 \\ 2.04 \\ 2.09 \\ 2.67 \\ 3.06 \\ 3.00 \\ \$\text{3.00}\$ | 1.22
1.19
1.15
1.11
1.07
1.02
0.97
0.82
0.70
0.66
0.65
0.64
0.64
0.63
0.75
1.58
1.86
1.89
1.98
2.02
2.06
2.27
3.10
3.03 | #### HAMILTON COUNTY 351428085003600. Local number, Hm:O-15. $\label{location.--Lat 35^014^28", long 85^00^36", Hydrologic Unit 06020001, at Smith Road and State Highway 58, near Snow Hill. Owner: Savannah Valley Utility District.$ AQUIFER. -- Knox Dolomite of Cambrian and Ordovician age. WELL CHARACTERISTICS.--Drilled artesian test well, diameter 10 in., depth 262 ft, cased to 50 ft, open end. INSTRUMENTATION. -- Water-level recorder -- 60-minute intervals. DATUM.--Elevation of land-surface datum is 735 ft above NGVD of 1929, from topographic map. Measuring point: Instrument shelf, 5.66 ft above land-surface datum. REMARKS.--Records good. No missing record. Well previously published as "at Savannah Valley". Water level affected by pumping from municipal supply well 300 ft south. Negative values indicate water levels above land-surface. PERIOD OF RECORD. -- May 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.33 ft above land-surface datum, Feb. 11, 1994; lowest, 22.45 ft below land-surface datum, Sept. 3, 1988. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|---|--|--|--|--|--|--|--|--| | 5
10
15
20
25
EOM | 11.13
10.40
10.19
10.59
11.84
13.37 | 13.24
16.48
19.26
21.43
19.08
16.77 | 14.73
15.41
3.57
3.54
5.34
6.48 | 6.84
7.62
7.28
2.34
-0.87
1.28 | 3.78
3.92
4.84
5.78
5.97
6.14 | 5.58
6.04
3.20
-0.18
1.68
-1.37 | 0.35
2.53
4.06
5.12
5.18
5.44 | 1.50
2.77
2.25
3.94
5.16
5.70 | 4.24
4.90
5.66
5.94
6.20
6.67 | 6.98
7.34
6.44
7.48
8.24
8.61 | 8.58
10.60
11.42
8.49
9.91
9.49 | 9.49
10.46
11.03
9.21
7.46
7.14 | | WTR Y | R 2002 | HIG | HEST -2. | 50 JAN 25, | 2002 | | | LOWEST 2 | L.66 NOV 2 | 21, 2001 | | | ### LOWEST MONTHLY WATER LEVEL ### HAMILTON COUNTY--Continued 350750085045802. Local number, Hm: 0-19. $\label{location.--Lat 35^07'50", long 85^04'58", Hydrologic Unit 06020001, at Short Trail Spring Road 5.5 mi northwest of Ooltewah. Owner: Eastside Utility District.$ AQUIFER.--Chepultepec Dolomite of Lower Ordovician age. WELL CHARACTERISTICS.--Drilled artesian well, diameter 8 in., depth 72.96 ft, cased to 26 ft, open end; former production well. INSTRUMENTATION.--Water-level recorder -- 15-minute intervals. DATUM.--Elevation of land-surface datum is 698.5 ft above NGVD of 1929. Measuring point: Instrument shelf, 1.50 ft above land-surface datum. REMARKS.--Records fair. Missing records April 2 to May 21, May 30 to June 27. Water level affected by pumping from nearby municipal supply wells. PERIOD OF RECORD. -- May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.71 ft below land-surface datum, June 22, 1989; lowest, 54.29 ft below land-surface datum, Apr. 18, 1990. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------|------|-----------|--------|------|------|-----|----------|-----------|---------|------|------| | 5 | 7.56 | 8.42 | 8.64 | 8.62 | 7.63 | 8.30 | | | | 7.41 | 9.63 | 9.91 | | 10 | 7.80 | 8.18 | 8.71 | 8.69 | 7.37 | 8.30 | | | | 7.54 | 7.98 | 9.94 | | 15 | 7.92 | 8.25 | 7.38 | 8.71 | 7.84 | 7.51 | | | | 7.59 | 9.65 | 9.90 | | 20 | 7.92 | 8.38 | 7.41 | 7.52 | 8.05 | 6.62 | | | | 7.66 | 9.73 | 9.92 | | 25 | 7.96 | 8.18 | 8.09 | 6.14 | 8.12 | 7.05 | | 9.07 | | 7.64 | 9.69 | 9.66 | | EOM | 8.14 | 8.47 | 8.49 | 8.72 | 8.14 | 5.90 | | | 7.47 | 9.47 | 9.87 | 9.66 | | WTR YR | 2002 | HIGH | HEST 5.67 | APR 1, | 2002 | | : | LOWEST 9 | .97 SEP 4 | 1, 2001 | | | #### LOWEST MONTHLY WATER LEVEL #### LAUDERDALE COUNTY 353839089493500. Local number, Ld:F-4. LOCATION.--Lat 35°38'39", long 89°49'35", Hydrologic Unit 08010208, 1.1 mi north of State Highway 87 off Crutcher Lake Rd, at Fort Pillow State Park. Owner: Tennessee Division of Geology and U.S. Geological Survey. AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 to 6 to 3 in., depth 879 ft, cased to 869 ft, screened 869 to 879 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 437.05 ft above NGVD of 1929. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Records fair. Missing records Nov. 29 to Jan. 26, May 9 to July 23. PERIOD OF RECORD. -- April 1966 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 187.76 ft below land-surface datum, Apr. 7, 1975; lowest, 203.78 ft below land-surface datum, Oct. 10-11, 2001. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------|--------|-----|--------|--------|--------|--------|--------|--------|---------|--------|--------| | 5 | 203.68 | 203.02 | | | 199.40 | 200.55 | 198.05 | 198.11 | | | 200.55 | 201.46 | | 10 | 203.78 | 203.17 | | | 200.36 | 200.56 | 198.49 | | | | 200.83 | 201.67 | | 15 | 203.39 | 203.25 | | | 200.48 | 200.12 | 199.25 | | | | 200.99 | 201.85 | |
20 | 203.27 | 203.28 | | | 200.38 | 199.81 | 199.21 | | | | 201.13 | 201.88 | | 25 | 203.03 | 203.18 | | | 200.53 | 198.35 | 199.01 | | | 200.17 | 201.21 | 201.86 | | EOM | 202.98 | | | 199.73 | 200.63 | 197.76 | 198.50 | | | 200.40 | 201.33 | 201.69 | | WTR YR 2002 HIGHEST 197.75 APR 2, 2002 | | | | | | | | LOWEST | 203.78 | OCT 10, | 2001 | | ### GROUND-WATER LEVELS 373 ### LINCOLN COUNTY 350034086422800. Local number, Li:G-1. LOCATION.--Lat 35°00'34", long 86°42'28", Hydrologic Unit 06030002, on west side of Pepper Road at Taft well field, 0.8 mi south of State Highway 110, at Taft. Owner: Lincoln Count Board of Public Utilities. AQUIFER. -- Fort Payne Formation of early Mississippian age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in., depth 106.5 ft, cased to 106.5 ft, slotted from 53 to 87 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Altitude of land-surface datum is 904.00. Measuring point: Top of casing 2.10 ft above land-surface datum. REMARKS.--Records fair. Missing records November 9 to December 6, December 18 to January 3. Water levels affected by pumpage from Taft Well field for municipal water supply. PERIOD OF RECORD. -- April 1992 to Sept. 1992, Oct. 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.10 ft below land-surface datum, Feb. 6, 2002; lowest, 56.53 ft below land-surface datum, Sept. 7, 8, 1996. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|--------|-------|-----------|--------|------|-------|-------|----------|-----------|----------|-------|-------| | 5 | 12.10 | 13.35 | | 9.46 | 9.08 | 9.98 | 9.43 | 12.47 | 15.55 | 21.26 | 24.10 | 27.44 | | 10 | 13.03 | | 25.07 | 9.45 | 8.85 | 10.50 | 9.26 | 11.54 | 18.01 | 22.54 | 25.20 | 27.67 | | 15 | 13.14 | | | 9.80 | 8.89 | 9.99 | 9.73 | 11.72 | 18.45 | 24.06 | 26.34 | 27.75 | | 20 | 13.85 | | | 9.78 | 8.91 | 11.70 | 10.31 | 11.24 | 19.89 | 25.89 | 26.53 | 27.32 | | 25 | 14.33 | | | 9.34 | 9.10 | 12.30 | 11.59 | 11.57 | 19.48 | 22.11 | 26.59 | 25.69 | | EOM | 14.35 | | | 8.87 | 9.50 | 9.86 | 11.93 | 12.77 | 20.21 | 23.00 | 27.48 | 25.71 | | WTR Y | R 2002 | HIG | HEST 8.10 | FEB 6, | 2002 | | | LOWEST 2 | 27.83 SEP | 12, 2002 | | | ### SEVIER COUNTY 353922083345600. Local number, Sv:E-2. LOCATION.--Lat 35°39'22", long 83°34'56", Hydrologic Unit 06010201, 3.3 mi southwest of Great Smoky Mountains National Park Headquarters, near Gatlinburg. AQUIFER .-- Elkmont Sandstone of Precambrian age. WELL CHARACTERISTICS.--Drilled unused water-table well in phyllite, sandstone, diameter 6 in., depth 220 ft, cased to 27 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface is 2,150 ft above NGVD of 1929, from topographic map. Measuring point: Floor of recorder shelter 1.5 ft above land-surface datum. REMARKS.--Records good. No missing record. Highest water level readings may be influenced for short periods by surface inflow. PERIOD OF RECORD. -- May 1979 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.48 ft below land-surface datum, Mar. 27, 1994; lowest, 11.66 ft below land-surface datum, Oct. 18, 19, 20, 1998. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------|------|-----------|--------|--------|------|------|--------|----------|-----------|------|------| | 5 | 9.27 | 9.33 | 9.13 | 9.07 | 8.85 | 9.05 | 8.57 | 8.17 | 9.09 | 9.08 | 9.30 | 9.29 | | 10 | 9.32 | 9.35 | 9.01 | 9.09 | 8.78 | 9.04 | 8.74 | 8.78 | 9.18 | 9.13 | 9.38 | 9.42 | | 15 | 9.02 | 9.37 | 8.39 | 9.02 | 8.90 | 8.85 | 8.85 | 8.77 | 9.21 | 8.98 | 9.46 | 9.42 | | 20 | 9.20 | 9.38 | 8.49 | 7.87 | 9.00 | 7.99 | 8.86 | 8.72 | 9.22 | 9.16 | 9.36 | 9.34 | | 25 | 9.25 | 9.28 | 8.75 | 7.23 | 9.08 | 8.57 | 8.95 | 8.94 | 9.31 | 8.88 | 9.45 | 8.94 | | EOM | 9.31 | 9.15 | 8.95 | 8.61 | 9.12 | 8.15 | 8.94 | 8.86 | 9.21 | 9.15 | 9.24 | 8.73 | | WTR YR | 2002 | HIGH | HEST 6.66 | JAN 25 | , 2002 | | | LOWEST | 9.46 AUG | 14, 15, 2 | 2002 | | ### 375 GROUND-WATER LEVELS ### SHELBY COUNTY 350857089591401. Local number, Sh: P-99. LOCATION.--Lat 35°08'57", long 89°59'14", Hydrologic Unit 08010210, access road off North Parkway, 0.2 mi south of North Parkway, in Overton Park. Owner: USGS and Memphis Park Commission. AQUIFER. -- Fluvial sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in., depth 59 ft, cased to 53 ft, screened 53 to 59 ft. INSTRUMENTATION. -- Water level recorder -- 60 minute interval. DATUM.--Elevation of land-surface datum is 271.06 ft above NGVD of 1929. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS. -- Records good. No missing record. PERIOD OF RECORD.--July 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.27 ft below land-surface datum, April 30, 1991; lowest 42.58 ft below land-surface datum, November 15, 1971. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 5
10
15
20
25
EOM | 39.86
39.94
39.49
39.34
39.55
39.52 | 39.55
39.66
39.68
39.76
39.85
39.19 | 38.96
38.78
38.24
37.75
37.44
37.66 | 37.61
37.63
37.87
37.82
37.78
37.12 | 37.26
37.22
37.05
36.99
36.92
37.08 | 37.16
37.47
36.47
35.23
34.84
35.15 | 34.74
35.03
35.13
35.35
35.82
35.71 | 35.82
35.82
35.68
35.79
35.71
35.88 | 36.07
36.24
36.32
36.66
36.64
36.86 | 36.92
37.04
37.20
37.19
37.19
37.23 | 37.27
37.37
37.46
37.31
37.30
37.45 | 37.45
37.52
37.71
37.65
37.35
36.66 | | WTR YF | 2002 | | LOWEST | 39.94 | OCT 6-11. | 2001 | | | | | | | 376 GROUND-WATER LEVELS ### SHELBY COUNTY--Continued 351113089583101. Local number, Sh:P-151. LOCATION.--Lat 35°11'13", long 89°58'31", Hydrologic Unit 08010210, 350 ft southeast of south abutment of Wolf River bridge at Hollywood Street crossing and 150 ft east of Hollywood Street; at north Hollywood Dump site. Owner: City of Memphis and U.S. Geological Survey. AQUIFER .-- Alluvial sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in., depth 34.2 ft, cased to 29.2 ft, screened 29.2 to 34.2 ft. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 238.14 ft above NGVD of 1929. Measuring point: Top of inside recorder shelter shelf, 2.00 ft above land-surface datum. REMARKS.--Records good. Missing records, Dec. 3 to 9, Aug. 26 to Sept. 2. PERIOD OF RECORD. -- October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 11.20 ft below land-surface datum, Mar. 19, 1997; lowest, 30.64 ft below land-surface datum, Nov. 3-4, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|---|--|--|--|--|--|--|--|---|--| | 5
10
15
20
25
EOM | 30.24
30.30
28.81
28.44
28.85
29.27 | 29.58
29.75
29.92
30.04
30.08
26.76 | 25.41
23.91
24.04
23.77
26.21 | 27.19
27.58
27.98
28.29
27.50
26.11 | 25.41
26.09
27.51
28.04
27.95
28.17 | 28.56
28.87
27.16
24.10
24.19
22.57 | 21.90
22.33
25.40
26.51
27.10
26.72 | 25.26
24.13
22.54
19.62
16.95
16.48 | 19.94
24.63
25.41
26.38
27.05
27.50 | 27.74
28.12
28.41
28.58
28.75
28.95 | 29.08
29.12
29.29
28.75
28.95 | 29.34
29.56
29.80
29.77
28.50
26.23 | | WTR Y | R 2002 | HIG | HEST 16 | 5.35 MAY | | LOWEST | 30.30 C | CT 10, 11 | , 2001 | | | | 351102089582701. Local number, Sh:P-152. LOCATION.--Lat 35°11'02", long 89°58'27", Hydrologic Unit 08010210, 1,500 ft south-southeast of abutment of Wolf River bridge at Hollywood Street crossing and 250 ft east of Hollywood Street, at north Hollywood Dump site. Owner: City of Memphis and U.S. Geological Survey. AQUIFER. -- Alluvial sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in., depth 28.7 ft, cased to 23.7 ft, screened 23.7 to
28.7 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 237.73 ft above NGVD of 1929. Measuring point: Top of inside recorder shelter shelf, 1.70 ft above land-surface datum. REMARKS. -- Records good. No missing record. PERIOD OF RECORD. -- October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.57 ft below land-surface datum, Mar. 21, 1997; lowest, 23.02 ft below land-surface datum, Nov. 21, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | 10 22.32 22.04 20.93 19.68 19.07 19.48 17.30 17.99 15.87 18.25 19.68 20 15 22.11 22.10 20.72 19.80 18.98 19.12 17.30 17.82 16.31 18.60 19.83 20 20 21.91 22.17 20.27 19.76 19.02 18.63 17.50 17.36 16.75 18.86 19.89 20 | DAY OCT | NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|--|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--| | | 10 22.32
15 22.11
20 21.91
25 21.97 | 22.04 20
22.10 20
22.17 20
22.22 10 | 20.93 19.68
20.72 19.80
20.27 19.76
.9.87 19.68 | 19.07
18.98
19.02
19.04 | 19.48
19.12
18.63
18.11 | 17.30
17.30
17.50
17.85 | 17.99
17.82
17.36
16.32 | 15.87
16.31
16.75
17.09 | 18.25
18.60
18.86
19.09 | 19.68
19.83
19.89
19.97 | 20.19
20.27
20.42
20.47
20.20
19.92 | 378 GROUND-WATER LEVELS ### SHELBY COUNTY--Continued 350900089482300. Local number, Sh:Q-1. LOCATION.--Lat 35°09'00", long 89°48'23", Hydrologic Unit 08010210, south of Macon Road, 0.6 mi west of Germantown Road, near Memphis. Owner: Memphis Light, Gas and Water Division, City of Memphis. AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in., depth 384 ft, cased to 375 ft, screened 375 to 384 ft. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 330.40 ft above NGVD of 1929. Measuring point: Top of casing, 2.40 ft above land-surface datum. REMARKS.--Records good. No missing record. Water levels affected by pumpage for municipal and industrial water supply in the Memphis area. PERIOD OF RECORD.--October 1940 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 74.08 ft below land-surface datum, Dec. 27, 1940; lowest, 114.66 ft below land-surface datum, Oct. 3, 4, 2001. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 5
10
15
20
25
EOM | 114.60
114.47
114.27
114.14
114.33
114.29 | 114.26
114.35
114.30
114.23
114.11
113.84 | 113.75
113.58
113.42
113.39
113.12 | 112.94
112.66
112.80
112.57
112.59
112.22 | 112.42
112.14
112.07
111.76
111.90
112.04 | 112.01
112.05
111.45
111.56
111.33
111.25 | 111.49
111.34
111.16
111.25
111.45
111.33 | 111.44
111.42
111.34
111.42
111.44
111.27 | 111.49
111.61
111.55
111.93
111.88
111.99 | 111.96
112.27
112.22
112.15
112.10
112.33 | 112.42
112.49
112.44
112.27
112.32
112.64 | 112.63
112.78
112.93
112.62
112.70
112.60 | | WTR Y | R 2002 | HIO | GHEST 11 | 1.01 APR | 8, 2002 | | | LOWEST | 114.66 | OCT 3, 4, | 2001 | | $352042089523401. \ Local number, Sh:U-100.$ LOCATION.--Lat 35°20'42", long 89°52'34", Hydrologic Unit 08010209, at Millington, 0.3 mi north of intersection of Navy Road and First Street and 300 ft west-southwest of intersection of Darkar Street and First Street, on former Naval Support Activity Mid-South Northside. Owner: Naval Support Activity Mid-South. AQUIFER .-- Loess silt and clay of Pleistocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in., depth 18 ft, cased to 8 ft, screened 8 to 18 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 274.97 ft above NGVD of 1929. Measuring point: Top of inside recorder shelter shelf, 2.44 ft above land-surface datum. REMARKS. -- Records good. No missing record. PERIOD OF RECORD. -- May 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.75 ft below land-surface datum, Mar. 20, 2002; lowest, 13.94 ft below land-surface datum, Feb. 17, 18, 2000. | | WAT | ER LEVEL, | IN FEET B | ELOW LAND | SURFACE | DATUM, V | WATER YEAR | COCTOBER | 2001 TO | SEPTEMBER 2 | 2002 | | |-------|--------|-----------|-----------|-----------|----------|----------|------------|----------|---------|-------------|------|-------| | | | | | LC | WEST WAT | ER LEVEL | FOR THE D | AY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | Dili | 001 | 1101 | DEC | 01114 | 1 1111 | 11111 | 711.10 | 11111 | 0014 | 001 | 1100 | DEL | | 5 | 11.44 | 10.59 | 6.00 | 4.07 | 3.67 | 4.54 | 3.07 | 4.92 | 5.29 | 7.72 | 8.70 | 9.43 | | | | | | | | | | | | | | | | 10 | 11.65 | 11.01 | 5.07 | 3.91 | 3.49 | 4.44 | 3.78 | 5.09 | 5.59 | 8.21 | 8.98 | 9.78 | | 15 | 7.68 | 11.43 | 2.80 | 4.11 | 3.90 | 3.34 | 4.18 | 4.45 | 5.88 | 8.38 | 9.17 | 10.09 | | 20 | 9.03 | 11.78 | 2.43 | 3.44 | 3.56 | 1.08 | 4.53 | 4.32 | 6.35 | 8.46 | 8.60 | 9.76 | | 25 | 9.76 | 11.22 | 2.40 | 2.45 | 3.98 | 2.88 | 4.92 | 4.74 | 6.79 | 8.58 | 8.89 | 8.91 | | EOM | 10.07 | 4.77 | 3.60 | 3.36 | 4.25 | 1.57 | 5.11 | 4.96 | 7.24 | 8.66 | 9.21 | 7.21 | | LOPI | 10.07 | 4.// | 3.00 | 3.30 | 4.23 | 1.57 | J.11 | 4.50 | 7.24 | 0.00 | J.21 | 7.21 | | | | | | | 0000 | | | | 44 00 | | 0001 | | | WTR Y | R 2002 | HIG | HEST 0.75 | MAR 20, | 2002 | | | LOWEST | 11.89 N | OV 23, 24, | 2001 | | 380 GROUND-WATER LEVELS ### SHELBY COUNTY--Continued 352042089523402. Local number, Sh:U-101. LOCATION.--Lat 35°20'42", long 89°52'34", Hydrologic Unit 08010209, at Millington, 0.3 mi north of intersection of Navy Road and First Street and 300 ft west-southwest of intersection of Dakar Street and First Street, on former Naval Support Activity Mid-South Northside. Owner: Naval Support Activity Mid-South. AQUIFER. -- Fluvial sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in., depth 69 ft, cased to 59 ft, screened 59 to 69 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 275.19 ft above NGVD of 1929. Measuring point: Top of inside recorder shelter shelf, 2.62 ft above land-surface datum. REMARKS. -- Records good. No missing record. PERIOD OF RECORD. -- May 1995 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 13.83 ft below land-surface datum, Mar. 28-29, 1997; lowest, 24.87 ft below land-surface datum, Nov. 21, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|--------|-------|----------|-----------|-------|-------|-------|--------|-----------|---------|-------|-------| | 5 | 24.34 | 24.28 | 23.79 | 22.36 | 21.55 | 21.11 | 19.67 | 19.78 | 19.66 | 20.72 | 21.54 | 22.22 | | 10 | 24.52 | 24.44 | 23.61 | 22.08 | 21.29 | 21.21 | 19.58 | 19.77 | 19.83 | 20.92 | 21.72 | 22.40 | | 15 | 24.07 | 24.47 | 23.23 | 22.14 | 21.22 | 20.58 | 19.43 | 19.68 | 19.91 | 21.01 | 21.84 | 22.58 | | 20 | 24.05 | 24.56 | 22.80 | 21.94 | 20.97 | 20.20 | 19.53 | 19.59 | 20.23 | 21.13 | 21.80 | 22.55 | | 25 | 24.14 | 24.50 | 22.52 | 21.78 | 20.96 | 19.92 | 19.79 | 19.52 | 20.38 | 21.27 | 21.89 | 22.52 | | EOM | 24.27 | 23.93 | 22.43 | 21.45 | 21.07 | 19.77 | 19.75 | 19.49 | 20.59 | 21.43 | 22.12 | 22.23 | | WTR YF | R 2002 | HIG | HEST 19. | 33 APR 8, | 2002 | | | LOWEST | 24.56 NOV | 20, 21, | 2001 | | 352042089523403. Local number, Sh:U-102. LOCATION.--Lat 35°20'42", long 89°52'34", Hydrologic Unit 08010209, at Millington, 0.3 mi north of intersection of Navy Road and First Street and 300 ft west-southwest of intersection of Dakar Street and First Street, on former Naval Support Activity Mid-South Northside. Owner: Naval Support Activity Mid-South. AQUIFER. -- Cockfield Formation of Claiborne Group of Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in., depth 115 ft, cased to 105
ft, screened 105 to 115 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 275.05 ft above NGVD of 1929. Measuring point: Top of inside recorder shelter shelf, 2.67 ft above land-surface datum. REMARKS.--Records good. Missing records Oct. 1 to 4. PERIOD OF RECORD. -- May 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 13.71 ft below land-surface datum, Apr. 30 - May 4, 1997; lowest, 24.09 ft below land-surface datum, Dec. 13, 15-16, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------------|---|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | 5
10
15 | 23.63
23.73
23.58 | 23.70
23.75
23.81 | 23.67
23.52
23.33 | 22.42
22.25
22.11 | 21.50
21.34
21.27 | 20.86
20.78
20.65 | 19.82
19.66
19.52 | 19.28
19.29
19.28 | 19.19
19.26
19.31 | 19.83
20.01
20.09 | 20.62
20.80
20.93 | 21.32
21.47
21.65 | | 20
25 | 23.61
23.60 | 23.87
23.86 | 23.07
22.85 | 21.99
21.81 | 21.11
20.99 | 20.48
20.31 | 19.45
19.41 | 19.25
19.25 | 19.42
19.57 | 20.22
20.35 | 20.96
21.09 | 21.69
21.73 | | EOM | 23.67 | 23.76 | 22.56 | 21.63 | 20.94 | 20.02 | 19.40 | 19.18 | 19.70 | 20.50 | 21.22 | 21.68 | | WTR Y | WTR YR 2002 HIGHEST 5.31 MAY 31-JUN 4, 2002 | | | | | | | LO | WEST 23.8 | 8 NOV 22- | 24, 2001 | | 382 GROUND-WATER LEVELS SHELBY COUNTY--Continued 351917089515101. Local number, Sh:V-211. LOCATION.--Lat 35°19'17", long 89°51'51", Hydrologic Unit 08010209, at Millington, 1,200 ft east of intersection of State Route 385 and Singleton Parkway, and 50 ft south of Big Creek Drainage Canal. Owner: Tennessee Department of Transportation and Naval Support Activity Mid-South. AQUIFER .-- Alluvial sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 2 in., depth 50 ft, cased to 40 ft, screened 40 to 50 ft. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 268.27 ft above NGVD of 1929. Measuring point: Top of casing, 2.58 ft above land-surface datum. REMARKS.--Records good. No missing record. Water level affected by stage of Big Creek Drainage Canal. PERIOD OF RECORD. -- September 1999 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.56 ft below land-surface datum, Mar. 17, 2002; lowest, 23.07 ft below land-surface datum, Nov. 2, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|-------|-------|----------|----------|-------|-------|-------|--------|----------|-----------|-------|-------| | 5 | 21.46 | 19.77 | 17.93 | 16.52 | 15.44 | 15.24 | 14.22 | 14.78 | 15.97 | 18.24 | 19.54 | 20.39 | | 10 | 21.56 | 19.76 | 17.62 | 16.21 | 15.23 | 14.87 | 14.49 | 15.17 | 16.31 | 18.64 | 19.80 | 20.61 | | 15 | 19.97 | 19.70 | 16.49 | 16.27 | 15.33 | 14.21 | 14.72 | 14.98 | 16.63 | 18.58 | 19.77 | 20.73 | | 20 | 20.07 | 19.68 | 16.35 | 15.55 | 14.57 | 12.37 | 15.06 | 14.83 | 17.17 | 18.71 | 19.89 | 18.75 | | 25 | 19.86 | 19.68 | 16.14 | 14.94 | 15.06 | 14.14 | 15.49 | 15.40 | 17.56 | 18.92 | 19.62 | 19.70 | | EOM | 19.95 | 16.85 | 16.47 | 15.31 | 15.18 | 12.11 | 15.67 | 15.41 | 17.89 | 18.85 | 20.21 | 18.90 | | WTR YE | 2002 | нто | HEST 6 5 | 6 MAR 17 | 2002 | | | LOWEST | 21 56 00 | ጥ 10. 200 | 1 | | $351916089515101. \ Local number, Sh:V-212.$ LOCATION.--Lat 35°19'16", long 89°51'51", Hydrologic Unit 08010209, at Millington, 1,200 ft east of intersection of State Route 385 and Singleton Parkway, and 60 ft south of Big Creek Drainage Canal. Owner: Tennessee Department of Transportation and Naval Support Activity Mid-South. AQUIFER.--Cockfield Formation of Claiborne Group of Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 2 in., depth 67 ft, cased to 57 ft, screened 57 to 67 ft. INSTRUMENTATION. -- Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 268.26 ft above NGVD of 1929. Measuring point: Top of casing, 2.70 ft above land-surface datum. REMARKS.--Records good. No missing record. Water level affected by stage of Big Creek Drainage Canal. PERIOD OF RECORD. -- September 1999 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.79 ft below land-surface datum, Mar. 17, 2002; lowest, 20.94 ft below land-surface datum, Nov. 3, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|----------------|----------------|----------------|----------------|------|--------------|--------------|--------------|----------------|----------------|----------------|----------------| | 5
10 | 18.31
18.53 | 15.99
16.01 | 13.12
12.57 | 10.74
10.41 | 9.47 | 9.23
9.00 | 8.19
8.46 | 8.93
9.19 | 10.16
10.65 | 13.41
13.99 | 15.42
15.81 | 16.75
17.08 | | 15 | 16.41 | 15.99 | 11.29 | 10.40 | 9.34 | 8.27 | 8.66 | 8.99 | 11.12 | 14.14 | 16.00 | 17.37 | | 20 | 16.19 | 16.01 | 10.75 | 9.82 | 8.84 | 7.01 | 9.09 | 8.81 | 11.85 | 14.35 | 16.04 | 16.62 | | 25 | 16.03 | 15.94 | 10.46 | 9.24 | 9.05 | 8.15 | 9.61 | 9.39 | 12.43 | 14.59 | 16.00 | 15.79 | | EOM | 16.10 | 12.98 | 10.69 | 9.36 | 9.15 | 6.95 | 9.89 | 9.46 | 12.89 | 14.85 | 16.47 | 14.58 | | WTR YF | 2002 | HIG | HEST 8.5 | 6 MAR 31, | 2002 | | | LOWEST 2 | 2.80 OCT | 1, 2001 | | | WATER YEAR 384 GROUND-WATER LEVELS ### SHELBY COUNTY--Continued 351917089515102. Local number, Sh:V-222. LOCATION.--Lat 35°19'17", long 89°51'51", Hydrologic Unit 08010209, at Millington, 1,200 ft east of intersection of State Route 385 and Singleton Parkway, and 40 ft south of Big Creek Drainage Canal. Owner: Tennessee Department of Transportation and Naval Support Activity Mid-South. AQUIFER .-- Alluvial sand, silt and clay of Holocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 2 in., depth 30 ft, cased to 20 ft, screened 20 to 30 ft. INSTRUMENTATION.--Water-level recorder -- 60-minute interval. DATUM.--Elevation of land-surface datum is 268.50 ft above NGVD of 1929. Measuring point: Top of casing, 2.25 ft above land-surface datum. REMARKS.--Records poor. Missing records Oct. 2 to Dec. 15 and Jan. 29 to Mar. 28. Water levels affected by stage of Big Creek Drainage Canal. PERIOD OF RECORD.--September 1999 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.56 ft below land-surface datum, Mar. 31, 2002; lowest, 23.94 ft below land-surface datum, Nov. 3, 2000. WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 LOWEST WATER LEVEL FOR THE DAY | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------|-----|----------|-----------|------|------|-------|--------|-----------|-----------|-------|-------| | 5 | | | | 17.14 | | | 10.60 | 12.90 | 14.46 | 17.40 | 19.16 | 20.27 | | 10 | | | | 17.01 | | | 11.41 | 13.37 | 14.89 | 17.90 | 19.51 | 20.51 | | 15 | | | 18.16 | 17.09 | | | 11.91 | 13.08 | 15.31 | 18.08 | 19.65 | 20.74 | | 20 | | | 17.38 | 16.46 | | | 12.46 | 12.74 | 16.09 | 18.29 | 19.69 | 20.41 | | 25 | | | 17.01 | 15.88 | | | 13.29 | 13.47 | 16.53 | 18.50 | 19.79 | 19.82 | | EOM | | | 17.21 | | | 9.82 | 13.58 | 13.74 | 16.97 | 18.86 | 20.09 | 19.21 | | WTR YR | 2002 | HIG | HEST 4.7 | 9 MAR 17, | 2002 | | | LOWEST | 18.53 OCT | г 10, 200 | 1 | | ### FAYETTE COUNTY 352226089330101. Local number, Fa:R-1. LOCATION.--Lat 35°22'26", long 89°33'01", Hydrologic Unit 08010209, 80 ft south of State Highway 59, 1.2 mi southeast of U.S. Highway 70, near Braden. Owner: Tennessee Division of Geology and U.S. Geological Survey. AQUIFER. -- Fort Pillow Sand of Wilcox Group of early Eocene age WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 to 4 in., depth 1,0225 ft, cased to 1,008 ft, screened 1,008 to 1,025 ft. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface is 317.50 ft above NGVD of 1929. Measuring point: Top of casing 3.70 ft above land-surface PERIOD OF RECORD.--August 1949 to current year. Analog record August 1949 to December 1970, periodic tape measurements or monthly maximum-minimum recorder thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 64.89 ft below land-surface datum, Aug. 31, 1949; lowest recorded, 76.26 ft below land-surface datum, Dec. 5, 1970; highest water level measured, 73.61 ft below land-surface datum, Apr. 28, 1976; lowest measured, 97.52 ft below land-surface datum, Aug. 1, 2001. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | VATER
LEVEL | DATE | WATER
LEVEL | |------------|----------------|------------------------|------------------------|----------------------------|-------------------------|----------------------------|-------------------------|------------------|----------------|------|----------------| | 31 9 | 95.54 | JAN 03
30
FEB 27 | 94.14
93.45
93.0 | MAR 29
APR 29
MAY 29 | 92.30
92.07
91.48 | JUN 27
JUL 30
AUG 14 | 91.33
91.43
91.61 | AUG 30
SEP 30 | 91.82
91.69 | | | | WATER YEAR | R 2002 | HIGHEST | 91.33 | JUN 27, 2 | 1002 | LOWEST 95 | 5.74 OCT | 01, 2001 | | | | 352226089330102. Local number, Fa:R-2. LOCATION.--Lat
35°22'26", long 89°33'01", Hydrologic Unit 08010209, 80 ft south of State Highway 59, 1.1 mi southeast of U.S. Highway 70, near Braden. Owner: Tennessee Division of Geology and U.S. Geological Survey. AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 to 4 in., depth 365 ft, cased to 345 ft, screened 345 to 365 ft. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface is 317.20 ft above NGVD of 1929. Measuring point: Top of casing 4.20 ft above land-surface datum. PERIOD OF RECORD.--October 1949 to current year. Analog record October 1949 to December 1970, periodic tape measurements or monthly maximum-minimum recorder thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 37.25 ft below land-surface datum, Mar. 10, 1952; lowest recorded, 42.12 ft below land-surface datum, Nov. 30, 1967; highest water level measured, 39.00 ft below land-surface datum, Mar. 3, 1998; lowest measured, 42.57 ft below land-surface datum, Oct. 1, 2001. | DATE | WATER
LEVEL | |------------------------|-------------------------|------------------------|------------------------|----------------------------|----------------|----------------------------|----------------|------------------|----------------|------|----------------| | OCT 01
31
DEC 04 | 42.57
42.50
42.50 | JAN 03
30
FEB 27 | 42.00
40.77
39.9 | MAR 29
APR 29
MAY 29 | 41.31 | JUN 27
JUL 30
AUG 14 | | AUG 30
SEP 30 | 41.88
41.85 | | | | WATER YE | EAR 2002 | HIGHEST | 39.9 | FEB 27, | 2002 | LOWEST | 42.57 OCT | 01, 2001 | | | | ### SHELBY COUNTY 350514089553700. Local number, Sh:K-75. $\hbox{LOCATION.--Lat } 35^{\circ}05^{\circ}14^{\circ}, \hbox{ long } 89^{\circ}55^{\circ}37^{\circ}, \hbox{ Hydrologic Unit } 08010211, \hbox{ at Willowview Avenue and Getwell ROad, at Memphis. Owner: } \\ \hbox{Memphis Light, Gas and Water Division, City of Memphis.}$ AQUIFER.--Fluvial sand and gravel of Pleistocene age and possibly sand of Eocene age. WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in., depth 91 ft cased to 81 ft, screened 81 to 91 ft. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface is 260 ft above NGVD of 1929, from topographic map. Measuring point: Top of casing 1.20 ft above land-surface datum. ${\tt REMARKS.--Water\ level\ affected\ by\ pumpage\ for\ Memphis\ municipal\ water\ supply.}$ PERIOD OF RECORD.--August 1948 to September 1994, water-level recorder, periodic tape measurements thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 21.28 ft below land-surface datum, Apr. 2, 1950; lowest recorded, 52.03 ft below land-surface datum, Jan. 13, 1988; highest water level measured, 45.73 ft below land-surface datum, July 6, 1998; lowest measured, 50.91 ft below land-surface datum, Jan. 4, 2002. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | WATER
LEVEL | |--------------|----------------|------------------|----------------|------------------|----------------|--------------|----------------|------------------|----------------|--------------|----------------| | OCT 03
31 | 50.83
50.86 | DEC 03
JAN 04 | 50.85
50.91 | JAN 31
MAR 01 | 50.80
50.69 | APR 01
29 | 50.56
50.52 | MAY 30
JUN 27 | 50.25
50.07 | AUG 01
30 | 49.90
49.92 | | WATER YE | EAR 2002 | HIGHEST | 49.90 | AUG 01, | 2002 | LOWEST 50 | .91 JAN | 04, 2002 | | | | 3501435090005200. Local number, Sh:0-1. LOCATION.--Lat $35^{\circ}14'35"$, long $90^{\circ}00'52"$, Hydrologic Unit 08010209, west side of O.K. Robertson Road, 0.4 mi north of U.S. Highway at Memphis. Owner: Memphis Light, Gas and Water Division, City of Memphis. AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in., depth 434 ft, cased to 424 ft, screened 424 to 434 ft. ${\tt INSTRUMENTATION.--Periodic\ measurements\ by\ USGS\ personnel.}$ DATUM.--Elevation of land-surface is 228.70 ft above NGVD of 1929. Measuring point: Top of casing, 4.30 ft above land-surface datum. REMARKS .-- Water level affected by pumpage for municipal and industrial water supply in the Memphis area. PERIOD OF RECORD.--September 1940 to current year. Analog record September 1940 to January 1992, periodic tape measurements thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 12.65 ft below land-surface datum, Sept. 3, 1940; lowest recorded, 68.82 ft below land-surface datum, Aug. 24, 1988; highest water level measured, 50.16 ft below land-surface datum, Mar. 29, 1994; lowest measured, 65.75 ft below land-surface datum, Sept. 7, 2000. | | JATER
JEVEL DATE | WATER
LEVEL | |------------|----------------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | | 1.70 DEC 04
0.77 JAN 04 | 58.93
57.50 | JAN 29
FEB 28 | 56.65
56.57 | MAR 27
MAY 01 | 54.74
52.85 | MAY 29
JUL 01 | 50.46
55.61 | AUG 05
SEP 04 | 58.34
58.87 | | WATER YEAR | 2002 HIGHES | ST 50.46 | MAY 29, | 2002 | LOWEST 63 | 1.70 OCT | 02, 2001 | | | | 350735089593300. Local number, Sh:P-76. $\hbox{LOCATION.--Lat 35}^\circ 07'35", \ \hbox{long } 89^\circ 59'33", \ \hbox{Hydrologic Unit 08010210, at Central Avenue and Tanglewood Street, at Memphis. Owner: Memphis Light, Gas and Water Division, City of Memphis. \\$ AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface is 286.70 ft above NGVD of 1929. Measuring point: Top of casing 1.30 ft above land-surface datum. REMARKS.--Water level affected by pumpage for municipal and industrial water supply in the Memphis area. PERIOD OF RECORD.--October 1928 to current year. Analog record October 1928 to September 1997, periodic tape measurements EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 58.65 ft below land-surface datum, Apr. 3, 1933; lowest, 147.31 ft below land-surface datum, June 30, 1988. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | WATER
LEVEL | |---------|------------------|------------------|----------------|---------|------------------|------------------|------------------|----------|------------------|------------------|----------------| | | 121.11
120.70 | DEC 07
JAN 04 | | | 118.71
118.27 | MAR 29
MAY 01 | 114.59
118.75 | | 115.52
121.70 | AUG 01
SEP 04 | | | WATER Y | EAR 2002 | HIGHES | T 114.59 | MAR 29, | 2002 | LOWEST 12 | 2.40 AUG | 01, 2002 | | | | 352112089571200. Local number, Sh:U-1. LOCATION.--Lat 35°21'12", long 89°57'12", Hydrologic Unit 08010209, 3 mi west of Millington at Shelby Road and Shake Rag Road, Sloanville, Owner: Mrs. T. S. Welch AQUIFER. -- Fort Pillow Sand of Wilcox Group of early Eocene age WELL CHARACTERISTICS.--Drilled artesian unused well, diameter 24 to 16 in., depth 1,558 ft, cased to 1,497 ft, screened 1,497 to 1.558 ft. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface datum is 264.20 ft above NGVD of 1929. Measuring point: Top of casing 0.60 ft above land-surface datum. REMARKS.--Water level affected by pumpage for municipal and industrial water supply at Millington and Memphis. PERIOD OF RECORD.--August 1946 to current year. Analog record March 1948 to January 1971, periodic tape measurements or monthly maximum-minimum recorder thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 35.5 ft below land-surface datum, Apr. 11, 1948; lowest recorded, 60.42 ft below land-surface datum, Dec. 20, 1970; highest water level measured, 33.20 ft, Apr. 21, 1947; lowest measured, 90.00 ft below land-surface datum, Aug. 29, 2001. | | WATER | | WATER | | WATER | | WATI | ER | WATER | | WATER | |----------|----------|---------|-------|---------|-------|--------|--------|--------------|-------|------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVI | EL DATE | LEVEL | DATE | LEVEL | | | | | | | | | | | | | | | OCT 02 | 89.99 | DEC 04 | 87.12 | FEB 28 | 84.98 | MAY 2 | 9 81.7 | 70 SEP 04 | 85.70 | | | | 12 | 89.45 | JAN 04 | 85.81 | MAR 27 | 83.80 | JUL 0 | 1 83.9 | 93 | | | | | NOV 01 | 88.62 | 29 | 85.11 | MAY 01 | 82.93 | AUG 0 | 5 85.0 | 08 | | | | | | | | | | | | | | | | | | WATER YI | EAR 2002 | HIGHEST | 81.70 | MAY 29, | 2002 | LOWEST | 89.99 | OCT 02, 2001 | | | | 352112089571300. Local number, Sh:U-2. $\label{location.--Lat 35^021'12", long 89^057'13", Hydrologic Unit 08010209, 3 mi west of Millington at Shelby Road and Shake Rag Road, Sloanville. Owner: Mrs. F. E Byrd \\$ AQUIFER. -- Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 18 to 12 in., depth 440 ft, cased to 360 ft, screened 360 to 440 ft. INSTRUMENTATION. -- Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface datum is 268.70 ft above NGVD of 1929. Measuring point: Top of casing 1.60 ft above land-surface datum. REMARKS.--Water level affected by pumpage for municipal and industrial water supply at Millington and Memphis. PERIOD OF RECORD.--June 1953 to current year. Analog record June 1953 to December 1970, periodic tape measurements or monthly maximum-minimum recorder thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 39.59 ft below land-surface datum, June 29, 1953; lowest, 64.88 ft below land-surface datum, Sept. 7, 2000. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------
----------------|------------------|----------------|------------------|----------------| | OCT 02
NOV 01 | 63.78
63.50 | DEC 04
JAN 04 | 62.92
61.93 | JAN 29
FEB 28 | 61.58
61.02 | MAR 27
MAY 01 | 60.15
59.29 | MAY 29
JUL 01 | 57.44
59.50 | AUG 05
SEP 04 | 60.87
61.35 | | WATER YE | EAR 2002 | HIGHEST | 57.44 | MAY 29, | 2002 | LOWEST 63 | 3.78 OCT | 02, 2001 | | | | ### CRITTENDED COUNTY, AR 350344090130000. Local number, Ar:H-2. LOCATION.--Lat $35^{\circ}03^{\circ}44^{\circ}$, long $90^{\circ}13^{\circ}00^{\circ}$, Hydrologic Unit 08020203, 0.7 mi east of Millers. Owner: Memphis Light, Gas, and Water Division, City of Memphis, and U.S. Geological Survey. AQUIFER.--Memphis Sand of Claiborne Group of middle Eocene age. WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in., depth 502 ft, cased to 482 ft, screened 482 to 502 ft. INSTRUMENTATION.--Periodic measurements by USGS personnel. DATUM.--Elevation of land-surface datum is 211 ft above NGVD of 1929, from topographic map. Measuring point: Inside top of shelter base plate, 3.30 ft above land-surface datum. REMARKS.--Well affected by pumpage in the Memphis, Tennessee area. Records good. PERIOD OF RECORD.--May 1983 to current year. Analog record from May 1983 to October 1995, periodic measurements thereafter. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.28 ft below land-surface datum, May 30, 31, 1983; lowest, 33.39 ft below land-surface datum, Oct. 31, 2000. | WATER DATE LEVEL | WATER
DATE LEVEL | DATE LEVEL | DATE LEVE | | WATER
LEVEL | DATE | WATER
LEVEL | |------------------------------|------------------------------|------------------------------|----------------------------|--------------|----------------|------------------|----------------| | OCT 03 33.06
NOV 01 31.80 | DEC 07 29.56
JAN 04 29.90 | JAN 30 27.62
FEB 28 28.67 | MAR 28 25.5
APR 30 25.0 | | 21.78
25.69 | JUL 31
SEP 03 | 28.20
29.86 | | WATER YEAR 2002 | HIGHEST 21.78 | MAY 30, 2002 | LOWEST 33.06 | OCT 03, 2001 | | | | 389 The following wells located in the Lower Tennessee River basin were sampled as part of the U.S. Geological Survey's National Water Quality Assessment Program to characterize water quality of major aquifers and to assess the occurence and distribution of nutrients, pesticides, and volatile organic compounds in ground water. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### CROCKETT COUNT | i | Local
dent-
i-
fier | | tion num | | | ime | OF SURS
DA'
(SAB)
NG
(72) | TUM (FT. WE OVE TO VD) (F2 | 2008) | | E- W FIC W N- F CT- (S CE /CM) U | TAND-
ARD
NITS) (| EMPER-
ATURE
WATER
DEG C)
00010) | ME'
PRI
SI
(1
(1 | MM
OF
G) (
025) (0 | TUR-
BID-
ITY
NTU)
0076) | |-------------|-------------------------------|-----------|--|--|--|---|---------------------------------------|--|---|--------------------------|--|---|--|--------------------------------------|--|--------------------------------------| | CK:J- 4 CIT | Y OF FRIEN | DSHI 3554 | 370891443 | 01 06-1 | 1-02 1 | .030 | 389 | .00 330 | 0.00 | 11 | 14 | 6.0 | 17.0 | 7 | 63 | .30 | | | Local
ident-
i-
fier | Date | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HAR
NES
NONC
DISS
FLD.
CAC
(MG/
(009 | S
ARB
OLV
AS
O3
L) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNI
SIUN
DIS-
SOLVI
(MG/I
AS MC | M,
-
ED
L
G) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIU
PERCEN
(00932 | T | D-
P-
ON
IO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | | CK:J- 4 | CITY OF F | 06-11-02 | .1 | 0 | 43 | - | - | 9.51 | 4.69 | 9 | 5.93 | 22 | | 4 | 1.46 | | | | Local
ident-
i-
fier | Date | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHL
RID
DIS
SOL
(MG
AS | E,
-
VED
/L
CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | BROMII
DIS-
SOLVI
(MG/I
AS BI
(71870 | -
ED
L
R) | DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS
RESIDU
AT 180
DEG.
DIS-
SOLVE
(MG/L)
(70300 | E SUM CONS C TUEN DI ED SOL | OF
TI-
TS,
S-
VED
/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | | CK:J- 4 | CITY OF F | 06-11-02 | 62 | 51 | 2.4 | 2. | 13 | .1 | .10 | | 14.1 | 78 | 7 | 2 | .11 | | | | Local
ident-
i-
fier | Date | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NIT
GEN,
MONI
ORGA
DIS
(MG
AS | AM-
A +
NIC
/L
N) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVY
(UG/I
AS AI | ,
-
ED
L
L) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENI
DIS-
SOLVE
(UG/L
AS AS
(01000 | DIS
D SOLV
(UG
) AS | -
ED
/L
BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | | CK:J- 4 | CITY OF F | 06-11-02 | <.008 | <.05 | E.03 | <.1 | 0 | <.02 | <1 | | <.05 | .3 | 16 | 2 | E.03 | | | | Local
ident-
i-
fier | Date | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBA
DIS
SOLV
(UG
AS | -
ED
/L
CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVI
(UG/I
AS FI
(01046 | -
ED
L
E) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | (UG/L
AS LI | DI
D SOL
(UG
) AS | E,
S-
VED
/L
MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | | | CK:J- 4 | CITY OF F | 06-11-02 | 7 | E.02 | <.8 | 1.8 | 3 | 2.3 | 636 | | 15.4 | 2.1 | 185 | | <.2 | | | | Local
ident-
i-
fier | Date | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRO
TI
DI
SOL
(UG
AS | UM,
S-
VED
/L | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVI
(UG/I
AS ZI | -
ED
L | RADON
222
TOTAL
(PCI/L) | RN-222
2 SIGM
WATER,
WHOLE,
TOTAL,
(PCI/L | A DI
CHLO
METH
TOT | -
RO-
ANE
AL | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | | | CK:J- 4 | CITY OF F | 06-11-02 | 2.43 | <.3 | <1 | 115 | | 1.9 | 24 | | 80 | 17 | <.0 | 5 | <.06 | | | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLO
FOR
TOT
(UG/
(321 | M
AL
L) | TOLUENE
TOTAL
(UG/L)
(34010) | BENZEI
TOTAI
(UG/L)
(34030 | L
) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | | BENZ
TOT
(UG/ | ENE
AL
L) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | | | CK:J- 4 | CITY OF F | 06-11-02 | <.1 | <.06 | <.2 | .1 | 3 | <.05 | <.04 | | <.03 | <.1 | <.0 | 3 | <.3 | | ## WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### CROCKETT COUNTY--Continued ETHANE, BENZENE | | Local
ident-
i-
fier | Date | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | E ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | |---------|-------------------------------|----------------|---|--|---|---
--|---|--|--|---|--| | CK:J- 4 | CITY OF F | 06-11-02 | <.2 | <.2 | .17 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRE
REC
(UG/L)
(34571) | CHLORO-DI-FLUORO-DMETHANETOTAL (UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | CK:J- 4 | CITY OF F | 06-11-02 | <.03 | <.03 | <.03 | <.05 | <.18 | <.09 | <.09 | <.1 | <.04 | <.04 | | | Local
ident-
i-
fier | Date | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | CK:J- 4 | CITY OF F | 06-11-02 | <.004 | <.006 | <.007 | <.005 | <.002 | <.005 | <.018 | <.006 | <.005 | <.005 | | | Local
ident-
i-
fier | Date | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | CK:J- 4 | CITY OF F | 06-11-02 | <.003 | <.004 | <.027 | <.006 | <.013 | <.003 | <.010 | <.010 | <.01 | <.005 | | | Local
ident-
i-
fier | Date | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | (UG/L) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | | CK:J- 4 | CITY OF F | 06-11-02 | <.010 | <.041 | <.020 | <.003 | <.006 | <.02 | <.009 | <.005 | <.002 | <.035 | | | Local
ident-
i-
fier | Date | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | CIS
WAT FLT
0.7 U | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | | CK:J- 4 | CITY OF F | 06-11-02 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | | | CK:J- | ide
i
fi | ocal
ent-
-
er Da | PAR
WA
FL
0.
te GF,
(UG
(82 | GITE THI
TER WA
TRD FI
7 U 0.
REC GF,
(/L) (UC
685) (82 | TURON EXTER WITTER WITTED FOR COMMERCE GFG/L) (U.6670) (8 | ACIL BUILD B | JFOS LATER WATER WATER WATER FI. 7 U 0. REC GF, G/L) (UC 2675) (82 | ATE FI
ATER AL
LTRD WAT
.7 U 0.
. REC GF,
G/L) (UG
2678) (82 | UR- BEN
IN WA
FLT FL
7 U 0.
REC GF,
G/L) (UG | IIO-
ICARB
TER
TRD
7 U
REC
G/L)
681) | | 391 QUALITY OF GROUND WATER WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### OBION COUNTY | Local
ident-
i-
fier | Sta | ution num | ber Da | te 1 | lime | ELE
OF L
SURF
DAT
(F
ABC
NGV
(720 | AND FACE DEFUM C TT. WE OVE TC /D) (F | | | E- W FIC W N- F CT- (S CE /CM) U | PH
ATER
HOLE
IELD
TAND-
ARD
NITS)
0400) | AT
WA
(DE | ME PF PER- S URE (TER G C) F | MM 1
OF :
G) (1 | FUR-
BID-
ITY
WTU)
0076) | |-------------------------------|----------|--|--|--|---|--|--|--|-----------------------------------|---|--|----------------------|--|---|--------------------------------------| | UNION CITY, TN | 3625 | 520890320 | 01 06-1 | 0-02 1 | | 352. | | | 10 | | 5.8 | 18 | | 64 | .09 | | Local
ident-
i-
fier | Date | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD
NESS
NONCA
DISSO
FLD.
CACO
(MG/L
(0090 | RB
LV
AS | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNI
SIUN
DIS-
SOLVI
(MG/I
AS MO | 4,
-
ED
-
-
-
- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODI
PERCE
(0093 | NT | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | | UNION CITY, TN | 06-10-02 | .1 | 0 | 37 | | | 8.90 | 3.49 | 9 | 6.16 | 26 | | .4 | .93 | | | Local
ident-
i-
fier | Date | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO
RIDE
DIS-
SOLV
(MG/:
AS C: | ED
L
L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | BROMII
DIS-
SOLVI
(MG/I
AS BI
(71870 | DE
-
ED
:
R) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 18 | C
C
ED
L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) |
SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | | UNION CITY, TN | 06-10-02 | 60 | 49 | 1.8 | 1.8 | 5 | E.1 | E.02 | | 9.40 | 71 | | 63 | .10 | | | Local
ident-
i-
fier | Date | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITR
GEN, A
MONIA
ORGAN
DIS.
(MG/
AS N
(0062 | M-
HIC
L | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVY
(UG/I
AS AI
(01106 | ED
- | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSEN
DIS
SOLV
(UG/
AS A
(0100 | ED
L
S) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | | UNION CITY, TN | 06-10-02 | <.008 | <.05 | <.04 | <.10 | | <.02 | <1 | | <.05 | <.2 | ! | 42 | <.06 | | | Local
ident-
i-
fier | Date | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALI
DIS-
SOLVE
(UG/I
AS CO | D
L | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVI
(UG/I
AS FI
(01046 | -
ED
:
E) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHI
DIS
SOLV
(UG/
AS I
(0113 | ED
L
L | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | | | UNION CITY, TN | 06-10-02 | E6 | <.04 | <.8 | .10 | | <.2 | 419 | | <.08 | .6 | i | 8.4 | <.2 | | | Local
ident-
i-
fier | Date | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STROI
TIU
DIS
SOLV
(UG/I
AS SI | M,
-
ED
L
R) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVI
(UG/I
AS ZI
(01090 | 1)
ED | RADON
222
TOTAL
(PCI/L)
(82303) | RN-22
2 SIG
WATER
WHOLE
TOTAL
(PCI/
(7600 | MA
l,
l,
L, | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | | | UNION CITY, TN | 06-10-02 | .70 | <.3 | <1 | 59. | 5 | 2.4 | 6 | | 80 | 19 | | <.05 | <.06 | | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLOR
FORM
TOTA
(UG/L
(3210 | L
) | TOLUENE
TOTAL
(UG/L)
(34010) | BENZEN
TOTAI
(UG/L)
(3403) |)
JE | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | | E
T | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | | | UNION CITY, TN | 06-10-02 | <.1 | <.06 | <.2 | <.02 | | <.05 | <.04 | | <.03 | <.1 | | <.03 | <.3 | | | Local
ident-
i-
fier | Date | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLOR
FLUOR
METHA
TOTA
(UG/L
(3448 | .O-
.O-
.NE
.L | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI
CHLORG
ETHYL-
ENE
TOTAI
(UG/L)
(34503 |)-
- | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2
TRI-
CHLOR
ETHAN
TOTA
(UG/L
(3451 | CO-
IE
LL | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | | | UNION CITY, TN | 06-10-02 | <.2 | <.2 | <.03 | <.09 | | <.04 | <.04 | | <.03 | <.06 | ; | <.09 | <.03 | | # WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBION COUNTY--Continued | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI -
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | |-------------|-------------------------------|----------|---|--|---|---|---|---|---|--|---|--| | UNION CITY, | TN | 06-10-02 | <.03 | <.03 | <.03 | <.05 | <.18 | <.09 | <.09 | <.1 | <.04 | <.04 | | | Local
ident-
i-
fier | Date | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | UNION CITY, | TN | 06-10-02 | <.004 | <.006 | <.007 | <.005 | <.002 | <.005 | <.018 | <.006 | <.005 | <.005 | | | Local
ident-
i-
fier | Date | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | UNION CITY, | TN | 06-10-02 | <.003 | <.004 | <.027 | <.006 | <.013 | <.003 | <.010 | <.010 | <.01 | <.005 | | | Local
ident-
i-
fier | Date | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | | UNION CITY, | TN | 06-10-02 | <.010 | <.041 | <.020 | <.003 | <.006 | <.02 | <.009 | <.005 | <.002 | <.035 | | | Local
ident-
i-
fier | Date | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | | UNION CITY, | TN | 06-10-02 | <.050 | <.006 | <.002 | <.007 | <.004 | <.022 | <.006 | <.011 | <.004 | <.011 | | | | ide
i | | PAR
WA
FL
0.
te GF,
(UG | GITE THI TER WA TRD FL 7 U 0. REC GF, | URON BA TER WA TRD FL 7 U 0. REC GF, | CIL BU TER WA TRD FL 7 U 0. REC GF, | FOS LA TER WA TRD FL 7 U 0. REC GF, | TE FL
TER AL
TRD WAT
7 U 0.
REC GF, | UR- BEN IN WA FLT FL 7 U 0. REC GF, | CIO-
CARB
TER
TRD
7 U
REC
(/L)
681) | | UNION CITY, TN 06-10-02 <.02 <.02 <.034 <.02 <.000 <.005 393 ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### SHELBY COUNTY WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued | ide
i | ocal
ent-
i-
ler | Sta | tion num | ber Da | te | Time | ELEV.
DF
LAND
SURFACE
DATUM
(FT.
ABOVE
NGVD)
72000) | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | CI
CC
DU
AN
(US | PE- W
FIC W
NN- F
ICT- (S
ICE
S/CM) U | TAND-
ARD
NITS) (| TEMPER-
ATURE
WATER
DEG C)
00010) | BARO-
METRI
PRES-
SURI
(MM
OF
HG)
(00025 | IC
-
E TUR-
BID-
ITY
(NTU) | |--|-------------------------------|--|--|--|--|--|--|--|---|--|---|---|---|---| | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 3504
3508
3511
3512 | 290895256
240895939
570895914
470894827
010895255
030895526 | 01 04-1
01 04-1
01 04-1
01 04-1 | 6-02
8-02
7-02
7-02 | 0900 2
1200 2
1530 2
1106 2 | 991
35
771.06
990
278 | 52.75
42.7
59.0
87
44
40 | 3
7
1
1 | 70
72 | 6.3
6.6
6.0
5.8 | 19.0
22.0
17.0
21.0
19.5
23.0 | 763
767
770
764
764
766 | 1.0
1.0
1.0
.0
1.0 | | | Local
ident-
i-
fier | Date | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAF
DISSOI
FLD. A
CACO3
(MG/L)
(00904 | RB CALCI | TUM S
TED SC
L (M
CA) AS | GNE-
SIUM,
DIS-
DLVED
IG/L
S MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIU
PERCEN
(00932 | IT | O-
P-
ON S
IO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
00935) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | .2
.2
.1
4.8
.9
2.9 | 2
2
1
54
10
34 | 160
140
370
38
34
100 | 80
15
9

 | 35.0
39.4
74.5
8.2
7.6
21.2 | 97 44
24 4
57 3 | .1
.66
.1
.24
.59 | 117
7.53
34.2
22.2
19.9
43.1 | 61
10
17
55
56
47 | 4
.8
2
1
2 | 3 1 | 2.29
1.92
.79
.83
.34 | | | Local
ident-
i-
fier | Date | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS- | RIDE
DIS
ED SOLV
(MG/ | E, BRC
S- D
/ED SC
/L (M
F) AS | MIDE
DIS-
DLVED
IG/L
BR)
870) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180 | E SUM (CONST C TUENT DIS D SOLV (MG, | OF SO
PI-
PS, S
S-
/ED
/L) # | DLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
70303) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | 96
150
438
56
72
133 | 78
123
359
46
59
109 | 21.2
8.9
54.9
3.2
2.4
21.4 | 211
7.13
8.63
9.35
6.68
36.8 | .2
E.1 | | 14
09
38
06
09
30 | 34.7
29.9
27.8
14.5
41.5
59.5 | 532
190
485
112
116
267 | 490
184
464
116
124
274 | 1
1
5
1 | .72
.26
.66
.15
.16 | | | Local
ident-
i-
fier | Date | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | ORGANI | I- PHOS
+ PHAT
C DIS-
SOLVE
(MG/
AS I | S- AL TE, IN - D ED SC 'L (U P) AS | JUM-
JUM,
DIS-
DLVED
JG/L
JAL)
106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENI
DIS-
SOLVE
(UG/I
AS AS | DIS-
D SOLVE
(UG, | JM, I
- I
ED S
/L
BA) # | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
01010) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.008
<.008
<.008
<.008
<.008
<.008 | .08
<.05
.66
5.87
1.44
3.03 | <.04
.52
<.04
<.04
<.04 | <.10
.60
<.10
<.10
<.10
E.08 | .03
E.01
.03
<.02
<.02 | - | 1
1
1
1
1
1
1 | .07
.05
.52
<.05
<.05 | .7
E.1
1.1
<.2
<.2 | 410
133
89
23
24
43 | L «
) «
L « | <.06
<.06
<.06
<.06
<.06
<.06 | | | Local
ident-
i-
fier | Date | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT
DIS-
SOLVEI
(UG/I
AS CO | DIS-
SOLV
(UG/ | · D
VED SC
'L (U
CU) AS | ON,
DIS-
DLVED
JG/L
S FE) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIU
DIS-
SOLVE
(UG/I
AS LI
(01130 | DIS
D SOLV
(UG, | E, I
S-
/ED S
/L /MN) # | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
01060) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | E4
32
E6
<7
<7
E7 | .05
.04
.14
<.04
<.04 | <.8
<.8
<.8
<.8
<.8
E.6 | 1.23
4.66
.96
.03
.14 | 8.3
E.1
<.2 | 1
3
- < | 24
36
98
10
10
27 | <.08
<.08
1.42
<.08
<.08
<.08 | 2.8
.5
.7
.5
.9 | 167
4680
110
E | . 3 | E.1
E.1
.2
<.2
<.2
<.2 | # WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 SHELBY COUNTY--Continued | | Local
ident-
i-
fier | Date | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | RADON
222
TOTAL
(PCI/L) | RN-222
2 SIGMA
WATER,
WHOLE,
TOTAL,
(PCI/L) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | |--|-------------------------------|--|--|--|---|---|---|---|--|--|--|--| | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | 1.65
.80
1.11
.47
.36
1.28 | 2.4
<.3
1.2
.7
E.3 | <1
<1
<1
<1
<1
<1 | 481
179
108
34.6
29.8
34.4 | 2.6
1.6
2.2
.6
1.0
2.2 | 3
1
6
<1
<1
<1 |

 |

 | <.05
<.05
<.05
<.05
<.05
<.05 | <.06
<.06
<.06
<.06
<.06
<.06 | | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | TOLUENE
TOTAL
(UG/L)
(34010) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.1
<.1
<.1
<.1
<.1 | <.06
<.06
<.06
<.06
<.06
<.06 | <.2
<.2
<.2
<.2
<.2
<.2 | <.02
<.02
<.02
<.02
E.03
E.09 | <.05
<.05
<.05
<.05
<.05
E.01 | <.04
<.04
<.04
<.04
<.04
<.04 | <.03
<.03
<.03
<.03
<.03 | <.1
<.1
<.1
<.1
<.1 | <.03
<.03
<.03
<.03
<.03
<.03 | <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 | | | Local
ident-
i-
fier | Date | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) |
TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE O-DI- CHLORO- WATER UNFLTRD REC (UG/L) (34536) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02 | <.2
<.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2
<.2 | <.03
<.03
<.03
<.03
E.01 | <.09
<.09
<.09
<.09
<.09 | <.04
<.04
<.04
<.04
<.04 | <.04
<.04
<.04
<.04
<.04 | <.03
<.03
<.03
<.03
<.03 | <.06
<.06
<.06
<.06
<.06 | <.09
<.09
<.09
<.09
<.09 | <.03 <.03 <.03 <.03 <.03 <.03 | | SH:UR-6 | | 04-16-02 | <.2 | <.2 | E.02 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | | | Local
ident-
i-
fier | Date | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE 1,4-DI- CHLORO- WATER UNFLTRD REC (UG/L) (34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI -
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.03
<.03
<.03
<.03
<.03
<.03 | <.03
<.03
<.03
<.03
<.03
<.03 | <.03
<.03
<.03
<.03
<.03
<.03 | <.05
<.05
<.05
<.05
<.05
<.05 | <.18 <.18 <.18 <.18 <.18 <.18 <.18 | <.09
<.09
<.09
<.09
<.09
<.09 | <.09
<.09
<.09
<.09
<.09
<.09 | <.1
<.1
<.1
<.1
<.1 | <.04
<.04
<.04
<.04
<.04
<.04 | <.04
<.04
<.04
<.04
<.04
<.04 | | | Local
ident-
i-
fier | Date | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.004
<.004
<.004
<.004
<.004 | <.006
<.006
<.006
<.006
<.006
<.006 | <.007
.153
<.007
.008
.008 | <.005 <.005 <.005 <.005 <.005 <.005 <.005 | <.002
<.002
<.002
<.002
<.002
<.002 | <.005 <.005 <.005 <.005 <.005 <.005 <.005 | <.018
<.018
<.018
<.018
<.018
<.018 | <.006
<.006
<.006
<.006
E.005
E.025 | <.005 <.005 <.005 <.005 <.005 <.005 <.005 | <.005
<.005
<.005
<.005
<.005
<.005 | # WATER-QUALITY DATA, LOWER TENNESSEE RIVER BASIN NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### SHELBY COUNTY--Continued | | Local
ident-
i-
fier | Date | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | |--|-------------------------------|--|---|--|--|---|---|---|---|--|---|--| | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.003 <.003 <.003 <.003 <.003 <.003 <.003 | <.004
<.004
<.004
<.004
<.004 | <.027
<.027
<.027
<.027
<.027
<.027 | <.006
<.006
<.006
<.006
<.006 | <.013
.023
<.013
<.013
<.013
<.013 | <.003
<.003
<.003
<.003
<.003
<.003 | <.010
<.010
<.010
<.010
<.010
<.010 | <.010
<.010
<.010
<.010
<.010
<.010 | <.01
.06
<.01
<.01
<.01 | <.005
.333
<.005
.008
<.005
<.005 | | | Local
ident-
i-
fier | Date | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.010
<.010
<.010
<.010
<.010
<.010 | <.041
<.041
<.041
<.041
<.041
<.041 | <.020
<.020
<.020
<.020
<.020
<.020 | <.003
<.003
<.003
<.003
<.003
<.003 | <.006 <.006 <.006 <.006 <.006 <.006 | <.02
<.02
<.02
<.02
<.02
<.02 | <.009 <.009 <.009 <.009 <.009 <.009 | <.005 <.005 <.005 <.005 <.005 <.005 <.005 | <.002
<.002
<.002
<.002
<.002
<.002 | <.035
<.035
<.035
<.035
<.035
<.035 | | | Local
ident-
i-
fier | Date | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | | SH:UR-11
SH:UR-31
Sh:P- 99
SH:UR-29
SH:UR-8
SH:UR-6 | | 04-15-02
04-16-02
04-18-02
04-17-02
04-17-02
04-16-02 | <.050
<.050
<.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007
<.007
<.007 | <.004
<.004
<.004
<.004
<.004
<.004 | <.022
<.022
<.022
<.022
<.022
<.022
E.012 | <.006
<.006
<.006
<.006
<.006 | <.011
<.011
<.011
<.011
<.011
<.011 | <.004
<.004
<.004
<.004
<.004 | <.011
<.011
<.011
<.011
<.011
<.011 | | | | ide
i | cal
nt-
-
er Da | PAR
WA
FI
0.
te GF, | GITE TH TER W. TRD F. 7 U 0 REC GF | IURON BATER WALTER WALTER FI.7 U 0.7 REC GF, G/L) (UC | ACIL BU
ATER WA
LTRD FI
.7 U 0.
, REC GF,
G/L) (UG | JFOS LA
ATER WA
JTRD FL
.7 U 0.
REC GF,
G/L) (UG | TE FL
TER AL
TRD WAT
7 U 0.
REC GF, | UR- BEN IN WA FLT FL 7 U 0. REC GF, //L) (UG | IO-
CARB
TER
TRD
7 U
REC
(/L)
681) | | | | SH:U
Sh:F | | 04-1
04-1
04-1
04-1 | 6-02 <.
8-02 <.
7-02 <.
7-02 <. | 02
02 <
02 <
02 < | .03 < .02 < .02 < .02 < .02 < .02 < .02 < .02 | .034 <.
.034 <.
.034 <. | .02 <.
.02 <.
.02 <.
.02 <. | 002 <.
002 <.
002 <.
002 <. | 009 <.
009 <.
009 <.
009 <. | 005
005
005
005
005
005 | | ### QUALITY OF GROUND WATER ### SHELBY COUNTY ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350114090071701 -- SH:J-146 MLGW-DAVIS | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|--|--|---|---|---|---|---|--|--|--|--| | AUG
22 | 1330 | 446 | 160 | 6.3 | 19.5 | 763 | .3 | 3 | 63 | 14.0 | 6.81 | 7.24 | 20 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | AUG
22 | .4 | .89 | 94 | 77 | 75 | 3.1 | 2.94 | .12 | 13.6 | 91 | 95 | .12 | <20 | | | Date | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | | | | AUG 22 | 42.7 | <13 | 236 | <4 | 4.5 | <50 | <2.0 | <14 | <.1 | 36.6 | <8 | | | | | | | | 3505310 | 90020501 | SH:J-1 | .83 | | | | | | | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | | AUG
22 | 1130 | 162 | 6.3 | 18.5 | 762 | .1 | 1 | 61 | 13.6 | 6.56 | 7.74 | 21 | . 4 | | Date | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | AUG
22 | .71 | 90 | 74 | 71 | 4.4 | 4.62 | E.08 | 12.0 | 90 | 95 | .12 | <20 | 54.8 | | | Date | COBA
DIS
SOLV
(UG
AS
(010 | S- DI
ZED SOL
G/L (UG
CO) AS | S- DI
VED SOI
G/L (UG
FE) AS | S- DI
VED SOI
J/L (UG
LI) AS | E, DEN
S- DI
VED SOL
J/L (UG
MN) AS | UM, NICK
S- DIS
VED SOL
/L (UG
MO) AS | F- DI
EVED SOL
E/L (UG
NI) AS | M, SILV
S- DI
VED SOL
K/L (UG
SE) AS | S- DI
VED SOL
/L (UG
AG) AS | UM, DIU
S- DI
VED SOL
S/L (UG
SR) AS | M,
S-
VED
J/L
V) | | | | AUG
22 | <1 | .3 71 | .1 <4 | 19. | 6 <5 | 0 4. | 6 < | 2 <. | 1 42. | 5 <8 | | | ## QUALITY OF GROUND WATER 397 ## SHELBY COUNTY--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350642089555000 -- SH:K-142 MLGW 99 SHEAHAN WELL FIELD | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |-----------|--|--|--|--|--|---|---|--|---|--|--|--|--| | AUG
23 | 1300 | 120 | 6.0 | 19.0 | 759 | .1 | 1 | 36 | 7.88 | 3.83 | 8.62 | 34 | .6 | | Date | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | AUG
23 | .68 | 53 | 44 | 88 | 6.8 | 5.32 | <.10 | 15.0 | 74 | 74 | .10 | <20 | 23.9 | | | Date | COBA
DIS
SOLA
(UC
AS
(010 | S- DI
/ED SOL
G/L (UG
CO) AS | S- DI
VED SOI
J/L (UG
FE) AS | S- DI
VED SOL
J/L (UG
LI) AS | E, DEN S- DI VED SOL L/L (UG MN) AS | UM, NICK
S- DIS
VED SOL
/L (UG
MO) AS | S- DI
LVED SOL
G/L (UG
NI) AS | M, SILV
S- DI
VED SOL
J/L (UG
SE) AS | ER, TI
S- DI
VED SOL
:/L (UG
AG) AS | VED SOL
G/L (UG
SR) AS | M,
S-
VED
:/L
V) | | | | AUG
23 | <1 | .3 14 | 7 <4 | 19. | 6 <5 | 0 <2. | 0 <1 | 4 <. | 1 21. | 8 <8 | | | | | 23 | | | | | | | | | | 0 10 | | | | | | | | 350230
PH | 089512301 | SH:L-
BARO- | 37 MLGW- | OXYGEN, | N | | | | | | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) |
MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | | AUG
21 | 0930 | 382 | 100 | 5.9 | 18.0 | 759 | 3.8 | 40 | 25 | 6.16 | 2.41 | 8.97 | 43 | | Date | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | AUG
21 | .8 | .54 | 43 | 35 | 89 | 3.1 | 5.78 | <.10 | 14.3 | 55 | 62 | .07 | <20 | | | Date | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | | | | 21 | 15.6 | <13 | 35 | <4 | E1.0 | <50 | E1.1 | <14 | <.1 | 16.0 | <8 | | ${\hbox{\tt E--Estimated}}$ ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350454089482101 -- SH:L-065 GERMANTOWN 2 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
26 | 1515 | 326 | 74 | 6.0 | 18.0 | 753 | 3.8 | 41 | 20 | 4.87 | 1.98 | 6.64 | 41 | | Date | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
26 | .6 | .44 | 34 | 28 | 56 | 2.3 | 4.20 | <.10 | 12.6 | 39 | 50 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG 26 | .14 | <.04 | <.10 | E.002 | <.02 | <20 | 14.6 | <13 | <10 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
26 | <2 | <.1 | 13.6 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.05 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
26 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | AUG | te
6 | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350447089482601 -- SH:L-067 GERMANTOWN | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--
---|--| | AUG
27 | 1200 | 605 | 77 | 6.2 | 18.5 | 756 | .9 | 10 | 27 | 6.46 | 2.51 | 4.50 | 27 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
27 | .4 | .39 | 37 | 30 | 39 | 2.6 | 2.96 | <.10 | 11.3 | 37 | 49 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
27 | .07 | E.02 | <.10 | <.004 | <.02 | <20 | 13.0 | <13 | 204 | <4 | 4.5 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
27 | <2 | <.1 | 13.4 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | <.02 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
27 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | - | | | | | 9 | | | | | | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350450089480601 -- SH:L-081 GERMANTOWN 6 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
26 | 1030 | 835 | 60 | 6.1 | 19.4 | 754 | .2 | 2 | 21 | 5.38 | 1.77 | 2.80 | 22 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
26 | .3 | .54 | 29 | 24 | 39 | 2.9 | 1.32 | <.10 | 9.87 | 35 | 39 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
26 | <.05 | <.04 | <.10 | .006 | <.02 | <20 | 11.8 | <13 | 290 | <4 | 3.7 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
26 | <2 | <.1 | 18.2 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | <.02 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) |
1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
26 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | 2 | ···· | ~.05 | ~.05 | ~.05 | ·.10 | N. U.J | N. U.J | \.I | \.U4 | \.U± | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350503089482201 -- SH:L-83 GERMANTOWN 5 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
27 | 1500 | 622 | 87 | 6.4 | 19.0 | 755 | .6 | 7 | 36 | 8.76 | 3.35 | 2.99 | 15 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
27 | .2 | .38 | 47 | 39 | 30 | 2.6 | 1.59 | E.08 | 9.99 | 38 | 53 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
27 | <.05 | <.04 | <.10 | <.004 | <.02 | <20 | 15.6 | <13 | 252 | <4 | 11.2 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
27 | <2 | <.1 | 16.4 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | <.02 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
27 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | AUG | te
7 | TRANS-1,2-DI-CHLORO-ETHENE TOTAL (UG/L) (34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350500089481801 -- SH:L-091 GERMANTOWN 8 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
27 | 1345 | 314 | 67 | 6.0 | 18.0 | 755 | 4.0 | 43 | 19 | 4.64 | 1.91 | 5.64 | 38 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG.
C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
27 | .6 | .50 | 32 | 27 | 54 | 1.8 | 3.12 | <.10 | 13.0 | 38 | 47 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
27 | .08 | <.04 | <.10 | <.004 | <.02 | <20 | 19.4 | <13 | <10 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
27 | <2 | <.1 | 14.3 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.04 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
27 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | - | | | | | | | | . – | | | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350449089480501 -- SH:L-092 GERMANTOWN 9 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
26 | 1145 | 309 | 66 | 6.0 | 18.0 | 754 | 4.7 | 50 | 17 | 4.02 | 1.64 | 5.88 | 43 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
26 | .6 | .40 | 31 | 26 | 51 | 1.5 | 3.62 | <.10 | 12.4 | 40 | 45 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
26 | .14 | <.04 | <.10 | E.003 | <.02 | <20 | 13.8 | <13 | <10 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
26 | <2 | <.1 | 11.9 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.06 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
26 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) |
VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | ۷ | ~ | 05 | | | ·. ±0 | 1.00 | ٠.٠٠ | ~.± | ·.04 | ·.04 | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350445089481001 -- SH:L-098 GERMANTOWN 10 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|--|---|---|---|--|---|--| | AUG
26 | 1400 | 321 | 74 | 6.0 | 18.0 | 754 | 4.3 | 46 | 20 | 4.81 | 1.92 | 6.70 | 42 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
26 | .7 | .39 | 35 | 28 | 53 | 1.7 | 4.64 | <.10 | 12.4 | 38 | 51 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
26 | .28 | <.04 | <.10 | E.004 | E.01 | <20 | 14.0 | <13 | <10 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
26 | <2 | <.1 | 12.6 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.05 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
26 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | AUG | te
6 | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | CHLORO- | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-CHLORO-ETHYL-ENE TOTAL (UG/L) (39180) | STYRENE TOTAL (UG/L) (77128) | | | Estimated ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350403089445201 -- Sh:M-48 Germantown 2J | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
28 | 0945 | 269 | 125 | 6.0 | 18.0 | 758 | 6.7 | 71 | 22 | 5.23 | 2.21 | 13.9 | 57 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
28 | 1 | .55 | 39 | 32 | 64 | 2.8 | 10.9 | <.10 | 12.8 | 65 | 77 | .09 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) |
MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
28 | 2.02 | <.04 | <.10 | E.003 | <.02 | <20 | 20.3 | <13 | <10 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
28 | <2 | <.1 | 15.0 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.06 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI -
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
28 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | 2 | ···· | 05 | | | ·. ±0 | 1.00 | ٠.٠٠ | ~.± | ·.04 | ·.04 | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350403089444301 -- Sh:M-49 Germantown 3J | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
28 | 1100 | 256 | 87 | 5.9 | 17.7 | 757 | 6.4 | 68 | 18 | 4.40 | 1.76 | 9.16 | 52 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
28 | .9 | .44 | 32 | 26 | 64 | 1.8 | 7.96 | <.10 | 12.3 | 50 | 57 | .07 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
28 | .67 | <.04 | <.10 | E.003 | <.02 | <20 | 15.5 | <13 | 13 | <4 | <2.0 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
28 | <2 | <.1 | 11.2 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.09 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
28 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | - | | | | | | | | | | | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350412089444301 -- Sh:M-51 Germantown 5J | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------
--|--|---|---|---|---|---|---|---|---|--|---|--| | AUG
28 | 1245 | 304 | 50 | 5.8 | 18.0 | 757 | 4.8 | 51 | 12 | 2.96 | 1.21 | 4.23 | 42 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
28 | .5 | .41 | 23 | 19 | 58 | 1.0 | 3.07 | <.10 | 11.6 | 32 | 36 | .04 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | | AUG
28 | .14 | <.04 | <.10 | <.004 | <.02 | <20 | 14.1 | <13 | 13 | <4 | E2.3 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) | CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG
28 | E1 | <.1 | 7.5 | <8 | <.05 | <.06 | <.1 | <.06 | <.2 | E.06 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG
28 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | Da
AUG
2 | | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | 4 | o | <.03 | <.03 | <.05 | <.10 | <.09 | <.09 | <.⊥ | <.04 | <.04 | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350408089443001 -- Sh:M-53 Germantown 7J | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-----------|--|--|--|---|---|---|---|---|---|---|--|---|--| | AUG
28 | 1400 | 257 | 57 | 5.8 | 18.7 | 756 | 5.4 | 58 | 13 | 3.20 | 1.32 | 4.79 | 43 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AUG
28 | .6 | .44 | 22 | 18 | 62 | 1.3 | 4.10 | <.10 | 11.9 | 34 | 39 | .05 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | | AUG | (00631) | (00608) | (00623) | (00666) | (00671) | (01106) | (01005) | (01035) | (01046) | (01130) | (01056) | (01060) | (01065) | | 28 | .24 | <.04 | <.10 | <.004 | <.02 | <20 | 14.6 | <13 | 13 | <4 | E2.1 | <50 | <2.0 | | Date | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | BROMO-
DI-
CHLORO-
METHANE
TOTAL
(UG/L)
(32101) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
(32102) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(32103) | BROMO-
FORM
TOTAL
(UG/L)
(32104) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L)
(32105) |
CHLORO-
FORM
TOTAL
(UG/L)
(32106) | BENZENE
TOTAL
(UG/L)
(34030) | CHLORO-
BENZENE
TOTAL
(UG/L)
(34301) | CHLORO-
ETHANE
TOTAL
(UG/L)
(34311) | | AUG 28 | <2 | <.1 | 8.2 | E4 | <.05 | <.06 | <.1 | <.06 | <.2 | E.07 | <.04 | <.03 | <.1 | | Date | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | METHYL-
BROMIDE
TOTAL
(UG/L)
(34413) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
(34418) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L)
(34423) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34475) | TRI-
CHLORO-
FLUORO-
METHANE
TOTAL
(UG/L)
(34488) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(34501) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34506) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
(34511) | ETHANE,
1,1,2,2
TETRA-
CHLORO-
WAT UNF
REC
(UG/L)
(34516) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34536) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L)
(34541) | | AUG 28 | <.03 | <.3 | <.2 | <.2 | <.03 | <.09 | <.04 | <.04 | <.03 | <.06 | <.09 | <.03 | <.03 | | | | te | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(UG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(UG/L)
(34571) | DI-
CHLORO-
DI-
FLUORO-
METHANE
TOTAL
(UG/L)
(34668) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34699) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
(34704) | VINYL
CHLO-
RIDE
TOTAL
(UG/L)
(39175) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
(39180) | STYRENE
TOTAL
(UG/L)
(77128) | | | | | AUG
2 | 8 | <.03 | <.03 | <.05 | <.18 | <.09 | <.09 | <.1 | <.04 | <.04 | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 350913090100801 -- SH:O-207 MLGW #12C | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |-----------|--|--|--|--|---|--|---|---|--|--|--|--|--| | AUG 23 | 1045 | 758 | 139 | 6.2 | 18.0 | 760 | 52 | 12.1 | 5.34 | 7.36 | 23 | .4 | .61 | | Date | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | AUG
23 | 78 | 64 | 81 | 2.3 | 2.46 | E.07 | 13.0 | 76 | 82 | .10 | <20 | 47.5 | <13 | | | Da | ite | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | | | | | AUG
2 | ;
:3 | 344 | <4 | 7.5 | <50 | <2.0 | <14 | <.1 | 41.3 | <8 | | | | | | | | 351420 | 089570900 | SH:P- | 131 MLGW | MORTON 62 | 21 | | | | | | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | | AUG
22 | 0930 | 123 | 6.2 | 18.5 | 767 | М | 0 | 41 | 9.76 | 3.92 | 7.26 | 27 | .5 | | Date | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | AUG
22 | 1.03 | 69 | 57 | 66 | 3.4 | 2.52 | E.07 | 10.7 | 63 | 74 | .09 | <20 | 55.4 | | | Date
AUG | COBA
DIS
SOLV
(UG
AS
(010 | F- DI
TED SOI
F/L (UG
CO) AS | S- DI
VED SOL
J/L (UG
FE) AS | S- DI
VED SOL
J/L (UG
LI) AS | E, DEN
S- DI
VED SOL
J/L (UG
MN) AS | UM, NICK
S- DIS
VED SOL
/L (UG
MO) AS | S- DI
LVED SOL
G/L (UG
NI) AS | M, SILV
S- DI
VED SOL
S/L (UG
SE) AS | ER, TI
S- DI
VED SOL
G/L (UG
AG) AS | VED SOL
G/L (UG
SR) AS | M,
S-
VED
:/L
V) | | | | 22 | <1 | .3 97 | '8 <4 | 15. | 1 <5 | 0 <2. | . 0 <1 | .4 <. | 1 51. | 9 E4 | | | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 351054089515301 -- Sh:Q-33 | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | |-------------|--|--|--|--|--|---|--|---|--|---|--|--|--| | AUG
21 | 1400 | 275. | 114 | 6.0 | 18.0 | 760 | М | 0 | 32 | 7.26 | 3.29 | 8.35 | 36 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L
AS
CACO3
(39086) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | AUG
21 | .6 | .83 | 53 | 43 | 80 | 6.7 | 4.89 | E.06 | 11.6 | 61 | 70 | .08 | <20 | | | Date | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | | | | AUG
21 | 33.6 | <13 | 675 | <4 | 10.1 | <50 | <2.0 | <14 | <.1 | 29.7 | <8 | | | | | | | 350 | 835089434 | 100 SH | ·R- 29 MT | GW #710 | | | | | | | Date | Time | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | | AUG
21 | 1130 | 589 | 51 | 5.8 | 19.0 | 760 | | | | | | | | | | | | | | | , 00 | 1.7 | 18 | 14 | 3.64 | 1.30 | 3.77 | 35 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | 3.64
SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | 3.77 SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | Date AUG 21 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | | AUG | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ## 00441400 HATCHIE NATIONAL WILDLIFE REFUGE RAIN GAGE AT HILLVILLE, TN ### (NATIONAL TRENDS NETWORK) - LOCATION.--Lat 35°28'08", long 89°10'14", Haywood County, Hydrologic Unit 08010208, 0.9 mi north of Hillville, 12 mi southeast of Brownsville. - PERIOD OF RECORD. -- October 1984 to current year. - INSTRUMENTATION.--An automatic wet-dry precipitation collector is used to collect 7-day accumulations. The collector is equipped with a precipitation sensor which activates a motor to operate the sample bucket cover. The sample bucket remains uncovered for the duration of each precipitation event and covered during dry periods. Dryfall samples are not collected. A standard 8.0-inch recording rain gage is used to obtain on-site precipitation records. - REMARKS.--These data are part of the data for this site verified by the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) Coordinator. Additional data are available from the NADP/NTN Coordinator, Natural Resource Ecology Laboratory, Fort Collins, Co. 80523. Finalized, quality assured data from all 200 NADP/NTN sites are available on-line via the internet at http://btdqs.usgs.gov/acidrain THIS PAGE IS INTENTIONALLY BLANK | Access to WATSTORE data | Biomass pigment ratio, definition of | | |---|--|-------| | Accuracy of stage and | Biomass, definition of | 21 | | water-discharge records 12 | Blue Creek near New Hope | 324 | | Acid neutralizing capacity, | Blue-green algae, definition of | 21 | | definition of 20 | Bolivar, Hatchie River at | 284 | | Acre-foot, definition of 20 | Bordeaux, Cumberland River near | 112 | | Adenosine triphosphate, definition of 20 | Bordeaux, Ewing Creek below | | | Albany, Lick Creek near 319 | Knight Rd near | 316 | | Alcoa, Little River near | Bottom material, definition of | 21 | | Algae, | Bradyville, Brawleys Fork below 3 | 313 | | Blue-green, definition of 21 | Bradyville, Reed Creek near | 313 | | Fire, definition of 23 | Brawleys Fork below Bradyville 3 | | | Green, definition of 24 | Brentwood, Little Harpeth River at | | | Algal growth potential, definition of 20 | Granny White Pike at | 317 | | Alkalinity, definition of 20 | Browns Creek at Factory Street | | | Almaville, Unnamed Sink near 314 | at Nashville | 316 | | Alpine, West Fork Obey River near 52 | Browns Creek at State Fairground | | | Annual 7-day minimum, definition of 20 | at Nashville | 108 | | Annual runoff, definition of 20 | Bruceton, Big Sandy River at | | | Antioch, Mill Creek near | Buffalo River near Flat Woods | | | Aquifer, water table, definition of 31 | Bulk electrical conductivity, | 250 | | Arlington | definition of | 21 | | Loosahatchie River near 286 | Burns, Jones Creek near | | | Aroclor, definition of | Burwood, Murfrees Fork above | | | | Bushman Creek at Pitts Lane | 3 T I | | Arthur, Powell River near | | 21/ | | Artificial substrate, definition of 20 | Ford near Compton | | | Ash mass, definition of | Byrdstown, Wolf River near | | | Ashland City, Sycamore Creek near 317 | Camden, Cypress Creek at | | | Aspect, definition of | Cane Creek at Ripley | | | Athens, North Mouse Creek near 208 | Cane Creek at Stewart | | | Avondale, Pages Branch at | Cane Creek near Spencer | | | Bacteria, definition of 20 | Caney Creek near Cosby | | | Enterococcus, definition of 23 | Carter Branch near White Pine | 319 | | Escherichia coli, definition of 23 | Carters Creek at Butler Road | | | Fecal coliform, definition of 23 | at Carters Creek | | | Fecal streptococcal, definition of 23 | Carters Creek at Petty Lane | 242 | | Total coliform, definition of 30 | Carters Creek tributary near | | | Baker Creek tributary near Binfield 321 | Carters Creek | | | Bankfull stage, definition of 20 | Cedar Creek near Valley Home | | | Bartons Creek near Cumberland Furnace 317 | Cedar Hill, Spring Creek tributary near. 3 | 318 | | Base discharge, definition of 20 | Celina, Cumberland River at | | | Base flow, definition of 20 | | 21 | | Battle Creek near Monteagle 323 | Cells/volume, definition of | 21 | | Beaver Creek at Brickyard Road | Cfs-day, definition of | 21 | | near Powell 322 | Channel bars, definition of | 21 | | Beaver Creek at Hwy 22 Bypass near | Charles Creek near McMinnville 3 | 313 | | Huntingdon 270 | Charleston, Hiwasse River at | 206 | | Beaver Creek at Solway | Chattanooga, Tennessee River at | 210 | | Beaver Creek near Williow Fork at | Cheatham Dam, Cumberland River below | 138 | | Halls Crossroads 322 | Chemical oxygen demand, definition of | 21 | | Beaver Dam Creek above Springfield 318 | Cherokee Creek near Embreeville 3 | 319 | | Bed load, definition of 20 | Childress, Indian Creek at | 320 | | Bed material, definition of 21 | Clear Creek at Lilly Bridge | | | Bed-load discharge, definition of 21 | near Lancing 198, 2 | 200 | | Bell Buckle, Wartrace Creek above 323 | Clear Fork near Fairview | | | Bent Creek at Taylor Gap 319 | Clear Fork near Robbins | | | Benthic organisms, definition of 21 | Clinch River above Tazewell | | | Big Creek near Rogersville | Clostridium perfringens, definition of . | | | Big Limestone Creek near
Limestone 162, 164 | Coal Creek at Lake City | | | Big Sandy River at Bruceton 260 | Coker Creek near Ironsburg | | | Big War Creek at Luther | | | | Binfield, Baker Creek tributary near 321 | Collins River near McMinnville | | | Biochemical oxygen demand, | Color unit, definition of | | | definition of | Columbia, Duck River at | | | ασιτητοιού οι | COLUMBIA, DUCK KIVEL at | ۷ و (| | Compton, Bushman Creek at Pitts | Dry Land Creek tributary near | | |--|--|-----| | Lane Ford near 31 | 1 New Market | 320 | | Confined aquifer, definition of 2 | | | | Conner Creek at Steele Road | Dry weight, definition of | | | near Solway | | | | | | | | Contents, definition of | | | | Continuous-record station, | Dumplin Creek at Mt. Hareb | | | definition of 2 | | | | Control structure, definition of 22 | Earthman Fork at Whites Creek | 316 | | Control, definition of | 1 East Fork Browns Creek at | | | Coon Creek above Chop Hollow | 100 Oaks Mall, at Nashville | 316 | | near Hohenwald 324 | | 50 | | Cooperation | | | | Cordell Hull Dam, Cumberland River | Road at Oak Ridge | 101 | | | | | | below 6 | | | | Cornersville, Richland Creek near 323 | | | | Cosby, Caney Creek near 319 | 9 Elk River near Pelham | 214 | | Cottontown, Station Camp Creek at 313 | Embeddedness, definition of | 23 | | Crest-stage partial record stations 312- 32 | 5 Embreeville, Cherokee Creek near | 319 | | Crittended County | | 160 | | Crooked Creek near Maynardville 32 | | | | Cross Plains, Honey Run Creek below 319 | | | | | | | | Cross Plains, Honey Run Creek near 31 | | 23 | | Cubic foot per second per square mile, | Escherichia coli (E. coli), | | | definition of 2 | | 23 | | Cubic foot per second, definition of 23 | Estimated (E) concentration value, | | | Cubic foot per second-day, definition of 23 | definition of | 23 | | Culleoka, Fountain Creek near 323 | | 23 | | Cumberland Furnace, Bartons Creek near . 31 | | | | Cumberland River at Celina 5 | | 316 | | Cumberland River at Old Hickory Dam 74 | | 310 | | | <u>.</u> | 1 | | Cumberland River at Omohundro | records | Ι/ | | Water Plant 103 | | | | Cumberland River below Cheatham Dam 138 | | 19 | | Cumberland River below Cordell Hull | Explanation of precipitation-quality | | | Dam 62 | records | 19 | | Cumberland River near Bordeaux 113 | Explanation of records | . 7 | | Cummings Creek near Dotsonville 31 | | | | Cypress Creek at Camden | | | | | | 10 | | Daddys Creek near Hebbertsburg 19 | | 0.0 | | Daily mean suspended-sediment | definition of | | | concentration, definition of 22 | Fairview, Clear Fork near | 319 | | Daily-record station, definition of 23 | 2 Fairview, Middle Fork Forked Deer | | | Data collection platform, definition of . 23 | River near | 282 | | Data logger, definition of | 2 Fecal coliform bacteria, definition of . | 23 | | Datum, definition of | Fecal streptococcal bacteria, | | | Denver, Trace Creek above | <u> </u> | 23 | | | | | | Diatom, definition of | 5 , | 23 | | Dickson, West Piney River at Hwy 70 near 32 | | 321 | | Diel, definition of 22 | Flat Woods, Buffalo River near | 256 | | Discharge, definition of 22 | 2 Fletcher Creek at Sycamore | 304 | | Dissolved oxygen, definition of 22 | 2 Fletcher Creek at Sycamore View | | | Dissolved, definition of | Road at Memphis | 296 | | Dissolved-solids concentration, | Flow, definition of | 22 | | definition of | | | | | | 22 | | Diversity index, definition of | | 23 | | Doe Creek at Gainesboro | | 320 | | Donelson, McCrory Creek at Ironwood Dr at 31 | | 323 | | Dotsonville, Cummings Creek near 318 | 8 Franklin, Harpeth River Tributary at | | | Downstream order system, | Mack Hatcher Pkwy near | 124 | | explanation of | 7 French Broad River near Newport | 156 | | Drainage area, definition of 22 | | 23 | | Drainage basin, definition of | | 23 | | Diamage Dabin, actinicion of | Gage values, definition of | | | | dage varues, detriffchon of | 24 | | Gaging station, definition of 24 | Indian Creek near Olivehill 323 | |---|--| | Gainesboro, Doe Creek at 312 | Instantaneous discharge, definition of . 24 | | Gas chromatography/flame ionization | Iron City, Shoal Creek at 220 | | detector, definition of 24 | Ironsburg, Coker Creek near 322 | | Geomorphic channel units, definition of . 24 | Island, definition of 24 | | Germantown, Nonconnah Creek near 310 | Jamestown, East Fork Obey River near 50 | | Germantown, Wolf River at 294 | Jasper, Standifer Branch at 323 | | Gordonsville, Mulherrin Creek near 313 | Jones Creek near Burns 317 | | Grays Chapel, Louise Creek near 317 | Kingston Springs, Harpeth River near 136 | | Green algae, definition of 24 | Laboratory reporting level, | | Green Hills, Sugartree Creek at | definition of 24 | | Abbott Martin Rd at 317 | LaGrange, Wolf River at 288, 290 | | Green Hills, Sugartree Creek at | Lake City, Coal Creek at 321 | | YMCA Access Rd at 316 | Lakes and reservoirs | | Greenfield, South Fork Obion River near . 272 | Boone Lake 263 | | Greenfield, Spring Creek near 325 | Calderwood Lake 268 | | Ground-water levels by county | Center Hill Lake 153 | | Shelby 386, 387 | Cheatham Lake 154 | | Ground-water levels, by county | Cherokee Lake 263 | | Crittended | Chickamauga Lake 266 | | Hamilton 370, 371 | Chilhowee Lake 268 | | Lauderdale | Cordell Hull Reservoir 152 | | Lincoln | Dale Hollow Lake 152 | | Shelby 375, 384, 387 | Davy Crockett Lake 268 | | Ground-water-level records, | Douglas Lake 262 | | Explanation of 17 | Fort Loudoun Lake 264 | | Ground-water-quality records, Explanation of | Fort Patrick Henry Lake 263 | | 19 | Great Falls Lake 153 | | Habitat quality index, definition of 24 | J. Percy Priest Reservoir 154 | | Habitat, definition of 24 | Kentucky Lake 268 | | Halls Crossroads, Willow Fork near 321 | Lake Barkley 154 | | Hamilton County 370, 371 | Lake Cumberland 152 | | Hardness, definition of 24 | Lake Ocoee 265 | | Harpeth River near Kingston Springs 136 | Melton Hill Lake 265 | | Harpeth River Tributary at Mack Hatcher | Nickajack Lake 266 | | Pkwy near Franklin 124 | Normandy Lake 267 | | Hatchie National Wildlife Refuge rain | Norris Lake 264 | | gage at Hillville 411 | Ocoee No. 3 Lake 268 | | Hatchie River at Bolivar 284 | Old Hickory Lake 153 | | Hatchie River at Sunnyhill 325 | Pickwick Lake 267 | | Hebbertsburg, Daddys Creek near 196 | South Holston Lake 262 | | Henry, Neil Ditch near 324 | Tellico Lake 264 | | High tide, definition of 24 | Tims Ford Lake 267 | | Hillville, Hatchie National Wildlife | Watauga Lake 262 | | Refuge rain gage at 411 | Watts Bar Lake 265 | | Hilsenhoff's Biotic Index, definition of 24 | Woods Reservoir 266 | | Hiwassee River at Charleston 206 | Lancing, Clear Creek at Lilly | | Hixson, North Chickamauga Creek | Bridge near 198, 200 | | at Greens Mill near322 | Lancing, Obed River near 202 | | Hohenwald, Coon Creek above | Land-surface datum, definition of 24 | | Chop Hollow near 324 | Lascassas, East Fork Stones River near . 314 | | Honey Run Creek below Cross Plains 318 | Latent heat flux, definition of 24 | | Honey Run Creek near Cross Plains 318 | Lauderdale County 372 | | Horizontal datum, definition of 24 | Leanna, Unnamed Sink at 315 | | Huntingdon, Beaver Creek at Hwy 22 | Leanna, Unnamed Sink on I-840 at 314 | | Bypass near | Leatherwood Ford, South Fork Cumberland | | Huntingdon, Little Reedy Creek near 324 | River at 46 | | Hydrologic Bench-Mark Network, | Lewis Creek near Dyersburg 325 | | definition of 6 | Lexington, Owl Creek at | | Hydrologic index stations, definition of 24 | Lick Creek near Albany 319 | | Hydrologic unit, definition of 24 | Light-attenuation coefficient, | | Identifying estimated daily discharge 12 | definition of | | Inch, definition of | Limestone, Big Limestone Creek near 162, 164 | | Indian Creek at Childress | Lincoln County | | Lipid, definition of 25 | Mount Hollow near Athens 208 | |--|--| | Little Ellejoy Creek at Prospect 321 | Mt. Hareb, Dumplin Creek at 320 | | Little Harpeth River at Granny White | Mulherrin Creek near Gordonsville 313 | | Pike at Brentwood317 | Multiple-plate samplers, definition of . 26 | | Little Pigeon River above Sevierville 174 | Murfrees Fork above Burwood 317 | | Little Reedy Creek near Huntingdon 324 | Murfreesboro, Lytle Creek at | | Little River above Townsend 178 | Sanbyrne Drive at 314 | | Little River near Alcoa | Murfreesboro, West Fork Stones River at . 90 | | Little River near Maryville 180 | Nanograms per liter, definition of 26 | | Little Sequatchie River at Sequatchie | Nashville, Browns Creek at Factory | | Long-term method detection level, | Street at | | definition of | Nashville, Browns Creek at State | | | | | Loosahatchie River near Arlington 286 | Fairground at | | Louise Creek near Grays Chapel 317 | Nashville, East Fork Browns Creek at | | Low flow, 7-day 10-year, definition of . 28 | 100 Oaks Mall, at 316 | | Low tide, definition of | Nashville, Sevenmile Creek at | | Lowland, Nolichucky River near 168, 170 | Blackman Rd near | | Luther, Big War Creek at 321 | Nashville, West Fork Browns Creek at | | Luttrell, Flat Creek at 321 | General Bates Drive at 316 | | Lytle Creek at Sanbyrne Drive | National Atmospheric Deposition | | at Murfreesboro | Program/National Trends | | Macrophytes, definition of 25 | Network, The 6 | | Martin, North Fork Obion River near 274 | National Geodetic Vertical Datum of | | Maryville, Little River near 180 | 1929, definition of 26 | | Maynardville, Crooked Creek near 321 | National Stream-Quality Accounting | | McCrory Creek at Ironwood Dr at Donelson 315 | Network 6 | | McMinnville, Charles Creek near 313 | National Water-Quality Assessment | | McMinnville, Collins River near 68 | Program (NAWQA)6 | | Mean concentration of suspended | Natural
substrate, definition of 26 | | sediment, definition of 25 | near Carters Creek 242 | | Mean discharge, definition of | Neil Ditch near Henry | | Mean high tide, definition of | Nekton, definition of 26 | | Mean low tide, definition of | Nephelometric turbidity unit, | | Mean sea level, definition of 25 | definition of | | | | | 3 I , | New Hope, Blue Creek near 324 | | · · · · · · · · · · · · · · · · · · · | New Market, Dry Land Creek | | Memphis, Fletcher Creek at 304 | tributary near 320 | | Memphis, Fletcher Creek at Sycamore | New River at New River 42 | | View Road at 296 | Newport, French Broad River near 156 | | Memphis, Wolf River at Hollywood | Newport, Pigeon River at 158 | | Street at | Nolensville, Mill Creek at 315 | | Metamorphic stage, definition of 25 | Nolichucky River at Embreeville 160 | | Method detection limit, definition of 25 | Nolichucky River near Lowland 168, 170 | | Methylene blue active substances, | Nonconnah Creek near Germantown 310 | | definition of 25 | North American Vertical Datum of 1988, | | Micrograms per gram, definition of 25 | definition of 26 | | Micrograms per kilogram, definition of . 25 | North Chickamauga Creek at | | Micrograms per liter, definition of 25 | Greens Mill near Hixson 322 | | Microsiemens per centimeter, | North Fork Forked Deer River at U.S. | | definition of 25 | Hwy 45W Bypass at Trenton 325 | | Middle Fork Forked Deer River | North Fork Obion River near Union City . 325 | | near Fairview 282 | North Fork Obion River, near Martin 274 | | Mill Creek at Nolensville | North Mouse Creek near Rocky 208 | | Mill Creek near Antioch | Numbering system for wells, | | | explanation of | | Mill Creek tributary at Glenrose Ave | | | at Woodbine | Oak Ridge, East Fork Poplar Creek | | Millers Creek at Turnersville 146 | at Bear Creek Road at 194 | | Milligrams per liter, definition of 25 | Oakdale, Emory River at 204 | | Minimum reporting level, definition of . 25 | Obed River near Lancing 202 | | Miscellaneous site, definition of 25 | Obion River at US Highway 51, near Obion 276 | | Monoville, Peyton Creek near 313 | Old Hickory Dam, Cumberland River at 74 | | Monteagle, Battle Creek near 323 | Olivehill, Indian Creek near 323 | | Most probable number (MPN), | Omohundro Water Plant, Cumberland | | definition of 26 | River at | | Only and Walffaren County and | 222 | Dissa milasas dafinikian af | 2.0 | |---|-----|---|--------| | Ooltewah, Wolftever Creek near | | River mileage, definition of | | | Open or screened interval, definition of | 26 | Roaring River above Gainesboro | | | Orebank, Reedy Creek at | 320 | Robbins, Clear Fork near | 44 | | Organic carbon, definition of | 26 | Robertson Creek near Persia | 320 | | Organic mass, definition of | 26 | Rocky Mount Hollow near | 208 | | Organism count, | | Rogersville, Big Creek near | | | Area, definition of | 26 | Rossville, Wolf Creek at | | | Total, definition of | 30 | Run, definition of | | | | | | | | Volume, definition of | 26 | Runoff, definition of | | | Organochlorine compounds, definition of . | 26 | Sango, Passenger Creek near | 318 | | Other data available | 12 | Savannah | | | Owl City, South Fork Forked Deer | | Tennessee River at | 222 | | River near | 280 | Sea level, definition of | 28 | | Owl Creek at Lexington | 323 | Second Creek near Walnut Grove | 313 | | Pages Branch at Avondale | 316 | Sediment, definition of | 28 | | Parameter Code, definition of | 26 | Sediment, explanation of | | | Partial-record station, definition of | 26 | Sensible heat flux, definition of | | | | | | | | Particle size, definition of | 26 | Sequatchie, Little Sequatchie River at . | 322 | | Particle-size classification, | | Sevenmile Creek at Blackman Rd | | | definition of | 26 | near Nashville | 315 | | Passenger Creek near Sango | | Sevierville, Little Pigeon River above . | 174 | | Peak flow, definition of | 26 | Shelby County 375- 384, 386, | 387 | | Pelham, Elk River near | | Shelbyville, Duck River at 230, | | | Percent composition, definition of | 27 | Shelves, definition of | | | Percent shading, definition of | 27 | Shiloh, Yellow Creek near | | | | | | | | Periodic station, definition of | 27 | Shoal Creek at Iron City | | | Periphyton, definition of | 27 | Sinking Fork at White Pine | | | Persia, Robertson Creek near | 320 | Smith Fork at Temperance Hall | | | Pesticides, definition of | 27 | Smyrna, West Fork Stones River near | 314 | | Peyton Creek near Monoville | 313 | Sodium adsorption ratio, definition of . | 28 | | pH, definition of | 27 | Soil heat flux, definition of | 28 | | Phytoplankton, definition of | 27 | Soil-water content, definition of | | | Picocurie, definition of | 27 | Solway, Beaver Creek at | | | Pigeon River at Newport | | South Fork Cumberland River at | | | | 27 | Leatherwood Ford | 1.0 | | Plankton, definition of | 27 | | 40 | | Polychlorinated biphenyls (PCB s), | | South Fork Forked Deer River | | | definition of | 27 | near Owl City | | | Polychlorinated naphthalenes, | | South Fork Obion River, near Greenfield. | 272 | | definition of | 27 | Special networks and programs | . 6 | | Pool, definition of | 27 | Specific conductance, definition of | 28 | | Port Royal, Sulphur Fork Red River above | 318 | Spencer, Cane Creek near | | | Powell River near Arthur | 190 | Spring Creek near Greenfield | | | Precipitation-quality records, | 100 | Spring Creek tributary near Cedar Hill . | | | | 1.0 | | | | Explanation of | 19 | Springfield, Beaver Dam Creek above | 210 | | Primary productivity, definition of | 27 | Springfield, Sulphur Fork Red | | | Carbon method, definition of | 27 | River above | | | Oxygen method, definition of | 27 | Springs | | | Prospect, Little Ellejoy Creek at | 321 | Stable isotope ratio, definition of | 29 | | Radioisotopes, definition of | 27 | Stage (see gage height) | 29 | | Reach, definition of | 28 | Stage and water discharge, Explanation of | | | Records, Explanation of | . 7 | Stage-discharge relation, definition of . | | | Recoverable, bottom material, | • | Standifer Branch at Jasper | | | definition of | 28 | Station Camp Creek at Cottontown | | | | | | 213 | | Recurrence interval, definition of | 28 | Station identification numbers, | _ | | Red Bank, Stringers Branch at | | explanation of | | | Leawood Dr at | | Stewart, Cane Creek at | 324 | | Reed Creek near Bradyville | 313 | Stock Creek at Pickins Gap Road near | | | Reedy Creek at Orebank | 320 | High Bluff | 321 | | Reelfoot Lake near Tiptonville | | Streamflow, definition of | | | Replicate samples, definition of | 28 | Stringers Branch at Leawood Dr | _ | | Return period, definition of | 28 | at Red Bank | 300 | | Richland Creek near Cornersville | | Substrate embeddedness class, | J 41 4 | | | | | 0.0 | | Riffle, definition of | | definition of | | | Ripley, Cane Creek at | 325 | Substrate, definition of | 29 | | Artificial, definition of 20 | Total, bottom material, definition of 30 | |---|---| | Natural, definition of 26 | Total, definition of 30 | | Sugartree Creek at Abbott Martin Rd | Townsend, Little River above 178 | | at Green Hills 317 | Trace Creek above Denver 324 | | Sugartree Creek at YMCA Access Rd | Transect, definition of 31 | | at Green Hills 316 | Trenton, North Fork Forked Deer River | | Sulphur Fork Red River above Port Royal . 318 | at U.S. Hwy 45W Bypass at 325 | | Sulphur Fork Red River | Turbidity, definition of 31 | | above Springfield | Turnersville, Millers Creek at 146 | | Summary of hydrologic conditions 3 | Ultraviolet (UV) absorbance | | Sunbright, Whiteoak Creek at 312 | (absorption), definition of 31 | | Sunnyhill, Hatchie River at 325 | Unconfined aguifer, definition of 31 | | Surface area, definition of | Union City, North Fork Obion River near . 325 | | Surface-water quality, Explanation of | Unnamed Sink at Leanna | | Surficial bed material, definition of 29 | Unnamed Sink near Almaville | | Suspended sediment, definition of 29 | Unnamed Sink on I-840 at Leanna 314 | | Suspended solids, total residue at | Valley Home, Cedar Creek near 319 | | 105 °C concentration, | | | | Vertical datum, definition of 31 View Road at Memphis 304 | | definition of | | | Suspended, definition of | Volatile organic compounds, | | Recoverable, definition of 29 | definition of | | Total, definition of 29 | Walnut Grove, Second Creek near 313 | | Suspended-sediment concentration, | Wartrace Creek above Bell Buckle 323 | | definition of 29 | Water table, definition of 31 | | Suspended-sediment discharge, | Water temperature, explanation of 14 | | definition of 29 | Water year, definition of 31 | | Suspended-sediment load, definition of . 29 | Water-table aquifer, definition of 31 | | Sycamore Creek near Ashland City 317 | WDR, definition of | | Sycamore View Road at | Weighted average, definition of 31 | | Synoptic studies, definition of 30 | West Fork Browns Creek at | | Taxa (Species) richness, definition of . 30 | General Bates Drive at Nashville . 316 | | Taxonomy, definition of 30 | West Fork Obey River near Alpine 52 | | Taylor Gap, Bent Creek at 319 | West Fork Stones River at Murfreesboro . 90 | | Tazewell, Clinch River above 188 | West Fork Stones River near Smyrna 314 | | Techniques of water-resources | West Piney River at Hwy 70 near Dickson . 324 | | investigations 32-?? | Wet mass, definition of | | Tellico River at Tellico Plains 184 | Wet weight, definition of 31 | | Temperance Hall, Smith Fork at 70 | White Pine, Carter Branch near 319 | | Ten Mile Creek at Robinson Road | White Pine, Sinking Fork at 320 | | near Knoxville 321 | Whiteoak Creek at Sunbright 312 | | Tennessee River at Chattanooga 210 | Whites Creek, Earthman Fork at 316 | | Tennessee River at Savannah | Willow Fork near Halls Crossroads 321 | | Thalweg, definition of | Wolf River at Rossville 292 | |
Thermograph, definition of | Wolf River at Germantown | | Time-weighted average, definition of | Wolf River at Hollywood Street | | Tiptonville | at Memphis | | Reelfoot Lake near 278 | Wolf River at LaGrange 288, 290 | | | | | Tons per acre-foot, definition of 30 | Wolf River near Byrdstown | | Tons per day, definition of 30 | Wolftever Creek near Ooltewah 322 | | Total coliform bacteria, definition of . 30 | Woodbine, Mill Creek tributary at | | Total discharge, definition of 30 | Glenrose Ave at | | Total length, definition of 30 | Woodbury, East Fork Stones River at 313 | | Total load, definition of 30, 31 | WSP, definition of | | Total organism count, definition of 30 | Yellow Creek near Shiloh 319 | | Total recoverable, definition of 30 | Zion Hill, Forgey Creek at 320 | | Total sediment discharge, definition of . 30 | Zooplankton, definition of 31 | | Total sediment load, definition of 31 | |